This invention relates generally to articles of footwear or other foot-receiving devices that include monitoring and/or control systems for automatically controlling a characteristic of the article of footwear, such as a performance characteristic of the article of footwear, as well as speed and/or distance monitoring systems, e.g., of the pedometer type.
Conventional articles of footwear have included two primary elements, namely an upper member and a sole structure. The upper member provides a covering for the foot that receives and positions the foot with respect to the sole structure. In addition, the upper member may have a configuration that protects the foot and provides ventilation, thereby cooling the foot and removing perspiration. The sole structure generally is secured to a lower portion of the upper member and generally is positioned between the foot and the contact surface (the terms “contact surface” or “surface,” as used herein, include any foot or footwear contact surface, including but not limited to: grass, dirt, snow, ice, tile, flooring, carpeting, synthetic grass, asphalt, cement, concrete, clay, court surfaces, and the like). In addition to attenuating ground reaction forces, the sole structure may provide traction and help control foot motion, such as pronation. Accordingly, the upper member and the sole structure operate cooperatively to provide a comfortable structure that is suited for a variety of ambulatory activities, such as walking and running.
The sole member of athletic footwear, in at least some instances, will exhibit a layered configuration that includes a comfort-enhancing insole, a resilient midsole (e.g., formed, at least in part, from a polymer foam material), and a ground-contacting outsole that provides both abrasion-resistance and traction. The midsole, in at least some instances, will be the primary sole structure element that attenuates ground reaction forces and controls foot motion. Suitable polymer foam materials for at least portions of the midsole include ethylvinylacetate (“EVA”) or polyurethane (“PU”) that compress resiliently under an applied load to attenuate ground reaction forces. Conventional polymer foam materials are resiliently compressible, in part, due to the inclusion of a plurality of open or closed cells that define an inner volume substantially displaced by gas. The upper member and sole structure in conventional footwear products may be joined to one another in various different ways, such as using cements or adhesives, stitching or sewing, mechanical connectors, fusing techniques, or the like.
The following presents a general summary of aspects of this invention in order to provide a basic understanding of at least some aspects of the invention. This summary is not an extensive overview of the invention. It is not intended to identify key or critical elements of the invention or to delineate the scope of the invention. The following summary merely presents some concepts of the invention in a general form as a prelude to the more detailed description provided below.
Aspects of this invention relate to foot-receiving devices, such as articles of footwear (e.g., athletic footwear, etc.), that include a foot-covering member (such as an upper member) and a foot-supporting member (such as a sole member, optionally including insole, midsole, and/or outsole portions) engaged with the foot-covering member. The foot-receiving device further may include: (a) a sensing device engaged with at least one of the foot-covering member or the foot-supporting member, wherein the sensing device is positioned and/or adapted to sense at least one characteristic of an interaction between a user's foot and the foot-receiving device when the foot-receiving device is in use; (b) a control system that receives output from the sensing device and controls at least one characteristic of the foot-receiving device (such as a characteristic of the foot-supporting member) based (at least in part) on this output; and (c) a monitoring system for detecting and/or storing data indicating speed or distance information associated with use of the foot-receiving device. Optionally, if desired, the monitoring system may receive input from the same sensing device used for providing data to the control system. The control system may alter, for example, the impact attenuation characteristics, the traction characteristics, the flexibility characteristics, the fit characteristics, or the like of the article of footwear. Such foot-receiving systems further may include one or more devices, such as remote or peripheral devices, e.g., for receiving user input (e.g., relating to user settings or desired features for the settable or controllable characteristics, etc.), for providing information to the user (e.g., speed or distance information, etc.), and the like.
Further aspects of this invention relate to methods for making footwear or other foot-receiving device systems that include control systems and/or monitoring systems, e.g., of the types described above. Such methods may include, for example: (a) engaging a sensing device with an article of footwear or foot-receiving device (e.g., during footwear manufacturing, at retail or use locations, etc.), wherein the sensing device is positioned and/or adapted to sense at least one characteristic of contact between the article of footwear or foot-receiving device and a contact surface when the article of footwear is in use; (b) providing a control system programmed and adapted to receive an output from the sensing device and to control a characteristic of the article of footwear or foot-receiving device based on the output from the sensing device; and (c) providing a distance monitoring system at least partially engaged with the article of footwear or foot-receiving device, wherein the distance monitoring system is programmed and adapted to detect and/or store data indicating speed or distance information associated with use of the article of footwear or foot-receiving device. Optionally, if desired, the distance monitoring system may receive input data from the same sensing device that provides input data used by the control system (e.g., if the sensing device is capable of detecting each step down or step up event of the user's foot, etc.).
Still additional aspects of this invention relate to example methods for using footwear or foot-receiving device systems of the types described above. Such methods may include: (a) sensing contact or other interaction between an article of footwear (or other foot-receiving device) and a contact surface during use, wherein the contact or interaction is sensed using a sensing device at least partially engaged with the article of footwear (or other foot-receiving device); (b) controlling a characteristic of the article of footwear (or other foot-receiving device) based, at least in part, on output from the sensing device; and (c) determining user speed or distance information based, at least in part, on output from the sensing device.
Various example methods in accordance with these aspects of the invention further may include receiving user input that is used, at least in part, in setting and/or controlling the characteristic of the article of footwear (or other foot-receiving device), e.g., to match or set user preferences, etc. The same or a different device, optionally on board, attached to, or remote from the article of footwear (or other foot-receiving device), also may be included to provide speed and/or distance information or other information to a user or others.
A more complete understanding of the present invention and certain advantages thereof may be acquired by referring to the following description in consideration with the accompanying drawings, in which like reference numbers indicate like features, and wherein:
In the following description of various examples of the invention, reference is made to the accompanying drawings, which form a part hereof, and in which are shown by way of illustration various example systems and environments in which aspects of the invention may be practiced. It is to be understood that other specific arrangements of parts, example systems, and environments may be utilized and structural and functional modifications may be made without departing from the scope of the present invention. Also, while the terms “top,” “bottom,” “side,” “front,” “back,” “above,” “below,” “under,” “over,” and the like may be used in this specification to describe various example features and elements of the invention, these terms are used herein as a matter of convenience, e.g., based on the example orientations shown in the figures and/or a typical orientation during use. Nothing in this specification should be construed as requiring a specific three dimensional orientation of structures in order to fall within the scope of this invention.
To assist the reader, this specification is broken into various subsections, as follows: Terms; General Description of Foot-Receiving Device Systems and Methods of Making and Using Them According to the Invention; and Specific Examples of the Invention.
A. Terms
The following terms are used in this specification, and unless otherwise noted or clear from the context, these terms have the meanings provided below.
“Foot-receiving device” means any device into which a user places at least some portion of his or her foot. In addition to all types of footwear (described below), foot-receiving devices include, but are not limited to: bindings and other devices for securing feet in snow skis, cross country skis, water skis, snowboards, and the like; bindings, clips, or other devices for securing feet in pedals for use with bicycles, exercise equipment, and the like; bindings, clips, or other devices for receiving feet during play of video games or other games; and the like.
“Footwear” means any type of product worn on the feet, and this term includes, but is not limited to: all types of shoes, boots, sneakers, sandals, thongs, flip-flops, mules, scuffs, slippers, sport-specific shoes (such as golf shoes, tennis shoes, baseball cleats, soccer or football cleats, ski boots, etc.), and the like. “Footwear” may protect the feet from the environment and/or enhance a wearer's performance (e.g., physically, physiologically, medically, etc.).
“Foot-covering members” include one or more portions of a foot-receiving device that extend at least partially over and/or at least partially cover at least some portion of the wearer's foot, e.g., so as to assist in holding the foot-receiving device on and/or in place with respect to the wearer's foot. “Foot-covering members” include, but are not limited to, upper members of the type provided in some conventional footwear products.
“Foot-supporting members” include one or more portions of a foot-receiving device that extend at least partially beneath at least some portion of the wearer's foot, e.g., so as to assist in supporting the foot and/or attenuating the reaction forces to which the wearer's foot would be exposed, for example, when stepping down in the foot-receiving device. “Foot-supporting members” include, but are not limited to, sole members of the type provided in some conventional footwear products. Such sole members may include conventional outsole, midsole, and/or insole members.
“Ground-contacting elements” or “members” include at least some portions of a foot-receiving device structure that contact the ground or any other surface in use, and/or at least some portions of a foot-receiving device structure that engage another element or structure in use. Such “ground-contacting elements” may include, for example, but are not limited to, outsole elements provided in some conventional footwear products. “Ground-contacting elements” in at least some example structures may be made of suitable and conventional materials to provide long wear, traction, and protect the foot and/or to prevent the remainder of the foot-receiving device structure from wear effects, e.g., when contacting the ground or other surface in use.
B. General Description of Foot-Receiving Device Systems and Methods of Making and Using Them According to the Invention
Some aspects of the present invention relate generally to footwear systems and other foot-receiving device systems. As shown in
Additionally, as shown in the example of
The data or desired information may be conveyed to the user 106 or others in any desired manner without departing from the invention, for example, to a wireless receiver 110 provided with a display device 112. Optionally, if desired, the display device 112 may be equipped with one or more microprocessors to enable initial processing of the raw data sent by the sensing device 102, control system 104, and/or the article of footwear 100, to enable further processing of data and/or information sent, etc. Any type of information may be presented to the user 106 (or others) via display device 112, such as speed and/or distance information, time information, GPS information, footwear setting information, etc. As more specific examples, the display device 112 may include various electronic devices, such as portable, user carried devices, e.g., a watch, a PDA type device, a cellular telephone, an MP3 or other audio player, a head worn display device, a pager type device, headphones or earphones, etc. Any type of “display device” also may be provided, such as audio devices, video devices, audio/video devices, alpha-numeric displays, etc.
If desired, the display device 112 (for another device) also may be programmed and adapted to receive user input, e.g., control or setting information for the control system 104, etc. In this example configuration, the display device 112 may be equipped with a transmitter or other output device that sends data to a receiver or other input device located in or on the article of footwear. If desired, devices 108 and 110 may be capable of performing both transmission and reception functions in at least some examples of this invention.
In light of this general example and general description of an example environment of use, various example aspects of the invention will be described in more detail below, including various example features relating to example structural components of foot-receiving device systems in accordance with the invention; manners of making such systems; and manners of using such systems.
1. Example Foot-Receiving Device Systems According to the Invention
In general, aspects of this invention relate to foot-receiving device systems, such as articles of footwear (e.g., athletic footwear, etc.), that include a foot-covering member (such as an upper member) and a foot-supporting member (such as a sole member, optionally including an insole, a midsole, and/or an outsole portion) engaged with the foot-covering member. The foot-receiving device system further may include a sensing device engaged with at least one of the foot-covering member or the foot-supporting member, wherein the sensing device is adapted to sense at least one characteristic of an interaction between a user's foot and the foot-receiving device when the foot-receiving device is in use (e.g., interactions between the foot-receiving device and its contact surface and/or a user's foot during a step). The sensing device may send its output to a control system, and the control system then may be used to control at least one characteristic of the foot-receiving device (such as the foot-supporting member) based on output from the sensing device. The foot-receiving device system also may be equipped with a monitoring system for detecting and/or storing data indicating speed or distance information associated with use of the foot-receiving device system. Optionally, if desired, this monitoring system may receive input from the same sensing device used for providing data to the control system.
The control system may be used to control a wide variety of different features or characteristics of the foot-receiving device system. For example, the control system may be programmed and adapted to: (a) control an amount of impact attenuation provided by the foot-supporting member (e.g., by altering a stiffness of at least a portion of the foot-supporting member, by changing the impact attenuation at least in a heel portion of the foot-receiving device, etc.); (b) control the amount of impact attenuation in one or more portions of the foot-receiving device so as to reduce or eliminate pronation and/or supination when the foot-receiving device is in use; (c) control a degree of traction provided, e.g., by the ground-contacting member of the foot-receiving device (e.g., by an outsole member); (d) control a degree of flexibility in at least one portion of the foot-receiving device (e.g., in the arch, in the upper member, in the toe portion, etc.); (e) control at least one aspect of the manner in which the foot-receiving device fits a user's foot (e.g., by controlling a degree of tension applied to a securing system for the foot-receiving device; by controlling a fit of the foot-covering member, by controlling a fit of the foot-supporting member, etc.); and the like. Optionally, if desired, the control system may respond to the sensing device output and control the characteristics or features of the foot-receiving device in an automatic or “smart” manner (e.g., without the need for user input to change the settings, automatically, between steps, etc.).
Various peripheral devices also may be associated with foot-receiving device systems in accordance with at least some examples of this invention. For example, a peripheral device may be provided that is in communication with the control system for providing user input to the control system (e.g., to allow at least partial user control over the control system, to allow remote user control, to allow user input regarding general settings, preferences, or ranges, etc.). This same peripheral device or a different device also may be used to provide information to the user, such as information as to the status or settings of the control system; information gathered, detected, or produced by the monitoring system (e.g., speed or distance information); map, track, or route warning or other information; and/or any other desired audio, video, alphanumeric, or other information. Optionally, the peripheral device(s) will be sized, shaped, and weighted so as to be portable and easily carriable by a user of the foot-receiving device system (e.g., to enable easy carrying during a performance, athletic event, exercise routine; to enable the device to be included in or attached to the foot-receiving device, the user, the user's clothing, etc.; etc.).
The sensing device that supplies signals to the control system and/or the monitoring system may be of any suitable or desired form without departing from the invention, including, for example, pressure sensors, force transducers, Hall effect sensor systems, strain gauges, piezoelectric elements, load cells, proximity sensors, optical sensors, accelerometers, capacitance sensors, inductance sensors, ultrasonic transducer and receiver systems, radio frequency transmitter and receiver systems, magneto-resistive elements, etc.
As noted above, at least one more specific aspect of the invention relates to footwear systems that include footwear control systems and speed and/or distance monitoring systems. Some more specific examples of footwear systems in accordance with these examples of the invention may include: (a) an article of footwear including an upper member and a sole member; (b) a sensing device engaged with the article of footwear, wherein the sensing device is adapted to sense at least one characteristic of contact between the article of footwear and a contact surface when the article of footwear is in use; (c) a footwear control system that controls a characteristic of the article of footwear based on output from the sensing device; and (d) a speed and/or distance monitoring system at least partially engaged with the article of footwear for detecting or storing data indicating speed and/or distance information associated with use of the article of footwear. Optionally, if desired, the speed and/or distance monitoring system may use input from the sensing device mentioned above.
2. Example Methods of Making Foot-Receiving Device Systems According to Examples of the Invention
Further aspects of this invention relate to methods for providing footwear and/or other foot-receiving device systems that include control systems and speed and/or distance monitoring systems, e.g., of the types described above. Such methods may include: (a) engaging a sensing device with an article of footwear or other foot-receiving device (e.g., during footwear manufacturing, at retail or use locations, etc.), wherein the sensing device is adapted to sense at least one characteristic of contact between the article of footwear or other foot-receiving device and a contact surface or a user's foot when the article of footwear or other foot-receiving device is in use; (b) providing a control system programmed and adapted to receive an output from the sensing device and to control a characteristic of the article of footwear or other foot-receiving device based on the output from the sensing device; and (c) providing a speed and/or distance monitoring system at least partially engaged with the article of footwear or other foot-receiving device, wherein the speed and/or distance monitoring system is programmed and adapted to detect or store data indicating speed or distance information associated with use of the article of footwear or other foot-receiving device. Optionally, if desired, the speed and/or distance monitoring system may receive data from the sane sensing device that provides output used by the control system. In various example methods in accordance with this invention, the control system and/or the monitoring system may be of the types described above and/or may be programmed and adapted to control and/or perform the various functions described above.
Additionally, methods in accordance with at least some examples of this invention further may include providing a peripheral device. The peripheral device may perform various functions, including, for example: providing user input to the control system; providing information to the user or others (such as information as to the status or settings of the control system; information gathered, detected, or produced by the monitoring system (e.g., speed or distance information); warning information; and/or any other desired audio, video, alphanumeric, or other information); etc. Optionally, the peripheral device(s) will be sized, shaped, and weighted so as to be portable and easily carriable by a user of the foot-receiving device (e.g., to enable easy carrying during a performance, athletic event, exercise routine; to be mounted on an article of footwear, an article of clothing, or a piece of athletic equipment; etc.).
3. Example Methods of Using Foot-Receiving Device Systems According to Examples of the Invention
Still additional method aspects according to the invention include methods for using footwear or other foot-receiving device systems that include control systems and speed and/or distance monitoring systems, e.g., of the types described above. Such methods may include: (a) sensing contact between an article of footwear or other foot-receiving device and a contact surface or a user's foot as the article of footwear or other foot-receiving device is used, wherein the contact is sensed using a sensing device at least partially engaged with the article of footwear or other foot-receiving device; (b) controlling a characteristic of the article of footwear or other foot-receiving device based, at least in part, on output from the sensing device; and (c) determining user speed or distance information based, at least in part, on output from the sensing device. In various example methods in accordance with these aspects of the invention, the control system and/or the speed and/or distance monitoring system may be of the types described above and/or may be programmed and adapted to control and/or perform the various functions described above.
Various example methods in accordance with these aspects of the invention further may include receiving user input that is used, at least in part, in controlling the characteristic(s) of the article of footwear or other foot-receiving device. Such user input may be entered, for example, through a footwear mounted input system, through a device separate and remote from the article of footwear, etc. The same or a different peripheral device also may be included to provide speed and/or distance information to a user of the article of footwear or other foot-receiving device (or to others). The devices included in these methods may be portable so as to be readily carried by the user, e.g., during use of the article of footwear, as part of the article of footwear, clipped to a belt or other portion of the user's clothing, worn on a user's arm or leg, etc.
Specific examples of structures according to examples of the invention are described in more detail below. The reader should understand that these specific examples and structures are set forth merely to illustrate the invention, and they should not be construed as limiting the invention.
C. Specific Examples of the Invention
The various figures in this application illustrate examples of footwear and other foot-receiving device products according to examples of this invention. When the same reference number appears in more than one drawing, that reference number is used consistently in this specification and the drawings to refer to the same or similar parts throughout.
As described above,
Data relating to the contact or interaction between the article of footwear and the contact surface or the user's foot may be measured by sensing device 204 and transferred to a microprocessor 206 and/or stored in memory 208. Based on the measured data from the sensing device 204, the microprocessor 206 may control one or more devices 210, e.g., included as part of the article of footwear to control a characteristic of the article of footwear. As a more concrete example, and as will be explained in more detail below, the sensing device 204 may sense the amount of compression of the article of footwear's midsole member. Based on the sensed degree of midsole compression, the microprocessor 206 may control a device 210 to increase or decrease the stiffness of at least a portion of the sole member. In this manner, the monitoring element 202 can be used to actively and/or automatically control the impact attenuation characteristics of an article of footwear without the need for additional user input. Various examples of this type of impact attenuation control and other controlled devices 210 will be described in more detail below. Of course, if desired, the controlled device 210 may be included as part of the monitoring element 202 without departing from this invention.
In addition to providing information regarding the degree of compression of the midsole or other aspects of the interaction between a user's foot and an article of footwear, the sensing device 204 of this example system 200 also may be capable of sensing each of the user's steps (e.g., the midsole will compress somewhat with each step). If desired, and as will be explained in more detail below, detection of information corresponding to each user's step may be used by systems and methods according to at least some examples of this invention to collect pedometer type speed and/or distance information relating to use of the article of footwear. This speed and/or distance information may be stored in memory 208, e.g., for real time or later analysis, display, processing, review, etc. Optionally, if desired, the speed and/or distance information may be transmitted to another device 212, e.g., a peripheral display device, in any desired manner, e.g., via wired or wireless connections (a wireless communication system is illustrated in the example of
As further shown in
A wide variety of characteristics of an article of footwear (or other foot-receiving device) may be controlled by systems and methods in accordance with this invention, and additionally, a wide variety of different types of sensing devices also may be used (e.g., magnetic sensors, Hall effect sensors, light or other radiation sensors, pressure sensors, piezoelectric sensors, accelerometers, gyro-sensors, optical sensors, etc.). One more specific example relates to active/automatic control of impact-attenuation characteristics of an article of footwear based on a sensed degree of compression of the midsole and/or other portions of the article of footwear. For example, when a midsole member compresses a substantial amount as sensed by a sensing device 204, the monitoring element 202 in accordance with at least some examples of the invention may sense this large amount of compression and automatically activate a device so as to increase stiffness characteristics of at least some portion of the article of footwear. On the other hand, when the sensed midsole member compression is determined to be rather slight, e.g., optionally, despite rather firm contact with the contact surface or the user's foot, the monitoring element 202 in accordance with at least some examples of the invention may sense this fact and automatically activate a device so as to decrease stiffness characteristics of at least some portion of the article of footwear. Independent user input may be provided, e.g., to set broad parameters for the desired amount of impact attenuation (e.g., a user's preference for a firm midsole v. a user's preference for a soft midsole, etc.), to override the automatically set impact attenuation levels, etc.
Various detector types, systems, and methods may be used for providing automatic impact attenuation control without departing from this invention. For example, known systems like those described in U.S. Pat. No. 6,430,843, U.S. Patent Application Publication No. 2003/0009913, and U.S. Patent Application Publication No. 2004/0177531 may be used to actively and/or dynamically control the impact attenuation characteristics of an article of footwear in accordance with at least some examples of this invention (U.S. Pat. No. 6,430,843, U.S. Patent Application Publication No. 2003/0009913, and U.S. Patent Application Publication No. 2004/0177531 each are entirely incorporated herein by reference).
The monitoring and/or control system in accordance with at least some examples of this invention may include an actuation system 314 driven based on output from a sensing device (described in more detail below). The actuation system 314 may include a driver 316 (e.g., a motor) and an adjustable element 318. The monitoring and/or control system further may include a sensor 320, e.g., a proximity sensor, a magnetic field sensor, a Hall Effect sensor, an accelerometer, etc., a magnet 322, and associated electrical circuitry. In general, if desired, the monitoring and/or control system may take on the general structure and/or form illustrated and described in U.S. Patent Application Publication No. 2004/0177531.
In the example structure illustrated in
If desired, the overall monitoring and/or control system, or at least portions of it, may be encased in a sealed, waterproof enclosure. The actuation system 314 may include a driver 316. More specifically, in at least some example arrangements, the driver 316 may include a motor 324 and a transmission element 326. The adjustable element 318, which may be used to control the degree of stiffness or “give” in the midsole member 302, may include a limiter 328, an expansion element 330, and a stop member 332. In the particularly illustrated example, the driver 316 includes a lead screw drive, made up of the bi-directional electric motor 324 and a threaded rod that forms the transmission element 326. If desired, in at least some examples of this invention, the motor 324 may be a radio-controlled servomotor of the type used in model airplanes or other similar small electronic objects. The threaded rod 326 may be constructed from any desired material, such as steel, stainless steel, etc.
The motor 324 may be mechanically coupled to the transmission element 326 to drive the transmission element 326 in either a clockwise or counter-clockwise direction. The transmission element 326 may be designed to threadedly engage the limiter 328 and transversely position the limiter 328 relative to the expansion element 330 (see the double headed arrow in
In the illustrated example structure 300, the expansion element 330 constitutes a generally cylindrical element with an elongated circular or generally elliptically-shaped cross-section. While they may be, the arcuate ends of the expansion element 330 are not necessarily semi-circular in shape. The radius of the arcuate ends may be selected so as to suit a particular application, e.g., to provide a predetermined amount of flex, etc. Moreover, the sizes of these ends may be varied, e.g., to control the amount of longitudinal expansion of the expansion element 330 when under a compressive vertical load, etc. In general, the larger the radius or size of the end portions, greater longitudinal expansion is possible under vertical compression loading. The expansion element 330 may be constructed so as to have a solid outer wall, and optionally, if desired, a compressible core of foam or other resilient material. The size, shape, and materials used in the expansion element 330 may be freely selected, e.g., to suit a particular application. As more specific examples, the expansion element 330 may be constructed from plastic or polymeric materials, such as thermoplastic materials like DESMOPAN® (a thermoplastic polyurethane material available from Bayer AG of Leverkusen, Germany), PEBAX® (a polyether-block co-polyamide polymer available from Atofina Corp. of Puteaux, France), etc. In at least some examples, the expansion element 330 or at least its outer wall may be made as a unitary, one-piece member, e.g., by injection molding or by other suitable or desired methods, including conventional methods known in the art.
If desired, the transmission element 326 may extend through the expansion element 330 and connect to stop member 332. The stop member 332 may be used to prevent movement of the expansion element 330 in a direction away from the limiter 328. Alternatively, if desired, the functions of the stop member 332 may be performed by a rear wall of the cavity 310 or other portion of the sole structure, and the stop member 332 may be omitted, without departing from this invention. A wide variety of other structural modifications also may be provided within the sole structure without departing from this invention.
The general operation of the adjustable element 318 is described with respect to an application where the monitoring and/or control system is used to modify the impact-attenuation characteristics of an article of footwear 350 in response to a measured parameter, for example, in response to measured compression of the midsole member 302. The expansion element 330 compresses when acted on by a vertical force (e.g., a step, landing a jump, etc). In response to the compression, the expansion element 330 expands in the horizontal direction. The limiter 328 controls/limits the amount of movement or horizontal expansion that the expansion element 330 can experience. When the horizontal movement is limited, the vertical movement will be limited as well, thereby enabling control over the firmness or feel of the midsole member by controlling the location of limiter 328. Therefore, by controlling the position of limiter 328, the overall impact attenuation characteristics of the article of footwear 350 may be controlled.
The monitoring and/or control system may be used to actively and/or automatically control the amount of midsole member 302 compression a user creates when stepping down in the article of footwear 350, landing a jump, etc. As an example, when a user wearing an article of footwear 350 like that illustrated in
During compression, the sensing device 320 included as part of the monitoring and/or control system in this example system measures field strength of the magnet 322. In this illustrated example structure, the sensing device 320 is provided proximate the bottom of the midsole member 302 and the magnet 322 is disposed proximate the top of the midsole member 302 with the expansion element 330 therebetween. The magnetic field strength detected by the sensing device 320 changes as the magnet 322 moves closer to the sensing device 320, e.g., as the midsole member 302 is compressed, for example, during a step, when landing a jump, etc. The amount of change or other variations in the sensed magnetic field may correspond to the force of the step (e.g., proportionally, etc.). A microprocessor 334 included as part of the monitoring and/or control system may be programmed and adapted such that this magnetic field strength can be converted to a distance (e.g., a midsole member 302 compression distance). The change in distance (and thus the change in measured magnetic field strength) indicates the extent to which the midsole member 302 has compressed. The microprocessor 334 of the monitoring and/or control system then may output a signal to the actuation system 314 based on the change in distance or compression measurement, to thereby automatically, and in real time, change the impact-attenuation characteristics of the article of footwear 350 (e.g., to modify the hardness or compressibility of the midsole member 302 based on the signal received from the monitoring and/or control system). Changes to the impact-attenuation characteristics may be made on the fly, if desired, between steps, automatically, while the event or performance continues (e.g., high measured midsole compression levels or forces may induce a “hardening” of the midsole and/or low measured midsole compression levels or forces may induce a “softening” of the midsole).
Of course, other structures for changing the hardness or compressibility of the midsole member 302 may be used without departing from the invention. More specific examples include air or fluid filled bladders (e.g., where changes in pressure or volume change hardness or compressibility), piston type systems, hydraulic type systems, pneumatic type systems, etc. The impact attenuation characteristics of the article of footwear also may be changed at any location in the article of footwear without departing from the invention, such as at one or more of the medial, lateral, or mid-portions of the foot, at the frontfoot, arch, midfoot, or rearfoot portions, etc.
Detection of compression of the midsole member 302 also may be used in systems and methods in accordance with at least some examples of this invention as a step count indicator, thereby allowing the monitoring and/or control system to also provide pedometer based and/or other speed and/or distance information. This data may be stored in memory 336, displayed on the article of footwear, and/or otherwise provided to a user, e.g., via a wired or wireless connection (a general transmission/receiver device 338 is illustrated in
This same sensor data, however, also may be used to provide “step count” information (e.g., each user step may be sensed due to compression of the midsole member). For example, as illustrated in
As described above in conjunction with
It is not necessary, however, for the user inputs, external inputs or information sources, and/or display devices to be remote from and/or wirelessly in communication with the monitoring and/or control system and/or the speed and distance measuring system. For example, if desired, wired connections, electrode pins or connections, and the like may be used as opposed to wireless connections. Additionally, if desired, the user inputs, external inputs or other information, sources (e.g., GPS tracking systems, map information, etc.) and/or display devices may be provided on and/or as part of the article of footwear (or other foot-receiving device) or separate from the associated article of footwear (or other foot-receiving device). As one more specific example, as illustrated in
In addition to user input devices, articles of footwear 400 also may include one or more display devices 404 that provide various types of information to the user, such as midsole compressibility setting information, speed and/or distance information, and/or any other desired information. For example, the display device 404 may be an LED, LCD, or other display devices like those typically used for electronic devices, such as watches, cellular telephones, PDAs, MP3 or other portable audio devices, and the like. Also, the various display device(s) 404 and/or input systems 402(a) and 402(b) individually may be mounted on any part of the footwear structure 400 without departing from the invention, such as on the upper member, on the sole member, on more than one portion of the footwear structure 400, etc.
Characteristics of an article of footwear other than the amount of impact attenuation provided may be controlled without departing from this invention.
The control element(s) 506(a) and/or 506(b) to change the characteristics of a person's gait or footstrike characteristics may be changed for any reason and/or in response to any sensed characteristics without departing from the invention. Additionally, the fluid-filled bladders, pistons, hydraulic elements, pneumatic elements, or other controlled elements may be provided at any location in the article of footwear without departing from the invention, such as at one or more of the medial, lateral, or mid-portions of the foot, at the frontfoot, arch, midfoot, or rearfoot portions, etc.
Because the sensing devices 502(a) and 502(b) of this example sole structure 500 are capable of detecting the surface contact by the foot (e.g., each step), the same signals for detecting a pronation, supination, or other gait tendency also may be used for providing speed and/or distance measurement information, e.g., conventional pedometer type speed and/or distance information, without departing from this invention. Accordingly, in the same manner described above in connection with
Of course, other ways of modifying the traction characteristics of an article of footwear may be used without departing from this invention. For example, when slides or slips are detected, a microprocessor or other portion of the control system may be used to automatically lengthen spikes or cleats included in the article of footwear (e.g., by rotating out additional spike or cleat length, by pushing out more spike or cleat length via pneumatic, hydraulic or pressure cylinders, etc.). As another potential example, a microprocessor or other portion of the control system may be used to automatically expose additional spikes or cleats included with the article of footwear when a predetermined degree of slipping and/or sliding is detected. Still other ways of modifying the traction characteristics may be provided without departing from this invention.
Because the sensing device 602 of this example footwear structure 600 may be capable of detecting surface contact by the foot (e.g., detecting each step due to the change in direction detectable by an accelerometer or other detector, etc.), the same signals for detecting a slip or slide also may be used for providing speed and/or distance measurement information, e.g., conventional pedometer type speed and/or distance information, without departing from this invention. Accordingly, in the same manner described above in connection with
Another example of a controllable article of footwear 700 is shown in
Any way of changing the degree of flexibility of an article of footwear may be used and the degree of flexibility may be changed at any location in the article of footwear without departing from this invention.
Because the sensing device(s) 702 of this example footwear structure 700 may be capable of detecting surface contact by the foot (e.g., each step due to the detected flex amount, etc.), the same signals for detecting the degree of flex also may be used for providing speed and/or distance measurement information, e.g., conventional pedometer type speed and/or distance information, without departing from this invention. Accordingly, in the same manner described above in connection with
Any way of changing the tightness of the securing system or other fit characteristic for an article of footwear may be used without departing from this invention.
Because the sensing device(s) 802 of this example footwear structure 800 may be capable of detecting surface contact by the foot (e.g., each step due to the detected pressure sensing, etc.), the same signals for controlling the tightness or fit characteristic(s) also may be used for providing speed and/or distance measurement information, e.g., conventional pedometer type speed and/or distance information, without departing from this invention. Accordingly, in the same manner described above in connection with
As described above, user input may be received, e.g., in a peripheral device that is remotely located from the article of footwear and/or removably mounted to the article of footwear (or other portions of the user's body or clothing). This device may be used, at least in part, to remotely control the desired characteristic(s) of the article of footwear (e.g., to enable the user to set impact attenuation characteristics at discrete levels or intervals, to enable the user to vary the set performance characteristic(s) and/or their thresholds, to enable the user to override the automatically set characteristic(s), etc.).
This user input device may adjust the settings in both articles of footwear simultaneously, and/or if desired, individual control over the articles of footwear may be provided. If desired, the overall system may control stiffness or impact attenuation in the plantar/dorsi directions of the user's foot as well as in the medial/lateral directions, or in combinations or subcombinations of these various directions. Additionally, if desired, impact attenuation or other characteristics may be controlled in the upper member and/or in any portion of the sole member without departing from this invention. Also, pedometer based speed and/or distance information may be derived from step counts generated by one article of footwear or by two.
As still additional potential examples or alternatives, if desired, the peripheral device may display GPS information, map information, or other location or route based information (e.g., generated based on GPS and/or pedometer based speed and/or distance information). If desired, in such systems, one or more characteristic(s) of the article of footwear may be controlled based on, for example: the user's location along a route; detected changes in terrain, altitude, etc; reaching various predetermined landmarks; reaching various threshold distances or altitudes; and the like. As still additional examples, various landmarks (such as mile markers along a route, signs, other transmission devices, or the like) may be used to transmit information to a control system (optionally carried by the user and/or within the article of footwear) that may be used for changing one or more characteristics of an article of footwear in accordance with at least some examples of this invention. A wide variety of control elements and triggering events may be used to automatically control one or more characteristic(s) of an article of footwear without departing from this invention.
Systems of the type described in U.S. Pat. No. 6,865,825, which patent is entirely incorporated herein by reference, also may be used for providing control in accordance with at least some examples of this invention.
Various examples of the invention described above relate to use of control systems in accordance with examples of the invention to adjust various characteristics of an article of footwear (or other foot-receiving device) in real time, e.g., on the fly, automatically, as the article of footwear (or other foot-receiving device) is being used (e.g., in between individual steps), etc. While one advantageous aspect in accordance with some examples of this invention, the invention is not limited to use in these situations. For example, systems and methods according to at least some examples of the invention may be used to adjust characteristics of an article of footwear (or other foot-receiving device) over time and/or under different use conditions, e.g., to accommodate for changes in the footwear structure caused by wear, damage, aging, temperature, humidity, moisture, etc. As a more specific example, aspects of the present invention may be used to adapt the impact attenuation characteristics of an article of footwear due to changes in the foam material of the midsole member that may occur over time (e.g., due to foam breakdown, damage, wetness, aging, etc.), so that the article of footwear provides a more consistent feel throughout its life and/or under a wide variety of use conditions. As another example, aspects of the invention may be used to adjust the traction characteristics of an article of footwear due to wear on the outsole, cleats, or spike members that may occur over time (e.g., to provide additional cleat or spike length as the ends of the cleats or spikes wear away, to heat the outsole member more often or frequently as the outsole member's traction elements wear away, etc.).
Various manners of operating control systems in accordance with examples of this invention are described above and will be evident to those skilled in the art based on the descriptions above. As a more specific example, one or more features relating to contact between an article of footwear and a contact surface or a user's foot may be sensed as the article of footwear is used (e.g., as the user steps down), such as one or more of the various features described above in connection with
Various different methods of providing footwear systems including control features also may be provided without departing from the invention, as is evident from the description above. Such methods may include engaging a sensing device with an article of footwear, e.g., with the upper member and/or sole member, integrally formed as part of the article of footwear, embedded or housed in the sole member, etc. This engaging may occur during footwear manufacture or assembly, at retail or use locations (e.g., via a slot or mounting element provided in the article of footwear for receiving the sensing and/or control devices, etc.). The sensing device, as noted above, may be positioned and adapted to sense at least one characteristic of contact between the article of footwear and a contact surface or a user's foot when the article of footwear is in use. A control system may be provided (e.g., separate from or commonly housed or supported with the sensing device) to receive output from the sensing device and to control a characteristic of the article of footwear, as described above (e.g., to alter some aspect of the article of footwear's configuration), based on the received output. The control device may be located in or on the article of footwear, partially in or on the article of footwear, or remote from the article of footwear without departing from this invention. Aspects of providing footwear systems in accordance with examples of the invention further may include providing a distance monitoring system, optionally at least partially engaged with the article of footwear, for detecting or storing data indicating speed and/or distance information associated with use of the article of footwear. Optionally, the distance monitoring system may use the same sensing device and optionally the same signals provided by the sensing device as those used for footwear characteristic control.
Of course, many modifications to the specifically described structures, systems, and methods may take place without departing from this invention. For example, while the invention has been described with respect to specific examples including presently preferred modes of carrying out the invention, those skilled in the art will appreciate that there are numerous variations, combinations, and permutations of the above described systems and methods. Moreover, various specific structural features included in the examples merely represent examples of structural features that may be included in some examples of structures according to the invention. Those skilled in the art will understand that various specific structural features may be omitted and/or modified in a footwear or other foot-receiving device product without departing from the invention. Moreover, with respect to the methods, many variations in the method steps may take place, the steps may be changed in order, various steps or features may be added or omitted, etc., without departing from the invention. Thus, the reader should understand that the spirit and scope of the invention should be construed broadly as set forth in the appended claims.