The application generally relates to a control system. The application relates more specifically to systems and methods for controlling a variable geometry diffuser mechanism of a centrifugal compressor in response to compressor instability conditions.
A centrifugal compressor may encounter instabilities such as surge conditions or stall conditions during the operation of the compressor. Surge or surging is an unstable condition that may occur when a centrifugal compressor is operated at light loads and high pressure ratios. Surge is a transient phenomenon having oscillations in pressures and flow, and, in some cases, the occurrence of a complete flow reversal through the compressor. Surging, if uncontrolled, can cause excessive vibrations in both the rotating and stationary components of the compressor, and may result in permanent compressor damage. One technique to correct or remedy a surge condition may involve the opening of a hot gas bypass valve to return some of the discharge gas of the compressor to the compressor inlet to increase the flow at the compressor inlet.
Rotating stall in a centrifugal compressor can occur in the rotating impeller of the compressor or in the stationary diffuser of the compressor downstream from the impeller. In both cases, the presence of rotating stall can adversely affect performance of the compressor and/or system. Mixed flow centrifugal compressors with vaneless radial diffusers can experience diffuser rotating stall during some part, or in some cases, all of their intended operating range. Typically, diffuser rotating stall occurs because the design of the diffuser is unable to accommodate all flows without some of the flow experiencing separation in the diffuser passageway. Diffuser rotating stall results in the creation of low frequency sound energy or pulsations. The pulsations may have high magnitudes in the gas flow passages and may result in the premature failure of the compressor, its controls, or other associated parts/systems. One technique to correct or remedy a stall condition in a centrifugal compressor may involve the closing of the diffuser space in a variable geometry diffuser. Closing of the diffuser space may also enhance the compressor's ability to resist surge conditions. However, excessive closure of the diffuser gap can reduce the flow rate or capacity through the compressor.
The present invention relates to a liquid chiller system having a centrifugal compressor configured to compress a refrigerant vapor. The centrifugal compressor has a compressor inlet to receive uncompressed refrigerant vapor and a compressor exit to discharge compressed refrigerant vapor. Internally, the compressor has a diffuser that has an adjustable diffuser ring to vary the flow passage of the compressed refrigerant vapor through the diffuser. The liquid chiller system also includes an optional hot gas bypass valve connected between the compressor exit and inlet. The optional hot gas bypass valve is configured to permit a portion of the compressed refrigerant vapor to flow to the compressor inlet from the compressor exit, which is used to maintain a minimum refrigerant vapor flow rate through the compressor. The liquid chiller system further includes a stability control system to control the diffuser and the optional hot gas bypass valve to maintain stable operation of the centrifugal compressor. The stability control system has a stall reacting state to control the diffuser ring in response to detecting a stall condition in the centrifugal compressor, a surge reacting state to control the diffuser ring in response to detecting a surge condition in the centrifugal compressor, a hot gas override state to control the optional hot gas bypass valve in response to detecting a second surge condition in the centrifugal compressor, and a probing state to control the diffuser ring to obtain an optimal position for the diffuser ring.
The present invention further relates to a chiller system having a compressor, a condenser, and an evaporator connected in a closed refrigerant circuit. The compressor includes a compressor inlet to receive uncompressed refrigerant vapor from the chiller system, a compressor outlet to discharge compressed refrigerant vapor to the chiller system, and a diffuser being disposed adjacent to the compressor outlet. The diffuser having a diffuser space configured to permit passage of compressed refrigerant vapor to the compressor outlet and a diffuser ring adjustably positioned in the diffuser space to vary a size of the diffuser space to control flow of compressed refrigerant vapor through the diffuser space. The chiller system also includes a stability control system to control the position of the diffuser ring in the diffuser space in response to the detection of stall conditions and surge conditions in the compressor to maintain stable operation of the compressor.
The present invention also relates to a stability control system for maintaining stable operation of a centrifugal compressor having a compressor inlet, a compressor outlet and a variable geometry diffuser with an adjustable flow passage. The stability control system having a stall reacting state to adjust a flow passage of a variable geometry diffuser in response to detecting a stall condition in a centrifugal compressor and a surge reacting state to adjust a flow passage of a variable geometry diffuser in response to detecting a surge condition in a centrifugal compressor.
The present invention further relates to a method of providing stability control in a centrifugal compressor having a variable geometry diffuser with an adjustable flow passage. The method including the steps of repeatedly detecting for a surge condition in a centrifugal compressor during operation of a centrifugal compressor; repeatedly detecting for a stall condition in a centrifugal compressor during operation of a centrifugal compressor; continuously closing a flow passage of a variable geometry diffuser in response to the detection of a surge condition in a centrifugal compressor for a predetermined surge reaction time period; and continuously closing a flow passage of a variable geometry diffuser in response to the detection of a stall condition in a centrifugal compressor until the detected stall condition is corrected or a surge condition is detected.
The present invention also relates to a control system to maintain stable operation of a compressor. The control system includes at least one first control state configured to close a flow passage of a diffuser of the compressor in response to detecting one of a stall condition or a surge condition in the compressor. The control system also includes a second control state configured to open the flow passage of the diffuser of the compressor in response to determining an absence of a stall condition or a surge condition.
The present invention further relates to method of providing stability control in a centrifugal compressor. The method includes repeatedly detecting for a surge condition during operation of the centrifugal compressor and repeatedly detecting for a stall condition during operation of a centrifugal compressor. The method also includes closing a flow passage of a diffuser of the centrifugal compressor in response to detecting a surge condition or a stall condition in the centrifugal compressor and opening the flow passage of the diffuser of the centrifugal compressor in response to detecting an absence of a stall condition or a surge condition.
The present invention also relates to a vapor compression system. The vapor compression system includes a compressor, a first heat exchanger, and a second heat exchanger connected in a closed loop. The compressor includes an inlet to receive uncompressed vapor, an outlet to discharge compressed vapor and a diffuser being disposed near the outlet. The diffuser having a passageway configured to permit flow of compressed vapor to the outlet and a ring adjustably positioned in the passageway to vary a dimension of the passageway to control flow of compressed vapor through the passageway. The vapor compression system also includes a control system to adjust the position of the ring in the passageway in response to one of a presence of stall conditions and surge conditions in the compressor or an absence of stall conditions and surge conditions in the compressor.
Motor 152 used with compressor 108 can be powered by a variable speed drive (VSD) or can be powered directly from an alternating current (AC) or direct current (DC) power source. A variable speed drive, if used, receives AC power having a particular fixed line voltage and fixed line frequency from the AC power source and provides power having a variable voltage and frequency to the motor. Motor 152 can be any type of electric motor that can be powered by a VSD or directly from an AC or DC power source. For example, motor 152 can be a switched reluctance motor, an induction motor, an electronically commutated permanent magnet motor, or any other suitable motor type. In an alternate embodiment, other drive mechanisms such as steam or gas turbines or engines and associated components can be used to drive compressor 108.
Compressor 108 compresses a refrigerant vapor and delivers the compressed vapor to condenser 112 through a discharge line. In an exemplary embodiment, compressor 108 can be a centrifugal compressor. The refrigerant vapor delivered by compressor 108 to condenser 112 transfers heat to a fluid, e.g., water or air. The refrigerant vapor condenses to a refrigerant liquid in condenser 112 as a result of the heat transfer with the fluid. The liquid refrigerant from condenser 112 flows through an expansion device (not shown) to an evaporator 126. The liquid refrigerant delivered to evaporator 126 absorbs heat from a fluid, e.g., air or water and undergoes a phase change to a refrigerant vapor. The vapor refrigerant exits evaporator 126 and returns to compressor 108 by a suction line to complete the cycle.
In an exemplary embodiment shown in
At the input or inlet to compressor 108, there are one or more pre-rotation vanes (PRV) or inlet guide vanes 120 that are used to control the flow of refrigerant to compressor 108. An actuator is used to open pre-rotation vanes 120 to increase the amount of refrigerant to compressor 108 and thereby increase the capacity of system 100. Similarly, the actuator is used to close pre-rotation vanes 120 to decrease the amount of refrigerant to compressor 108 and thereby decrease the cooling capacity of system 100.
Control panel 140 has an A/D converter 148 that can receive input signals from system 100 indicative of the performance of system 100. For example, the input signals received by control panel 140 can include the position of pre-rotation vanes 120, the temperature of the leaving chilled liquid temperature from evaporator 126, pressures of evaporator 126 and condenser 112, and an acoustic or sound pressure measurement in the compressor discharge passage. Control panel 140 also has an interface board 146 to transmit signals to components of system 100 to control the operation of system 100. For example, control panel 140 can transmit signals to control the position of pre-rotation vanes 120, to control the position of an optional hot gas bypass valve 134 (see
Control panel 140 uses a control algorithm(s) to control operation of system 100 and to determine when to extend and retract diffuser ring 210 in variable geometry diffuser 119 in response to particular compressor conditions in order to maintain system and compressor stability. Control panel 140 can use the control algorithm(s) to open and close the optional, hot gas bypass valve 134 (see
The startup/shutdown state 302 is the first and last control state in stability control algorithm 300 during operation of system 100. Upon starting or initiating system 100 from an inactive state, stability control algorithm 300 enters the startup/shutdown state 302. Similarly, when system 100 is to be stopped or shutdown, startup/shutdown state 302 is entered from any one of the other control states in stability control algorithm 300 in response to a shutdown command from another control algorithm controlling system 100 or stability control algorithm 300. Stability control algorithm 300 remains in startup/shutdown state 302 until compressor 108 is started. In startup/shutdown state 302, diffuser ring 210 of variable geometry diffuser 119 is moved to a fully open or retracted position to thereby fully open diffuser space 204.
Stall waiting state 304 is entered after compressor 108 has started. Stall waiting state 304 can be entered following the correction of a stall condition in stall reacting state 306. The stability control algorithm 300 remains in stall waiting state 304 until one of the following conditions occurs: a predetermined stall waiting period expires; a surge condition is detected; a stall condition is detected; or pre-rotation vanes 120 are moved more than a predetermined PRV offset amount. The movement of pre-rotation vanes 120 can be an indicator that compressor conditions (e.g., flow and/or head) are changing and may require adjustment of variable geometry diffuser 119. According to an exemplary embodiment, the predetermined stall waiting period can range from about 0.5 minutes to about 15 minutes, and can be about 10 minutes, and the predetermined PRV offset amount can range from 0% to about 5% of the range of pre-rotation vane motion, and can be about 3%. In stall waiting state 304, diffuser ring 210 of variable geometry diffuser 119 is held or maintained in the same position that diffuser ring 210 of variable geometry diffuser 119 had in the previous state to thereby hold or maintain the opening in diffuser space 204.
Stall reacting state 306 is entered in response to the detection of stall in compressor 108 in either stall waiting state 304 or probing state 308. A more detailed description of the process and components for an exemplary technique for detecting stall in a compressor is provided in U.S. Pat. No. 6,857,845, issued on Feb. 22, 2005, which patent is hereby incorporated by reference. However, it is to be understood that any suitable stall detection technique can be used to detect stall in the system. Stability control algorithm 300 remains in stall reacting state 306 until the stall condition that is detected in compressor 108 is corrected or remedied or until a surge condition is detected in compressor 108. According to an exemplary embodiment, the stall condition is considered corrected or remedied in response to a corresponding stall sensor voltage being less than a predetermined stall minimum threshold voltage, which predetermined stall minimum threshold voltage can range from about 0.4 V to about 0.8 V, and can be about 0.6 V. In stall reacting state 306, diffuser ring 210 of variable geometry diffuser 119 is continuously extended toward a closed position to thereby close the opening in diffuser space 204 until the stall condition that has been detected in compressor 108 is corrected or remedied. Upon correcting or remedying the stall condition in stall reacting state 306, stability control algorithm 300 returns to stall waiting state 304.
Probing state 308 is entered in response to the expiration of the predetermined stall waiting period or the movement of pre-rotation vanes 120 by more than the predetermined PRV offset amount in stall waiting state 304. Probing state 308 can be entered following the expiration of a predetermined surge waiting period in surge waiting state 310. Stability control algorithm 300 remains in probing state 308 until a stall condition or a surge condition is detected in compressor 108. According to an exemplary embodiment, the stall condition is detected in response to a corresponding stall sensor voltage being greater than a predetermined stall maximum threshold voltage, which predetermined stall maximum threshold voltage can range from about 0.6 V to about 1.2 V, and can be about 0.8 V. In probing state 308, diffuser ring 210 of variable geometry diffuser 119 is opened or retracted to thereby increase the opening in diffuser space 204 until a surge condition or stall condition is detected in compressor 108. According to an exemplary embodiment, diffuser ring 210 of variable geometry diffuser 119 is opened or retracted in incremental amounts or steps triggered by pulses having a predetermined pulse interval that can range from about 0.5 seconds to about 5 seconds and can be about 1 or 2 seconds. At lower compressor loads, e.g., less than 70% of compressor capacity, a stall condition is typically detected and controlled before a surge condition can occur. However, at higher compressor loads, e.g., more than 70% of compressor capacity and very high heads or lifts, a surge condition can occur while in probing state 308, which may be momentary in nature and not detected as stall noise.
Surge reacting state 312 is entered in response to the detection of surge in compressor 108 in either stall waiting state 304, stall reacting state 306 or probing state 308. A more detailed description of the process and components for an exemplary technique for detecting surge in compressor 108 is provided in U.S. Pat. No. 6,427,464, which patent is hereby incorporated by reference. However, it is to be understood that any suitable surge detection technique can be used with the system. Stability control algorithm 300 remains in surge reacting state 312 until a predetermined surge reaction time has expired. According to an exemplary embodiment, the predetermined surge reaction time can range from about 1 second to about 30 seconds, and can be about 5 seconds. In surge reacting state 312, diffuser ring 210 of variable geometry diffuser 119 is continuously extended toward a closed position over the predetermined surge reaction time period to thereby reduce diffuser space or gap 204 to provide a more stable compressor operating capacity. The surge reaction time period can vary depending on overall speed of variable geometry diffuser ring mechanism 212 and drive actuator motor, and the desired VGD ring 210 movement needed to achieve surge stability.
Surge waiting state 310 is entered upon the correcting or remedying of a surge condition in compressor 108 in surge reacting state 312. The stability control algorithm 300 remains in surge waiting state 310 until a predetermined surge waiting period expires or compressor 108 enters into another surge condition. According to an exemplary embodiment, the predetermined surge waiting period can range from about 0.5 minutes to about 15 minutes, and can be about 10 minutes. In surge waiting state 310, diffuser ring 210 of variable geometry diffuser 119 is held or maintained in the same position that diffuser ring 210 of variable geometry diffuser 119 had in the previous state to thereby hold or maintain the opening in diffuser space 204. In an exemplary embodiment, stability control algorithm 300 may re-enter surge reacting state 312 in response to the detection of another surge condition in surge waiting state 310. Alternatively, another control algorithm may be used in response to the detection of another surge condition in surge waiting state 310. The surge events may be counted independently or as part of the control algorithm to determine when to shutdown compressor 108. In the event of continued surges in a short time period, stability control algorithm 300 or another control algorithm may provide alarms or shutdown protection of compressor 108 to avoid damaging compressor 108. Otherwise, stability control algorithm 300 enters probing state 308 in response to the expiration of the predetermined surge waiting period in surge waiting state 310.
Hot gas override state 314 is entered in response to compressor 108 experiencing a second surge condition while in surge waiting state 310 instead of possibly returning to surge reacting state 312 or using another control algorithm in response to the detection of another surge condition as described above with respect to stability control algorithm 300. Stability control algorithm 500 can enter hot gas override state 314 from stall waiting state 304, stall reacting state 306 or probing state 308 in response to the detection of a HGBP valve open command from another control algorithm controlling the system. The HGBP valve open command can be generated as described in U.S. Pat. No. 6,427,464, which patent is hereby incorporated by reference, or using any other suitable HGBP valve control process. The stability control algorithm 500 remains in hot gas override state 314 until HGBP valve 134 returns to a closed position. In hot gas override state 314, diffuser ring 210 of variable geometry diffuser 119 is held or fixed in position whenever HGBP valve 134 is in an open position to thereby hold or fix the opening in diffuser space 204 in order to keep variable geometry diffuser 119 at a position of similar surge stability when the system head is later lowered and HGBP valve 134 is closed. Upon the closing of HGBP valve 134 in hot gas override state 314, stability control algorithm 500 enters stall waiting state 304.
In an exemplary embodiment, motor 152 is connected to a variable speed drive (not shown) that varies the speed of motor 152. The varying of the speed of the compressor by the variable speed drive (VSD) affects both the refrigerant vapor flow rate through the system and the compressor's stability relative to surge conditions. Stability control algorithms 300, 500 may be used in conjunction with a variable speed drive. When a variable speed drive is used, adaptive capacity control logic utilizing system operating parameters and compressor PRV position information can be used to operate the compressor at a faster speed when a surge is detected while stability control algorithms 300, 500 are in surge reacting state 312. Past performance parameters can be mapped and stored in memory to avoid future surge conditions by the adaptive capacity control logic. A description of an exemplary adaptive capacity control process is provided in U.S. Pat. No. 4,608,833 which patent is hereby incorporated by reference. However, it is to be understood that any suitable adaptive capacity control process can be used with the system.
While only certain features and embodiments of the invention have been illustrated and described, many modifications and changes may occur to those skilled in the art (e.g., variations in sizes, dimensions, structures, shapes and proportions of the various elements, values of parameters (e.g., temperatures, pressures, etc.), mounting arrangements, use of materials, colors, orientations, etc.) without materially departing from the novel teachings and advantages of the subject matter recited in the claims. The order or sequence of any process or method steps may be varied or re-sequenced according to alternative embodiments. It is, therefore, to be understood that the appended claims are intended to cover all such modifications and changes as fall within the true spirit of the invention. Furthermore, in an effort to provide a concise description of the exemplary embodiments, all features of an actual implementation may not have been described (i.e., those unrelated to the presently contemplated best mode of carrying out the invention, or those unrelated to enabling the claimed invention). It should be appreciated that in the development of any such actual implementation, as in any engineering or design project, numerous implementation specific decisions may be made. Such a development effort might be complex and time consuming, but would nevertheless be a routine undertaking of design, fabrication, and manufacture for those of ordinary skill having the benefit of this disclosure, without undue experimentation.
This application is a continuation-in-part of application Ser. No. 10/683,772, entitled SYSTEM AND METHOD FOR STABILITY CONTROL IN A CENTRIFUGAL COMPRESSOR, filed Oct. 10, 2003.
Number | Name | Date | Kind |
---|---|---|---|
3128852 | Chell et al. | Apr 1964 | A |
3362624 | Endress | Jan 1968 | A |
3392655 | Chambers et al. | Jul 1968 | A |
4212585 | Swarden et al. | Jul 1980 | A |
4248055 | Day, III et al. | Feb 1981 | A |
4503684 | Mount et al. | Mar 1985 | A |
4608833 | Kountz | Sep 1986 | A |
4611969 | Zinsmeyer | Sep 1986 | A |
4697980 | Keyes, IV et al. | Oct 1987 | A |
4900232 | Dziubakowski et al. | Feb 1990 | A |
5005353 | Acton et al. | Apr 1991 | A |
5146764 | Bauman et al. | Sep 1992 | A |
5190440 | Maier et al. | Mar 1993 | A |
5199856 | Epstein et al. | Apr 1993 | A |
5437539 | Gysling et al. | Aug 1995 | A |
5594665 | Walter et al. | Jan 1997 | A |
5658125 | Burns et al. | Aug 1997 | A |
5730580 | Japikse | Mar 1998 | A |
5947680 | Harada et al. | Sep 1999 | A |
6036432 | Sishtla et al. | Mar 2000 | A |
6129511 | Salvage et al. | Oct 2000 | A |
6139262 | Ravidranath | Oct 2000 | A |
6203275 | Kobayashi et al. | Mar 2001 | B1 |
6231301 | Barnett et al. | May 2001 | B1 |
6427464 | Beaverson et al. | Aug 2002 | B1 |
6506010 | Yeung et al. | Jan 2003 | B1 |
6872050 | Nenstiel | Mar 2005 | B2 |
7356999 | Bodell et al. | Apr 2008 | B2 |
7824148 | Tetu et al. | Nov 2010 | B2 |
20010014837 | Escuret et al. | Aug 2001 | A1 |
20020076656 | Huang et al. | Jun 2002 | A1 |
20020094267 | Kim et al. | Jul 2002 | A1 |
20020161550 | Bharadwaj et al. | Oct 2002 | A1 |
20040109757 | Nenstiel | Jun 2004 | A1 |
20050076656 | Bodell, II et al. | Apr 2005 | A1 |
20100263391 | Tetu et al. | Oct 2010 | A1 |
Number | Date | Country |
---|---|---|
0896157 | Feb 1999 | EP |
1256726 | Nov 2002 | EP |
1321679 | Jun 2003 | EP |
5157095 | Jun 1993 | JP |
2002371989 | Dec 2002 | JP |
9010148 | Sep 1990 | WO |
9700381 | Jan 1997 | WO |
2004018880 | Mar 2004 | WO |
2004053336 | Jun 2004 | WO |
Number | Date | Country | |
---|---|---|---|
20080253877 A1 | Oct 2008 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10683772 | Oct 2003 | US |
Child | 12102459 | US |