The present invention relates to electronic systems for control of electromechanical actuators; more particularly, to pulsed electronic control systems; and most particularly, to an electronic control system employing a fixed width pulse applied at a variable frequency, resulting in modulation of pulse density per unit time.
In the art of electronic control of electromechanical actuators such as valve actuators, it is well known to apply a pulsed electronic signal to the actuator over a percent of unit time (percent duty cycle). Because the time-width of each pulse may be varied between 0% and 100% duty cycle, this approach is known in the art as control by Pulse Width Modulation. In this way, there is a linear relationship between duty cycle and flow of a fluid material through a valve, given a fixed supply pressure to the valve and a fixed pressure drop across the valve. The time-average flow rate of fluid through the valve is proportional to the percent of the duty cycle during which the valve is open, the duty cycle being defined as the period from the start of a pulse to the start of the next succeeding pulse. As the pressure drop across the valve is increased, the relationship of duty cycle to flow remains linear, but the slope increases, resulting in a reduced usable control range with increasing pressure. This limitation can reduce the resolution of control of the actuator. Also, the usable range of flow for a given application can be very small in comparison to the full flow capability of the valve. In this situation, for example, a variation of only a few percent in the duty cycle may encompass the entire range of usable flow, leading to poor actuator position resolution and poor control of flow.
What is needed in the art is an improved strategy for providing pulsed-signal control to a valve actuator that results in increased resolution and more accurate actuator control.
It is a principal object of the present invention to provide an improved control of flow of material through a valve.
Briefly described, a method for modified pulsed control of an electromechanical actuator in accordance with the invention comprises the steps of a) setting a common time length for all of the pulses in a pulse train, and b) varying (modulating) the number of such pulses per unit time (repetition rate) by varying the length of time between pulses in the train. Such control is defined herein as pulse-density modulation, or PDM. Especially in applications having a relatively low duty cycle if controlled by the prior art Pulse Width Modulation (PWM), PDM control results in more accurate control of an actuator, with higher resolution. The method is especially useful in controlling flow of a fluid, either liquid or gas, through a valve, and especially at relatively low flow rates at high supply pressures.
The present invention will now be described, by way of example, with reference to the accompanying drawings, in which:
Corresponding reference characters indicate corresponding parts throughout the several views. The exemplification set out herein illustrates one preferred embodiment of the invention, in one form, and such exemplification is not to be construed as limiting the scope of the invention in any manner.
The present invention in PDM methodology is applicable to control of any electromechanical actuator controllable by PWM control methodology in accordance with the prior art, and is directly replaceable of such PWM control. Such actuators may include but are not limited to linear actuators and rotary actuators. Some typical valve applications are engine throttle valves, engine exhaust gas recirculation valves, and fuel flow control valves for engines and for hydrocarbon fuel reformers. Also, of particular interest, because of the flow accuracy demanded in its application, the PDM methodology is specially suited for use in fuel injectors.
Referring to
Referring now to
In
For the low flow rate application 30 at the higher pressures 36,38, the total flow from 0 to 0.6 g/sec is represented by a difference in duty cycle from about 3% to about 4%. Clearly, the resolution is very low, and the ability to control the flow rate accurately over the useful flow range is very poor. Further, for such low percentage duty cycles, the valve spends most of the time closed, and flow then comes in bursts spaced far apart; e.g., a 4% duty cycle on a 100 millisecond cycle basis represents the valve being open for 4 ms and closed for the remaining 96 ms. PWM is clearly an inferior control strategy for these conditions.
Even for the high flow rate application 32, the total flow from 0 to 3.0 g/sec at the higher pressures 36,38 is represented by a difference in duty cycle from about 3% to only about 10%. Note further that the flow response as a function of duty cycle is non-linear for prior art PWM control in these ranges.
In
For the low flow rate application 30 at the higher pressures 136,138, the time-average flow from 0 to 0.6 g/sec is represented by a difference in PDM frequency from 0 to about 30 Hz. Thus, for comparison to the above PWM example, for the equivalent of a 4% duty cycle in a 100 ms period, at a 30 Hz repetition rate, the valve cycles three times instead of only once, each pulse lasting 1.33 ms instead of 4 ms.
Clearly, the resolution is much improved over PWM as is the ability to control the flow rate accurately over the useful flow range. Note that resolution may be increased easily by simply changing the range of repetition, for example, 0-75 Hz. Further, as is seen below, for such low percentage duty cycles, although the valve still spends most of the time closed, flow then comes in small bursts spaced relatively closely together. PDM is clearly a superior control strategy for these conditions.
It should also be noted that PDM offers simplification in valve characterization over the prior art PWM method. In a system with varying ΔP across valve (10), the prior art PWM method of control would require known characteristics of the valve (10) for multiple duty cycles for each ΔP over the range of operating pressures. In comparison a system operating using PDM would only require a single data point pf flow per fixed stroke at each ΔP. Because of the linearity with PDM multiple points at each ΔP would not be required, for example by doubling the PDM frequency the resultant flow would double. In this way characterization and calibration of the valve (10) is simplified.
For the high flow rate application 32, the time-average flow from 0 to 3.0 g/sec at the higher pressures 136,138 is represented by a difference in PDM frequency from 0 to about 145 Hz, providing very high resolution and flow accuracy. Note further that the flow response as a function of PDM frequency is linear in these ranges.
The opening and closing of a valve in response to an actuator pulse, in either PWM control or PDM control, can result in substantial spikes in pressure P1, which pressure fluctuations may adversely affect other functions (not shown) also drawing on fluid supply 16. Referring now to
In
In
In summary, the distinction between the prior art PWM control and the present invention PDM control is that PWM control is based on a fixed time interval known as the duty cycle, and the controlling pulse occupies a variable length and therefore variable percentage of the fixed-length duty cycle; whereas PDM control is based on a fixed-length pulse, and time average actuation is achieved simply by shortening or lengthening the time length between the fixed-length pulses. Thus, in PDM control there is no fixed length duty cycle, but rather the pulse length may be fixed at any given value for all the pulses in a pulse train and the inter-pulse length then varied as desired to achieve a desired time-average actuation duty cycle consistent with the flow parameters and hardware capabilities of any application.
While the invention has been described by reference to various specific embodiments, it should be understood that numerous changes may be made within the spirit and scope of the inventive concepts described. Accordingly, it is intended that the invention not be limited to the described embodiments, but will have full scope defined by the language of the following claims.