The present disclosure relates to marine engines and particularly to control systems and methods for exhaust apparatus on marine engines.
U.S. patent application Ser. No. 13/316,164, filed Dec. 9, 2011, which is incorporated herein by reference in entirety, discloses marine engine exhaust systems that include an exhaust conduit conveying engine exhaust gas from upstream to downstream, a sensor sensing oxygen content of the exhaust gas in the conduit, and a shield located in the conduit.
U.S. Pat. No. 7,552,586, which is incorporated herein by reference in entirety, discloses a marine engine exhaust system having an oxygen sensor located within a catalyst housing structure and downstream from a catalyst device.
U.S. Pat. No. 7,467,628 discloses a control system for an oxygen sensor heater. The control system includes a passive heater control module that generates a heater control signal at a first duty cycle and measures a resistance of the oxygen sensor heater. An exhaust gas temperature mapping module maps the resistance to an exhaust gas temperature. An active heater control module generates a heater control signal at a second duty cycle based on the exhaust gas temperature.
This summary is provided to introduce a selection of concepts that are further described below in the detailed description. This summary is not intended to identify key or essential features of the claimed subject matter, nor is it intended to be used as an aid in limiting the scope of the claimed subject matter.
In some examples, control systems for a marine engine emitting exhaust gas comprise a sensor sensing a characteristic of the exhaust gas; an electrical heater heating the sensor; and a control circuit that monitors current drawn by the heater. The control circuit controls an operational characteristic of the engine based upon the characteristic of the exhaust gas. The control circuit modifies its control of the operational characteristic of the engine when the current drawn by the heater changes by a predetermined amount.
In other examples, methods of controlling a marine engine comprise operating a sensor to sense a characteristic of exhaust gas emitted by the engine; operating an electrical heater to heat the sensor; monitoring current drawn by the heater; controlling an operational characteristic of the engine based upon the characteristic of the exhaust gas; and modifying control of the operational characteristic of the engine when the current drawn by the heater changes by a predetermined amount.
Examples of methods and systems for controlling shift in marine propulsion devices are described with reference to the following drawing figures. The same numbers are used throughout the drawings to reference like features and components.
In the present description, certain terms have been used for brevity, clearness and understanding. No unnecessary limitations are to be inferred therefrom beyond the requirement of the prior art because such terms are used for descriptive purposes only and are intended to be broadly construed. The different methods and systems described herein may be used alone or in combination with other methods and systems. Various equivalents, alternatives, and modifications are possible within the scope of the appended claims.
A control circuit 22 controls operation of the throttle 18 and fuel system 20 based upon various sensed characteristics of the exhaust gas and optionally according to operational characteristics of the marine engine 14. The control circuit 22 includes a programmable processor and a memory for receiving, processing and emitting electronic control signals via respective communication links to components of the system 10. The communication links are shown in solid line format in the drawings and can comprise wire and/or wireless links.
The exhaust system 16 includes an exhaust manifold 24, through which exhaust gas is conveyed to a catalytic converter 26. Catalytic converter 26 controls emissions from the exhaust system 16 by for example altering rate of oxidation of hydrocarbons and carbon monoxide and rate of reduction of nitrogen oxides. Oxygen sensors 28, 30 sense the level of oxygen in the exhaust gas and communicate this information to the control circuit 22. Based on this information, the control circuit 22 is programmed to actively control air and fuel flow to the engine 14 via the noted throttle 18 and fuel system 20. Typically the control circuit 22 will control the throttle 18 and fuel system 20 to achieve a desired air-to-fuel ratio to thereby achieve optimum performance of the engine 14 and catalytic converter 26.
The system 10 includes one or more oxygen sensors 28, 30, which can be located at different positions in the exhaust system 16. In the particular example shown, the exhaust system 16 includes an inlet oxygen sensor 28 located upstream of the catalytic converter 26 and an outlet oxygen sensor 30 located downstream of the catalytic converter. The number and location of oxygen sensors 28, 30 can vary. For example the upstream oxygen sensor 28 can be entirely omitted. The inlet oxygen sensor 28 communicates with the control circuit 22 and measures the oxygen content of the exhaust gas entering the catalytic converter 26. The outlet oxygen sensor 30 communicates with the control circuit 22 and measures the oxygen content of the exhaust gas exiting the catalytic converter 26. The control circuit 22 controls air and fuel via the throttle 18 and fuel system 20 respectively based upon signals from the inlet and outlet oxygen sensors 28, 30 such that a sufficient level of oxygen is present in the exhaust gas to initiate oxidation in the catalytic converter 26.
Electric heaters 32, 34 are provided for each of the respective oxygen sensors 28, 30. The heaters 32, 34 are powered by a power source, such as for example the control circuit 22. The control circuit 22 receives power from a battery 39. The heaters 32, 34 are configured to heat the sensors 28, 30 to a desired operating temperature and are also configured to maintain the desired operating temperature throughout operation of the sensors 28, 30. The control circuit 22 powers the heaters 32, 34 via the noted links.
Referring to
Thereafter, if the current drawn by the respective heater 32, 34 reverts by a predetermined amount, such as back to the amount shown at linear segment A, the control circuit 22 can be programmed to again consider signals from the respective oxygen sensor 28, 30 in its control of the engine 14. This can occur for example where the sensor 28, 30 dries out after being exposed to the water.
In the example shown, the system 10 also includes a display 36 for indicating to an operator when the current drawn by a heater 32, 34 exceeds the predetermined amount. The control circuit 22 can be programmed to operate the display 36 when the noted current draw changes by the predetermined amount.
Number | Name | Date | Kind |
---|---|---|---|
4178793 | Bremer | Dec 1979 | A |
5285762 | Werner | Feb 1994 | A |
6034610 | Schnaibel | Mar 2000 | A |
6094975 | Hasegawa | Aug 2000 | A |
6164125 | Kawase | Dec 2000 | A |
6245205 | Schnaibel | Jun 2001 | B1 |
6294075 | Poggio | Sep 2001 | B1 |
6898927 | Morinaga | May 2005 | B2 |
7467628 | Adams et al. | Dec 2008 | B2 |
7552586 | White | Jun 2009 | B1 |
20020060150 | Hashimoto | May 2002 | A1 |
20030178016 | Nebiyeloul-Kifle | Sep 2003 | A1 |
20070010932 | Gotoh | Jan 2007 | A1 |
20080128277 | Fukuda | Jun 2008 | A1 |
20140188371 | Miyaji | Jul 2014 | A1 |