This application is a U.S. National stage application of International Application No. PCT/JP2018/005295, filed on Feb. 15, 2018. This U.S. National stage application claims priority under 35 U.S.C. § 119(a) to Japanese Patent Application No. 2017-067148, filed in Japan on Mar. 30, 2017, the entire contents of which are hereby incorporated herein by reference.
The present invention relates to a control system for a work vehicle, a method for setting a trajectory of a work implement, and a work vehicle.
Conventionally, in work vehicles such as bulldozers or graders, automatic control has been proposed for automatically adjusting the position of a work implement. For example, Japanese Patent No. 5,247,939 discloses digging control and ground leveling control.
In digging control, the position of the blade is automatically adjusted so that the load on the blade matches the target load. In the ground leveling control, the position of the blade is automatically adjusted such that the tip of the blade moves along the final design surface indicating the target finished shape to be dug.
According to the conventional control described above, the occurrence of shoe slip can be suppressed by raising the blade when the load on the blade becomes excessively large. Thereby, the work can be performed efficiently.
However, in the conventional control, as shown in
In addition to the digging work, the work performed by the work vehicle includes a filling work. In the filling work, the work vehicle cuts out the soil from the cut earth part by the work implement. Then, the work vehicle places the cut out soil at a predetermined position by the work implement. The soil is compacted by the work vehicle traveling on filled soil or by rollers. Thereby, for example, it is possible to fill the recessed topography and form it into a flat shape.
However, in the above-described automatic control, it is also difficult to perform a good filling work. For example, as shown in
An object of the present invention is to provide a control system for a work vehicle, a method for setting a trajectory of a work implement, and a work vehicle capable of performing work with high quality and finish efficiently by automatic control.
A first aspect is a control system for a work vehicle including a work implement, and the control system includes an input device and a controller configured to communicate with the input device. The controller is programmed to perform the following processing. The controller receives from the input device an input signal indicating an input operation by an operator. The controller acquires vehicle information including a position of the work vehicle when the input signal is received and orientation information of the work vehicle when the input signal is received. The controller determines a target design surface indicating a target trajectory of the work implement based on the vehicle information and the orientation information when the input signal is received.
A second aspect is a method for setting a target trajectory of a work implement of a work vehicle, and the method for setting the target trajectory includes the following processing. The first process is to receive an input signal indicating an input operation by an operator. The second process is to acquire vehicle information including a position of the work vehicle when the input signal is received, and orientation information of the work vehicle when the input signal is received. The third process is to determine a target design surface indicating a target trajectory of the work implement based on the vehicle information and the orientation information when the input signal is received.
A third aspect is a work vehicle, and the work vehicle includes a work implement, an input device, and a controller. The controller is programmed to perform the following processing. The controller receives from the input device an input signal indicating an input operation by an operator. The controller acquires vehicle information including a position of the work vehicle when the input signal is received and orientation information of the work vehicle when the input signal is received. The controller determines a target design surface indicating a target trajectory of the work implement based on the vehicle information and the orientation information when the input signal is received. The controller controls the work implement according to the target design surface.
According to the present invention, by controlling the work implement in accordance with the target design surface, it is possible to perform digging work while suppressing an excessive load on the work implement. Thereby, the quality of the work finish can be improved. In addition, automatic control can improve the efficiency of work.
Hereinafter, a work vehicle according to an embodiment will be described with reference to the drawings.
The vehicle body 11 includes an operating cabin 14 and an engine compartment 15. A driver's seat (not shown) is disposed in the operating cabin 14. The engine compartment 15 is disposed in front of the operating cabin 14. The traveling device 12 is attached to the lower portion of the vehicle body 11. The traveling device 12 includes a pair of right and left crawler belts 16. In
The work implement 13 is attached to the vehicle body 11. The work implement 13 includes a lift frame 17, a blade 18, a lift cylinder 19 and a tilt cylinder 21.
The lift frame 17 is mounted to the vehicle body 11 so as to be movable up and down around an axis× extending in the vehicle width direction. The lift frame 17 supports the blade 18. The blade 18 is disposed in front of the vehicle body 11. The blade 18 moves up and down as the lift frame 17 moves up and down.
The lift cylinder 19 is connected to the vehicle body 11 and the lift frame 17. The lift cylinder 19 rotates up and down about the axis X by the expansion and contraction of the lift cylinder 19.
The tilt cylinder 21 is connected to the lift frame 17 and the blade 18. The expansion and contraction of the tilt cylinder 21 rotates the blade 18 about an axis Z extending substantially in the longitudinal direction of the vehicle.
The hydraulic pump 23 is driven by the engine 22 and discharges hydraulic fluid. The hydraulic fluid discharged from the hydraulic pump 23 is supplied to the lift cylinder 19 and the tilt cylinder 21. Although one hydraulic pump 23 is illustrated in
The power transmission device 24 transmits the driving force of the engine 22 to the traveling device 12. The power transmission device 24 may be, for example, HST (Hydro Static Transmission). Alternatively, the power transmission device 24 may be, for example, a torque converter or a transmission having a plurality of transmission gears.
The control system 3 includes an operating device 25a, an input device 25b, a display 25c, a controller 26, a control valve 27, and a storage device 28. The operating device 25a is a device for operating the work implement 13 and the traveling device 12. The operating device 25a is disposed in the operating cabin 14. The operating device 25a receives an operation by an operator for driving the work implement 13 and the traveling device 12, and outputs an operation signal according to the operation. The operating device 25a includes, for example, an operating lever, a pedal, a switch, and the like.
For example, the operating device 25a for the traveling device 12 is configured to be operable at a forward position, a reverse position, and a neutral position. An operation signal indicating the position of the operating device 25a is output to the controller 26. The controller 26 controls the traveling device 12 or the power transmission device 24 so that the work vehicle 1 advances when the operating position of the operating device 25a is the forward position. When the operation position of the operating device 25a is the reverse position, the controller 26 controls the traveling device 12 or the power transmission device 24 so that the work vehicle 1 moves backward.
The input device 25b and the display 25c are, for example, a touch panel type of display input device. The display 25c is, for example, an LCD or an OLED. However, the display 25c may be another type of display device. The input device 25b and the display 25c may be separate devices from each other. For example, the input device 25b may be an input device such as a switch. The input device 25b outputs an operation signal indicating an operation by the operator to the controller 26.
The controller 26 is programmed to control the work vehicle 1 based on the acquired data. The controller 26 includes, for example, a processor such as a CPU. The controller 26 acquires an operation signal from the operating device 25a. The controller 26 controls the control valve 27 based on the operation signal. The controller 26 acquires the operation signal from the input device 25b. The controller 26 outputs a signal to display a predetermined screen on the display 25c.
The control valve 27 is a proportional control valve, and is controlled by a command signal from the controller 26. The control valve 27 is disposed between a hydraulic actuator such as the lift cylinder 19 and the tilt cylinder 21 and the hydraulic pump 23. The control valve 27 controls the flow rate of the hydraulic fluid supplied from the hydraulic pump 23 to the lift cylinder 19 and the tilt cylinder 21. The controller 26 generates a command signal to the control valve 27 so that the blade 18 operates in response to the operation of the operating device 25a described above. Thus, the lift cylinder 19 is controlled in accordance with the amount of operation of the operating device 25a. Alternatively, the tilt cylinder 21 is controlled in accordance with the amount of operation of the operating device 25a. The control valve 27 may be a pressure proportional control valve. Alternatively, the control valve 27 may be an electromagnetic proportional control valve.
The control system 3 includes a lift cylinder sensor 29. The lift cylinder sensor 29 detects the stroke length of the lift cylinder 19 (hereinafter referred to as “lift cylinder length L”). As shown in
In
As shown in
As shown in
The IMU 33 is an inertial measurement unit. The IMU 33 acquires vehicle body inclination angle data and vehicle body acceleration data. The vehicle body inclination angle data includes an angle (pitch angle) to the horizontal in the longitudinal direction of the vehicle and an angle (roll angle) to the horizontal in the lateral direction of the vehicle. The vehicle body acceleration data includes the acceleration of the work vehicle 1. The controller 26 acquires the vehicle body inclination angle data and the vehicle body acceleration data from the IMU 33.
The controller 26 calculates a blade tip position P0 from the lift cylinder length L, the vehicle body position data, and the vehicle inclination angle data. As shown in
The controller 26 calculates the traveling direction of the work vehicle 1 and the vehicle speed from the vehicle body position data and the vehicle acceleration data. The vehicle body dimension data is stored in the storage device 28 and indicates the position of the work implement 13 with respect to the GNSS receiver 32. The controller 26 calculates the global coordinates of the blade tip position P0 based on the global coordinates of the GNSS receiver 32, the local coordinates of the blade tip position P0, and the vehicle body inclination angle data. The controller 26 acquires the global coordinates of the blade tip position P0 as blade tip position data. The blade tip position P0 may be calculated directly by attaching the GNSS receiver to the blade 18.
The storage device 28 includes, for example, a memory and an auxiliary storage device. The storage device 28 may be, for example, a RAM or a ROM. The storage device 28 may be a semiconductor memory or a hard disk. The storage device 28 is an example of a non-transitory computer readable recording medium. The storage device 28 stores computer instructions which are executable by the processor for controlling the work vehicle 1.
The storage device 28 stores work site topography data. The work site topography data indicates the actual topography of the work site. The work site topography data is, for example, a topographical survey map in a three-dimensional data format. The work site topography data can be obtained, for example, by aviation laser survey.
The controller 26 acquires actual topography data. The actual topography data indicates the actual surface 50 of the work site. The actual surface 50 is the topography of a region along the traveling direction of the work vehicle 1. The actual topography data is obtained by calculation in the controller 26 from work site topography data and the position and traveling direction of the work vehicle 1 obtained from the position sensing device 31 described above. Further, as described later, the actual topography data is acquired by the work vehicle 1 traveling.
In
The storage device 28 stores design surface data. The design surface data indicates the design surfaces 60 and 70 which are target trajectories of the work implement 13. The storage device 28 stores a plurality of design surface data indicating the plurality of design surfaces 60 and 70.
As shown in
The plurality of design surfaces 60 and 70 includes an intermediate design surface 60 other than the final design surface 70. At least a portion of the design surface 60 is located between the final design surface 70 and the actual surface 50. The controller 26 is configured to generate a desired design surface 60, generate design surface data indicating the design surface 60, and store the design surface data in the storage device 28.
The controller 26 automatically controls the work implement 13 based on the actual topography data, the design surface data, and the blade tip position data. The automatic control of the work implement 13 executed by the controller 26 will be described below.
As shown in
In step S103, the controller 26 acquires the actual topography data. As described above, the controller 26 acquires the actual topography data from the work site topography data and the position and the traveling direction of the work vehicle 1. In addition, the controller 26 acquires the actual topography data indicating the actual surface 50 by moving the work vehicle 1 on the actual surface 50.
For example, the controller 26 acquires the position data indicating the latest trajectory of the blade tip position P0 as actual topography data. The controller 26 updates the work site topography data with the acquired actual topography data. Alternatively, the controller 26 may calculate the position of the bottom surface of the crawler belt 16 from the vehicle body position data and the vehicle body dimension data, and may acquire the position data indicating the trajectory of the bottom surface of the crawler belt 16 as the actual topography data.
Alternatively, the actual topography data may be generated from survey data measured by a survey device outside the work vehicle 1. For example, aviation laser surveying may be used as an external survey device. Alternatively, the actual surface 50 may be photographed by a camera, and the actual topography data may be generated from image data obtained by the camera. For example, aerial surveying with a UAV (Unmanned Aerial Vehicle) may be used.
In step S104, the controller 26 determines a target design surface. The controller 26 determines the design surface 60 and 70 selected by the operator as the target design surface. Alternatively, the design surface 60 and 70 automatically selected or generated by the controller 26 may be determined as the target design surface.
In step S105, the controller 26 controls the work implement 13. The controller 26 automatically controls the work implement 13 in accordance with the target design surface. Specifically, the controller 26 generates a command signal to the work implement 13 so that the blade tip position of the blade 18 moves toward the target design surface. The generated command signal is input to the control valve 27. Thereby, the blade tip position P0 of the work implement 13 moves along the target design surface.
For example, when the target design surface is located above the actual surface 50, the work implement 13 deposits soil on the actual surface 50. In addition, when the target design surface is located below the actual surface 50, the actual surface 50 is dug by the work implement 13.
The controller 26 may start control of the work implement 13 when a signal for operating the work implement 13 is output from the operating device 25a. The movement of the work vehicle 1 may be performed manually by the operator operating the operating device 25a. Alternatively, movement of the work vehicle 1 may be automatically performed by a command signal from the controller 26.
The above process is performed while the work vehicle 1 is moving forward in the traveling direction. For example, when the operating device 25a for the traveling device 12 is at the forward position, the above-described process is performed to automatically control the work implement 13. When the work vehicle 1 moves backward, the controller 26 stops controlling the work implement 13.
Next, the generation function of the design surface 60 will be described. The controller 26 can generate a desired design surface 60 and set it as a target design surface.
As shown in
Operation screen 80 includes a plurality of operation keys 41-43. For example, the operation screen 80 includes an up key 41, a down key 42, and a screen switching key 43. The up key 41 is a key for elevating the target design surface by a predetermined distance. The down key 42 is a key for lowering the target design surface by a predetermined distance. The screen switching key 43 is a key for switching the operation screen 80 displayed on the display 25c.
Operation screen 80 includes mode selection key 44. The mode selection key 44 is a key for selecting a control mode of automatic control from a plurality of modes. In the present embodiment, the operator can select the control mode from the normal mode, the first mode, the second mode, and the third mode by operating the mode selection key 44.
For example, each time the operator presses the mode selection key 44, the mode selection key 44 is sequentially switched to a decision button for the normal mode, a decision button for the first mode, a decision button for the second mode, and a decision button for the third mode. A long press of any of the decision buttons by the operator determines the corresponding mode as the control mode.
Note that the decision button for the normal mode, the decision button for the first mode, the decision button for the second mode, and the decision button for the third mode are not limited to the common mode selection key 44, but are mutually different keys.
In the normal mode, the work implement is controlled in accordance with the target design surface located between the final design surface 70 and the actual surface 50. The controller 26 generates an intermediate design surface 61 located between the final design surface 70 and the actual surface 50 from the design surface data indicating the final design surface 70 and the actual topography data, and determines it as a target design surface.
For example, as shown in
Alternatively, in the normal mode, the controller 26 may set the design surface 60 selected by the operator as the target design surface, as described above.
In the first to third modes, the operator can easily generate a desired design surface 60 and set it as a target design surface. In the first to third modes, the controller 26 selects the design surface 60 based on the input operation of the input device 25b by the operator, the vehicle information, and the orientation information regardless of the final design surface 70 and the actual surface 50. In the following description, the design surface 60 generated in the first to third modes is referred to as a “simplified design surface 62”.
In the first mode, position information indicating the position of work vehicle 1 (hereinafter referred to as “reference point P1”) and orientation information indicating the direction of work vehicle 1 at the time when the input operation by the operator is performed are stored. In the first mode, a flat plane passing through the position of the work vehicle 1 at the time when the input operation by the operator is performed and extending toward the orientation of the work vehicle 1 is generated as the simplified design surface 62.
As shown in
Specifically,
In steps S202 to S204, the controller 26 acquires the vehicle information when the input operation by the operator is performed. Specifically, in step S202, the controller 26 acquires the blade tip position P0 when the input operation by the operator is performed, and sets it to the reference point P1. More specifically, as shown in
In step S203, the controller 26 acquires the pitch angle of the vehicle body 11 when the input operation by the operator is performed. As shown in
In step S204, the controller 26 acquires the tilt angle of the work implement 13 when the input operation by the operator is performed. As shown in
In step S205, the controller 26 acquires the orientation of the work vehicle 1 when the input operation by the operator is performed. The orientation of the work vehicle 1 corresponds to the traveling direction of the work vehicle 1 described above, and is acquired by, for example, the vehicle body position data from the GNSS receiver 32.
In step S206, the controller 26 determines the simplified design surface 62. The controller 26 determines, as the simplified design surface 62, a plane passing through the reference point P1, extending toward the orientation of the work vehicle 1, and having a longitudinal gradient of the pitch angle and a cross gradient of the tilt angle. Thereby, the simplified design surface 62 parallel to the orientation, the pitch angle, and the tilt angle of the work vehicle 1 and passing through the reference point P1 is generated. Then, in step S207, the controller 26 determines the simplified design surface 62 as a target design surface. The controller 26 stores design surface data indicating the determined simplified design surface 62 in the storage device 28.
As shown in
The fixing selection column 804 of the direction is a column for selecting whether to fix the direction of the simplified design surface 62 regardless of the orientation of the vehicle when the simplified design surface 62 is generated. In the present embodiment, the fact that the check is input in the fixing selection column 804 of the direction indicates “OK”, and the fact that the check is not input indicates “NO”. Hereinafter, in the other fixing selection columns as well, the fact that the check is input in the fixing selection column indicates “OK” and the fact that the check is not input indicates “NO”.
When the fixing selection column 804 of the direction is “No”, the orientation of the work vehicle 1 when the input operation by the operator is performed is set as the direction of the simplified design surface 62. When the fixing selection column 804 of the direction is “OK”, the direction of the simplified design surface 62 is fixed to the value input in the input column 807 of the direction.
The fixing selection column 805 of the longitudinal gradient is a column for selecting whether to fix the longitudinal gradient regardless of the pitch angle of the vehicle body 11 when the simplified design surface 62 is generated. In the present embodiment, when the fixing selection column 805 of the longitudinal gradient is “No”, the pitch angle of the vehicle body 11 when the input operation by the operator is performed is set as the longitudinal gradient of the simplified design surface 62. When the fixing selection column 805 of the longitudinal gradient is “OK”, the longitudinal gradient of the simplified design surface 62 is fixed to the value input to the input column 808 of the longitudinal gradient.
The fixing selection column 806 of the cross gradient is a column for selecting whether to fix the cross gradient regardless of the tilt angle of the work implement 13 when the simplified design surface 62 is generated. When the fixing selection column 806 of the cross gradient is “No”, the tilt angle of the work implement 13 when the input operation by the operator is performed is set as the cross gradient of the simplified design surface 62. When the fixing selection column 806 of the cross gradient is “OK”, the cross gradient of the simplified design surface 62 is fixed to the value input in the input column 809 of the cross gradient.
The input of the numerical values into the respective input columns 807 to 809 is performed, for example, by the numerical value input key 46 shown in FIG. When the operator presses the input column 807 of the direction, the numerical value input key 46 is displayed on the operation screen 82. The operator can input a numerical value in the input column 807 of the direction by pressing the numerical value input key 46. Similarly, the operator can input numerical values into the respective input columns 808 and 809 by pressing the numerical value input key 46.
The controller 26 receives a setting signal indicating the setting operation of the operator by the adjustment display 803 from the input device 25b. The controller 26 changes the direction, the longitudinal gradient and the lateral gradient of the simplified design surface 62 based on the setting signal.
For example, as shown in
Thereby, for example, in
In these cases, the operator may operate the decision button (44) of the first mode in a state where the blade tip position P0 is aligned with the position where the digging is to be started. Thereby, the blade tip position P0 is set as the reference point P1, and the horizontal simplified design surface 62 passing through the reference point P1 is set as the target design surface. The controller 26 can easily form the above-described shape by controlling the work implement 13 according to the target design surface. Therefore, the controller 26 can generate the simplified design surface 62 without acquiring the actual topography data indicating the raised topography 51 of
Next, the second mode will be described. In the second mode, two positions of the work vehicle 1 on which the input operation by the operator has been performed are stored as reference points P1 and P2. In the second mode, a flat plane passing through the two reference points P1 and P2 is generated as the simplified design surface 62.
As shown in
In step S302, the controller 26 acquires the blade tip position P0 when the input operation by the operator is performed, and sets it to the first reference point P1. As in the first mode, the controller 26 sets the center of the tip 180 in the left-right direction as the first reference point P1. The controller 26 stores the coordinates indicating the first reference point P1 in the storage device 28 as reference position information.
In step S303, the controller 26 determines the presence or absence of the input operation by the operator for determining the second reference point P2. When the controller 26 receives an input signal indicating the input operation by the operator for determining the second reference point P2 from the input device 25b, the controller 26 determines that the input operation by the operator is present. Similar to the first reference point P1, when a long press of the decision button (44) for the second mode on the operation screen 83 is performed, the controller 26 determines that there is an input operation by the operator for determining the second reference point P2.
In step S304, the controller 26 acquires the blade tip position P0 when the input operation by the operator is performed, as in the first reference point P1, and sets it as the second reference point P2. The controller 26 stores the coordinates indicating the second reference point P2 in the storage device 28 as reference position information.
Note that, as shown in
In step S305, the controller 26 determines the simplified design surface 62. The controller 26 determines a flat plane passing through the first reference point P1 and the second reference point P2 as the simplified design surface 62. The controller 26 calculates the orientation of the vehicle and the longitudinal gradient from the coordinates of the first reference point P1 and the second reference point P2. In the second mode, the cross gradient is fixed to a predetermined value. For example, the cross gradient in the second mode is set to 0% as an initial value. However, the operator can change the cross gradient from the initial value by inputting a desired value in the input column 809 of the cross gradient.
Then, in step S306, the controller 26 determines the simplified design surface 62 as a target design surface. The controller 26 stores design surface data indicating the determined simplified design surface 62 in the storage device 28.
Note that, as shown in
Next, the third mode will be described. In the third mode, three positions of the work vehicle 1 on which the input operation by the operator has been performed are stored as reference points P1 to P3. In the third mode, a flat plane passing through the three reference points P1 to P3 is generated as the simplified design surface 62.
The processing from step S401 to step S404 is the same as the processing from step S301 to step S304 in the second mode, so the description will be omitted.
In step S405, the controller 26 determines the presence or absence of the input operation by the operator for determining the third reference point P3. When the controller 26 receives an input signal indicating the input operation by the operator for determining the third reference point P3 from the input device 25b, the controller 26 determines that the input operation by the operator is present. Specifically,
In step S406, the controller 26 acquires the blade tip position P0 when the input operation by the operator is performed, as in the case of the first and second reference points P1 and P2, and sets it to the third reference point P3. The controller 26 stores the coordinates indicating the third reference point P3 in the storage device 28 as reference position information.
As shown in
In step S407, the controller 26 determines the simplified design surface 62. The controller 26 determines a flat plane passing through the first reference point P1, the second reference point P2 and the third reference point P3 as the simplified design surface 62. The controller 26 calculates the orientation of the vehicle, the longitudinal gradient, and the cross gradient from the coordinates of the first reference point P1, the second reference point P2, and the third reference point P3.
Then, in step S408, the controller 26 determines the simplified design surface 62 as a target design surface. The controller 26 stores design surface data indicating the determined simplified design surface 62 in the storage device 28.
Note that, as shown in
According to the control system 3 of the work vehicle 1 according to present embodiment described above, when the target design surface is positioned above the actual surface 50, the work implement 13 is controlled along the target design surface, and the soil is thereby thinly placed on the actual surface 50. In addition, when the target design surface is lower than the actual surface 50, the work implement 13 is controlled along the target design surface, and digging is thereby performed while controlling the load on the work implement 13 from being excessive. Thereby, the quality of the work finish can be improved. In addition, automatic control can improve the efficiency of work.
Further, by setting the reference points P1-P3 in the first to third modes, the simplified design surface 62 passing through the reference points P1-P3 can be generated and set as a target design surface. Thus, the operator can easily set a new target design surface according to the situation.
For example, in the first mode, the operator places the tip 180 of the blade 18 at the start position of work and operates the decision button (44) of the first mode to set the blade tip position P0 as the reference point P1 and thereby a horizontal simplified design surface 62 passing through the reference point P1 can be generated and set as a target design surface. Alternatively, with the blade tip position P0 as the reference point P1, the simplified design surface 62 parallel to the pitch angle and/or the tilt angle passing through the reference point P1 can be generated and set as the target design surface.
In the second mode, the operator places the tip at the start position of work and operates the decision button (44) of the second mode to set the blade tip position P0 as the first reference point P1. Then, the operator moves the work vehicle 1 and places the tip 180 at a position where the tip 180 is to be passed, and operates the decision button (44) of the second mode to set the blade tip position P0 as the second reference point P2. Thereby, the flat simplified design surface 62 passing through the first reference point P1 and the second reference point P2 can be generated and set as a target design surface.
In the third mode, as in the second mode, after setting the first and second reference points P1 and P2, the operator further moves the work vehicle 1. Then, the operator places the tip 180 at a position where the tip 180 is to be passed and operates the decision button (44) of the second mode to set the blade tip position P0 as the third reference point P3. Thereby, the flat simplified design surface 62 passing through the first reference point P1, the second reference point P2 and the third reference point P3 can be generated and set as a target design surface.
As mentioned above, although one embodiment of the present invention was described, the present invention is not limited to the above embodiment, a various modifications are possible without departing from the gist of the invention.
The work vehicle 1 is not limited to a bulldozer, but may be another vehicle such as a wheel loader or a motor grader.
The work vehicle 1 may be a remotely steerable vehicle. In that case, a part of the control system 3 may be disposed outside the work vehicle 1. For example, the controller 26 may be disposed outside the work vehicle 1. The controller 26 may be located in a control center remote from the work site.
The controller 26 may include a plurality of controllers separate from one another. For example, as shown in
The operating device 25a, the input device 25b, and the display 25c may be disposed outside the work vehicle 1. In that case, the operating cabin may be omitted from the work vehicle 1. Alternatively, the operating device 25a, the input device 25b, and the display 25c may be omitted from the work vehicle 1. The work vehicle 1 may be operated only by the automatic control by the controller 26 without the operation by the operating device 25a and the input device 25b.
The actual surface 50 may be acquired by not only the position sensing device 31 described above, but also other devices. For example, as shown in
The input device 25b is not limited to a touch panel device, and may be a device such as a switch. The operation keys 41 to 43 described above are not limited to the software keys displayed on the touch panel, and may be hardware keys. The operation keys 41-43 may be changed. For example, the up key 41 and the down key 42 may be omitted.
The decision button (44) of the first mode, the decision button (44) of the second mode, and the decision button (44) of the third mode may be hardware keys. For example, the decision button (44) of the first mode, the decision button (44) of the second mode, and the decision button (44) of the third mode may be disposed on the operating device 25a. The decision button (44) of the first mode, the decision button (44) of the second mode, and the decision button (44) of the third mode are not limited to the common key but may be different keys.
The position of the work vehicle 1 is not limited to the blade tip position P0 as in the above embodiment, but may be another position. For example, the position of the work vehicle 1 may be the position of a predetermined portion of the vehicle body 11. For example, the position of the work vehicle 1 may be a predetermined position of the bottom surface 160 of the crawler belt 16.
The inclination angle in the longitudinal direction of the work vehicle 1 is not limited to the pitch angle of the vehicle body 11 as in the above embodiment, but may be another angle. For example, the tilt angle of the work vehicle 1 in the longitudinal direction may be the lift angle of the work implement 13.
The inclination angle in the left-right direction of the work vehicle 1 is not limited to the tilt angle of the work implement 13 as in the above embodiment, but may be another angle. For example, the tilt angle of the work vehicle 1 in the left-right direction may be the roll angle of the vehicle body 11.
The second mode and/or the third mode may be omitted. Also, the normal mode may be omitted and only the first mode may be executable.
The operation screen may be changed. For example, the operation screen may include a side view including an image indicating the topography of the work site and an icon indicating the current position of the work vehicle 1. The adjustment display 803 of the first to third modes may be changed or omitted.
According to the present invention, it is possible to provide a control system for a work vehicle, a method for setting trajectory of a work implement, and a work vehicle that can perform work with high quality and finish efficiently by automatic control.
Number | Date | Country | Kind |
---|---|---|---|
JP2017-067148 | Mar 2017 | JP | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP2018/005295 | 2/15/2018 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2018/179963 | 10/4/2018 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
5487428 | Yamamoto | Jan 1996 | A |
5551518 | Stratton | Sep 1996 | A |
5854988 | Davidson | Dec 1998 | A |
5924493 | Hartman et al. | Jul 1999 | A |
5951613 | Sahm et al. | Sep 1999 | A |
5964298 | Greenspun | Oct 1999 | A |
5987371 | Bailey | Nov 1999 | A |
6076029 | Watanabe | Jun 2000 | A |
6191732 | Carlson | Feb 2001 | B1 |
6532409 | Fujishima | Mar 2003 | B1 |
8983738 | Avitzur | Mar 2015 | B2 |
9260837 | Wei | Feb 2016 | B1 |
9328479 | Rausch | May 2016 | B1 |
10066367 | Wang | Sep 2018 | B1 |
20020162668 | Carlson | Nov 2002 | A1 |
20050027420 | Fujishima | Feb 2005 | A1 |
20050197755 | Knowlton | Sep 2005 | A1 |
20050197756 | Taylor | Sep 2005 | A1 |
20090056961 | Gharsalli | Mar 2009 | A1 |
20090069987 | Omelchenko | Mar 2009 | A1 |
20090112410 | Shull | Apr 2009 | A1 |
20090256860 | Nichols | Oct 2009 | A1 |
20100299031 | Zhdanov | Nov 2010 | A1 |
20110213529 | Krause | Sep 2011 | A1 |
20120318539 | Joergensen | Dec 2012 | A1 |
20130006484 | Avitzur | Jan 2013 | A1 |
20130081831 | Hayashi | Apr 2013 | A1 |
20130085644 | Hayashi | Apr 2013 | A1 |
20130087350 | Hayashi | Apr 2013 | A1 |
20130090817 | Hayashi | Apr 2013 | A1 |
20140012404 | Taylor et al. | Jan 2014 | A1 |
20140107896 | Fehr | Apr 2014 | A1 |
20140180548 | Edara | Jun 2014 | A1 |
20140257646 | Ishibashi et al. | Sep 2014 | A1 |
20140330508 | Montgomery | Nov 2014 | A1 |
20150019086 | Hayashi | Jan 2015 | A1 |
20150292179 | Joergensen | Oct 2015 | A1 |
20150354169 | Wei et al. | Dec 2015 | A1 |
20160040397 | Kontz | Feb 2016 | A1 |
20160076223 | Wei et al. | Mar 2016 | A1 |
20160122969 | Noborio | May 2016 | A1 |
20160153166 | Gentle | Jun 2016 | A1 |
20160237651 | Miyamoto et al. | Aug 2016 | A1 |
20170030052 | Wei | Feb 2017 | A1 |
Number | Date | Country |
---|---|---|
105612369 | May 2016 | CN |
106013311 | Oct 2016 | CN |
107313475 | Nov 2017 | CN |
04164210 | Jun 1992 | JP |
10-141955 | May 1998 | JP |
2001-303620 | Oct 2001 | JP |
2001303620 | Oct 2001 | JP |
5247939 | Jul 2013 | JP |
2014-173321 | Sep 2014 | JP |
2008118027 | Oct 2008 | WO |
WO-2008118027 | Oct 2008 | WO |
2013051379 | Apr 2013 | WO |
2015083469 | Jun 2015 | WO |
Entry |
---|
JPO machine translation of JP 4-164210 (original JP document published Jun. 9, 1992) (Year: 1992). |
Trimble(R) GCS900 Grade Control System for Earthmoving Applications Reference Manual, Version 12.70, Apr. 2015, 236 pages (Year: 2015). |
The Office Action for the corresponding Chinese application No. 201880006078.0, dated Aug. 4, 2020. |
The International Search Report for the corresponding international application No. PCT/JP2018/005295, dated Mar. 20, 2018. |
The Office Action for the corresponding Chinese application No. 201880006078.0, dated Mar. 3, 2021. |
The Office Action for the corresponding Japanese application No. 2019-508739, dated Aug. 17, 2021. |
Number | Date | Country | |
---|---|---|---|
20200071909 A1 | Mar 2020 | US |