Control systems and methods suitable for use with power production systems and methods

Information

  • Patent Grant
  • 12012904
  • Patent Number
    12,012,904
  • Date Filed
    Thursday, May 25, 2023
    a year ago
  • Date Issued
    Tuesday, June 18, 2024
    6 months ago
Abstract
Control systems and methods suitable for combination with power production systems and methods are provided herein. The control systems and methods may be used with, for example, closed power cycles as well as semi-closed power cycles. The combined control systems and methods and power production systems and methods can provide dynamic control of the power production systems and methods that can be carried out automatically based upon inputs received by controllers and outputs from the controllers to one or more components of the power production systems.
Description
FIELD OF DISCLOSURE

The present disclosure relates to control systems and methods, and more particularly to control systems and methods that can be integrated with power production systems and methods.


BACKGROUND

There is a great need for the development of power systems that can meet increasing consumption needs. While much work is directed to systems that do not utilize combustion of fossil fuels, cost factors and availability of fossil fuels, especially coals and natural gas (as well as waste hydrocarbons, such as residual oil products), drive a continued need for systems configured to combust such fuels, particularly with high efficiency and complete carbon capture. To meet these needs, there is a continued desire for the development of control systems that can provide for precise control of power systems.


SUMMARY OF THE DISCLOSURE

In one or more embodiments, the present disclosure can provide systems and methods useful for controlling one or more aspects of a power production system. The control systems particularly can provide control over one or more of pressure, temperature, flow rate, and stream composition of one or more flow streams in a power production system. The control systems can provide for optimum efficiency of the power production system. The control systems further can provide control over aspects of the power production system, such as start-up of the system, shutdown of the system, change of input stream(s) in the system, change of output stream(s) in the system, handling of operating emergencies related to the system, and any like considerations related to operation of a power production system.


In one or more embodiments, the present disclosure can relate to a control system suitable for use in a power production plant. For example, the power production plant can be a plant burning a fuel (such as a hydrocarbon, particularly a hydrocarbon gas) in substantially pure oxygen in a combustor at a pressure of about 12 MPa or greater with an additional circulating CO2 stream to produce a combined stream of combustion products and circulating CO2. In some embodiments, the power production can be further characterized by one or more of the following points, which can be combined in any number or order.


The combined stream can be passed through a power producing turbine with a discharge pressure of at least 10 bar.


The turbine exhaust can be cooled in an economizer heat exchange to preheat the circulating CO2 stream.


The turbine exhaust can be further cooled to near ambient temperature, and condensed water can be removed.


The CO2 gas stream can be compressed to be at or near the turbine inlet pressure using a gas compressor followed by a dense CO2 pump to form the circulating CO2 stream.


Net CO2 produced in the combustor can be removed at any pressure between the turbine inlet and outlet pressures.


Heat from an external source can be introduced to preheat part of the circulating CO2 stream to a temperature in the range 200° C. to 400° C. in order to reduce the temperature difference between the turbine exhaust and the circulating CO2 stream leaving the economizer heat exchanger to about 50° C. or less.


The fuel gas flow rate can be controlled to provide the required power output from the turbine.


The turbine outlet temperature can be controlled by the speed of the CO2 pump.


The CO2 compressor discharge pressure can be controlled by recycling compressed CO2 flow to the compressor inlet.


The flow rate of net CO2 produced from fuel gas combustion and removed from the system can be used to control the CO2 compressor inlet pressure.


The difference between the temperature of the turbine exhaust entering the economizer heat exchanger and the temperature of the circulating CO2 stream leaving the economizer heat exchanger can be controlled to be at or below 50° C. by controlling the flow rate of a portion of the circulating CO2 stream which is heated by an added heat source.


The flow rate of net liquid water and fuel derived impurities removed from the system can be controlled by the level in the liquid water separator.


The oxygen flow rate can be controlled to maintain a ratio of oxygen to fuel gas flow rate which can result in a defined excess oxygen in the turbine inlet flow to ensure complete fuel gas combustion and oxidation of components in the fuel gas.


The oxygen stream at CO2 compressor inlet pressure can be mixed with a quantity of CO2 from the CO2 compressor inlet to produce an oxidant stream with an oxygen composition of about 15% to about 40% (molar), which can lower the adiabatic flame temperature in the combustor.


The oxidant flow required to produce the required oxygen to fuel gas ratio can be controlled by the speed of the oxidant pump.


The discharge pressure of the oxidant compressor can be controlled by recycling compressed oxidant flow to the compressor inlet.


The inlet pressure of the oxidant compressor can be controlled by the flow rate of diluent CO2 mixed with the oxygen which forms the oxidant stream.


The ratio of oxygen to CO2 in the oxidant stream can be controlled by the flow of oxygen.


The oxygen can be delivered to the power production system at a pressure at least as high as the turbine inlet pressure, and an oxidant stream with an oxygen composition in the range of about 15% to about 40% (molar) can be desired.


The oxygen to fuel gas ratio can be controlled by the oxygen flow.


The oxygen to CO2 ratio in the oxidant flow can be controlled by the flow of diluent CO2 taken from CO2 compressor discharge.


In any of the embodiments discussed herein, the control of one parameter by a second parameter can particularly indicate that the second parameter is measured (e.g., with a sensor) or otherwise monitored or that the second parameter is calculated by a computer based upon additionally provided information, lookup tables, or presumed values, and a controller initiates a control sequence based upon the measured or calculated second parameter so that the first parameter is appropriated adjusted (e.g., by opening or closing of a valve, increasing or decreasing power to a pump, etc.). In other words, the second parameter is used as a trigger for a controller to implement an adjustment to the first parameter.


In one or more embodiments, the present disclosure can provide power production systems that include an integrated control system, which can be configured for automated control of at least one component of the power production system. In particular, the control system can include at least one controller unit configured to receive an input related to a measured parameter of the power production system and configured to provide an output to the at least one component of the power production system subject to the automated control. The power production system and integrated control system can be further defined in relation to one or more of the following statements, which can be combined in any number and order.


The power production system can be configured for heat input via combustion of a fuel.


The power production system can be configured for heat input via a non-combustion heat source.


The power production system can be configured for recycling a stream of CO2.


The power production system can be configured for producing an amount of CO2 that can be optionally withdrawn from the system, such as being input to a pipeline or being utilized for a further purpose, such as enhanced oil recovery.


The power production system can be configured for utilizing a working fluid that is repeatedly compressed, heated, and expanded.


The integrated control system can include a power controller configured to receive an input related to power produced by one or more power producing components of the power production system.


The power controller can be configured to meet one or both of the following requirements: provide an output to a heater component of the power production system to increase or decrease heat production by the heater component; provide an output to a fuel valve to allow more fuel or less fuel into the power production system.


The integrated control system can include a fuel/oxidant ratio controller configured to receive one or both of an input related to fuel flow rate and an input related to oxidant flow rate.


The fuel/oxidant ratio controller can be configured to meet one or both of the following requirements: provide an output to a fuel valve to allow more fuel or less fuel into the power production system; provide an output to an oxidant valve to allow more oxidant or less oxidant into the power production system.


The integrated control system can include a pump controller configured to receive an input related to temperature of an exhaust stream of a turbine in the power production system and to provide an output to a pump upstream from the turbine to increase or decrease flow rate of a stream exiting the pump.


The integrated control system can include a pump suction pressure controller configured to receive an input related to suction pressure on a fluid upstream from a pump in the power production system and to provide an output to a spillback valve that is positioned upstream from the pump.


The pump suction pressure controller is configured to meet one or both of the following requirements: cause more of the fluid or less of the fluid to spill back to a point that is further upstream from the spillback valve; cause more of the fluid or less of the fluid to be removed from the power production system upstream from the pump.


The integrated control system can include a pressure regulation controller configured to receive an input related to pressure of an exhaust stream of a turbine in the power production system and to provide an output to a fluid outlet valve and allow fluid out of the exhaust stream and optionally to provide an output to a fluid inlet valve and allow fluid into the exhaust stream.


The integrated control system can include a water separator controller configured to receive an input related to the amount of water in a separator of the power production system and to provide and output to a water removal valve to allow or disallow removal of water from the separator and maintain the amount of the water in the separator within a defined value.


The integrated control system can include an oxidant pump controller configured to receive an input related to one or both of a mass flow of a fuel and a mass flow of an oxidant in the power production system and calculate a mass flow ratio of the fuel and the oxidant.


The oxidant pump controller can be configured to provide an output to the oxidant pump to change the power of the pump so as to affect the mass flow ratio of the fuel and the oxidant in the power production system.


The integrated control system can include an oxidant pressure controller configured to receive an input related to the pressure of an oxidant stream downstream from an oxidant compressor and to provide an output to an oxidant bypass valve to cause more oxidant or less oxidant to bypass the compressor.


The integrated control system can include an oxidant pressure controller configured to receive an input related to the pressure of an oxidant stream upstream from an oxidant compressor and to provide an output to a recycle fluid valve to cause more recycle fluid or less recycle fluid from the power production system to be added to the oxidant stream upstream from the oxidant compressor. In particular, the recycle fluid can be a substantially pure CO2 stream.


The integrated control system can include a dilution controller configured to receive an input related to one or both of the mass flow of an oxidant and the mass flow of an oxidant diluent stream and to calculate a mass flow ratio of the oxidant and the oxidant diluent.


The dilution controller can be configured to provide an output to an oxidant entry valve to allow more oxidant or less oxidant to enter the power production system so that the mass flow ratio of the oxidant to the oxidant diluent is within a defined range.


The integrated control system can include a compressor suction pressure controller configured to receive an input related to suction pressure of a fluid upstream from a compressor in the power production system and to provide an output to a spillback valve that is positioned downstream from the compressor and that causes more of the fluid or less fluid to spill back to a point that is upstream from the compressor.


The integrated control system can include a pump speed controller configured to receive an input related to suction pressure upstream from the pump and to provide an output to the pump to increase or decrease pump speed.


The integrated control system can include a side flow heat controller configured to receive an input related to a calculated mass flow requirement for a side flow of a high pressure recycle stream in the power production system and to provide an output to a side flow valve to increase or decrease the amount of the high pressure recycle stream in the side flow.


The power production system can comprise: a turbine; a compressor downstream from the turbine and in fluid connection with the turbine; a pump downstream from the compressor and in fluid connection with the compressor; and a heater positioned downstream from the pump and in fluid connection with the pump and positioned upstream from the turbine and in fluid connection with the turbine. Optionally, the power production system can include a recuperator heat exchanger.


In one or more embodiments, the present disclosure can provide methods for automated control of a power production system. In particular, the method can comprise operating a power production system comprising a plurality of components that include: a turbine; a compressor downstream from the turbine and in fluid connection with the turbine; a pump downstream from the compressor and in fluid connection with the compressor; and a heater positioned downstream from the pump and in fluid connection with the pump and positioned upstream from the turbine and in fluid connection with the turbine. Further, operating the power production system can include using one or more controllers integrated with the power production system to receive an input related to a measured parameter of the power production system and provide an output that automatically controls at least one of the plurality of components of the power production system. In further embodiments, the methods can include one or more of the following steps, which can be combined in any number and order.


The output can be based upon a pre-programmed, computerized control algorithm.


The operating can include input of heat via combustion of a fuel.


The operating can include input of heat via a non-combustion heat source.


The operating can include recycling a stream of CO2.


The operating can include producing an amount of CO2 that can be optionally withdrawn from the system, such as being input to a pipeline or being utilized for a further purpose, such as enhanced oil recovery.


The operating can include utilizing a working fluid that is repeatedly compressed, heated, and expanded.


The operating can include using a controller to receive an input related to power produced by the power production system and direct one or both of the following actions: provide an output to the heater to increase or decrease heat production by the heater; provide an output to a fuel valve of the power production system to allow more fuel or less fuel into the power production system.


The operating can include using a controller to receive one or both of an input related to fuel flow rate and an input related to oxidant flow rate and to direct one or both of the following actions: provide an output to a fuel valve of the power production system to allow more fuel or less fuel into the power production system; provide an output to an oxidant valve of the power production system to allow more oxidant or less oxidant into the power production system.


The method operating can include using a controller to receive an input related to temperature of an exhaust stream of the turbine and provide an output to the pump upstream from the turbine to increase or decrease flow rate of a stream exiting the pump.


The operating can include using a controller to receive an input related to suction pressure on a fluid upstream from the pump and provide an output to a spillback valve that is positioned upstream from the pump. In particular, one or both of the following requirements can be met: the controller causes more of the fluid or less of the fluid to spill back to a point that is further upstream from the spillback valve; the controller causes more of the fluid or less of the fluid to be removed from the power production system upstream from the pump.


The operating can include using a controller to receive an input related to pressure of an exhaust stream of the turbine and provide an output to a fluid outlet valve and allow fluid out of the exhaust stream and optionally provide an output to a fluid inlet valve and allow fluid into the exhaust stream.


The operating can include using a controller to receive an input related to the amount of water in a separator included in the power production system and provide and output to a water removal valve to allow or disallow removal of water from the separator and maintain the amount of the water in the separator within a defined value.


The operating can include using a controller to receive an input related to one or both of a mass flow of a fuel and a mass flow of an oxidant introduced to the power production system and calculate a mass flow ratio of the fuel and the oxidant. In particular, the controller can provide an output to an oxidant pump to change the power of the pump so as to affect the mass flow ratio of the fuel and the oxidant in the power production system.


The operating can include using a controller to receive an input related to the pressure of an oxidant stream downstream from an oxidant compressor and provide an output to an oxidant bypass valve to cause more oxidant or less oxidant to bypass the compressor.


The operating can include using a controller to receive an input related to the pressure of an oxidant stream upstream from an oxidant compressor and to provide an output to a recycle fluid valve to cause more recycle fluid or less recycle fluid to be added to the oxidant stream upstream from the oxidant compressor. In particular, the recycle fluid can be a substantially pure CO2 stream.


The operating can include using a controller to receive an input related to one or both of the mass flow of an oxidant and the mass flow of an oxidant diluent stream and to calculate a mass flow ratio of the oxidant and the oxidant diluent. In particular, the controller can be configured to provide an output to an oxidant entry valve to allow more oxidant or less oxidant to enter the power production system so that the mass flow ratio of the oxidant to the oxidant diluent is within a defined range.


The operating can include using a controller to receive an input related to suction pressure of a fluid upstream from the compressor and provide an output to a spillback valve that is positioned downstream from the compressor and that causes more of the fluid or less fluid to spill back to a point that is upstream from the compressor.


The operating can include using a controller to receive an input related to suction pressure upstream from the pump and to provide an output to the pump to increase or decrease pump speed.


The operating can include using a controller to receive an input related to a calculated mass flow requirement for a side flow of a high pressure recycle stream and provide an output to a side flow valve to increase or decrease the amount of the high pressure recycle stream in the side flow.





BRIEF SUMMARY OF THE FIGURES

Having thus described the disclosure in the foregoing general terms, reference will now be made to accompanying drawings, which are not necessarily drawn to scale, and wherein:



FIG. 1 is a schematic of a power production system including components of a control system according to embodiments of the present disclosure, said control components being particularly configured for thermal controls;



FIG. 2 is a schematic of a power production system including components of a control system according to further embodiments of the present disclosure, said control components being additionally configured for control over the heat source;



FIG. 3 is a schematic of a power production system including components of a control system according to further embodiments of the present disclosure, said control components being particularly configured for control over elements of a direct fired power production system;



FIG. 4 is a schematic of a power production system including components of a control system according to further embodiments of the present disclosure, said control components being particularly configured for control over further elements of a direct fired power production system;



FIG. 5 is a schematic of a power production system including components of a control system according to further embodiments of the present disclosure, said control components being particularly configured for control over further elements of a direct fired power production system, including removal of excess mass from the power production system;



FIG. 6 is a schematic of a power production system including components of a control system according to further embodiments of the present disclosure, said control components being particularly configured for control over further elements of a direct fired power production system, including removal of excess mass from the power production system; and



FIG. 7 is a schematic of a power production system including components of a control system according to further embodiments of the present disclosure, said control components being particularly configured for control over heat input to the power production system.





DETAILED DESCRIPTION

The present invention now will be described more fully hereinafter. This invention may, however, be embodied in many different forms and should not be construed as limited to the embodiments set forth herein; rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art. As used in this specification and the claims, the singular forms “a,” “an,” and “the” include plural referents unless the context clearly dictates otherwise.


In one or more embodiments, the present disclosure provides systems and methods for control of power production. The control systems and methods can be utilized in relation to a wide variety of power production systems. For example, the control systems can be applied to one or more systems wherein a fuel is combusted to produce heat to a stream that may or may not be pressurized above ambient pressure. The control systems likewise can be applied to one or more systems wherein a working fluid is circulated for being repeatedly heated and cooled and/or for being repeatedly pressurized and expanded. Such working fluid can comprise one or more of H2O, CO2, and N2, for example.


Examples of power production systems and methods wherein a control system as described herein can be implemented are disclosed in U.S. Pat. No. 9,068,743 to Palmer et al., U.S. Pat. No. 9,062,608 to Allam et al., U.S. Pat. No. 8,986,002 to Palmer et al., U.S. Pat. No. 8,959,887 to Allam et al., U.S. Pat. No. 8,869,889 to Palmer et al., U.S. Pat. No. 8,776,532 to Allam et al., and U.S. Pat. No. 8,596,075 to Allam et al, the disclosures of which are incorporated herein by reference. As a non-limiting example, a power production system with which a control system as presently described may be utilized can be configured for combusting a fuel with O2 in the presence of a CO2 circulating fluid in a combustor, preferably wherein the CO2 is introduced at a pressure of at least about 12 MPa and a temperature of at least about 400° C., to provide a combustion product stream comprising CO2, preferably wherein the combustion product stream has a temperature of at least about 800° C. Such power production system further can be characterized by one or more of the following: The combustion product stream can be expanded across a turbine with a discharge pressure of about 1 MPa or greater to generate power and provide a turbine discharge steam comprising CO2.


The turbine discharge stream can be passed through a heat exchanger unit to provide a cooled discharge stream.


The cooled turbine discharge stream can be processed to remove one or more secondary components other than CO2 to provide a purified discharge stream.


The purified discharge stream can be compressed to provide a supercritical CO2 circulating fluid stream.


The supercritical CO2 circulating fluid stream can be cooled to provide a high density CO2 circulating fluid (preferably wherein the density is at least about 200 kg/m3).


The high density CO2 circulating fluid can be pumped to a pressure suitable for input to the combustor.


The pressurized CO2 circulating fluid can be heated by passing through the heat exchanger unit using heat recuperated from the turbine discharge stream.


All or a portion of the pressurized CO2 circulating fluid can be further heated with heat that is not withdrawn from the turbine discharge stream (preferably wherein the further heating is provided one or more of prior to, during, or after passing through the heat exchanger).


The heated pressurized CO2 circulating fluid can be recycled into the combustor (preferably wherein the temperature of the heated, pressurized CO2 circulating fluid entering the combustor is less than the temperature of the turbine discharge stream by no more than about 50° C.).


The presently disclosed control systems can be particularly useful in relation to power production methods such as exemplified above because of the need for providing precise control over multiple parameters in relation to multiple streams, such parameters needing precise control to provide desired performance and safety. For example, in one or more embodiments, the present control systems can be useful in relation to any one or more of the following functions.


The present control systems can be useful to allow for differential speed control of a power producing turbine and a compressor that is utilized to compress a stream that is ultimately expanded through the turbine. This is an advantage over conventional gas turbines wherein the compressor and the turbine are mounted on the same shaft. This conventional configuration makes it impossible to operate the compressor at a variable speed. Constant rotational speed and inlet conditions yield a substantially constant mass throughput into the compressor and therefore the turbine. This can be affected through the use of inlet guide vanes, which restrict the airflow entering the compressor and thereby lower the mass throughput. According to the present disclosure, the use of a pump between the compressor and the turbine provides for significant levels of control of the power production system. This allows for decoupling of the mass throughput of the compressor-pump train and the shaft speed of the turbine-compressor-generator train.


The present control systems can be useful to control the inlet and/or outlet pressure of a turbine expanding a heated gas stream. The heated gas stream can be predominately CO2 (by mass).


The present control systems can be useful to control an outlet temperature of a turbine.


The present control systems can be useful to control operation of a power production system with a CO2 compression means to raise the CO2 pressure from a turbine exhaust volume to the pressure of a turbine inlet volume so that these pressures are maintained.


The present control systems can be useful to control removal of the net CO2 formed from carbon in a combustor fuel gas at any point in the CO2 compression means from turbine exhaust pressure to turbine inlet pressure.


The present control systems can be useful to control operation of a power production system wherein a hot turbine exhaust is cooled in an economizer heat exchanger while heating a recycle high pressure CO2 stream to ensure the heat recovery from the cooling turbine exhaust provides the optimum flow of heated high pressure CO2 recycle to a combustor at the highest possible temperature.


The present control systems can be useful to optimize heat input to a recycle CO2 stream (for example, at a temperature of about 400° C. or less) from an external heat source to control the temperature difference in an economizer heat exchanger below a temperature of 400° C. to maximize the quantity of recycle CO2 which can he heated against a cooling turbine exhaust stream and minimize the hot end temperature difference of the economizer heat exchanger.


The present control systems can be useful to control the fuel flow to a combustor to ensure that the combustion products when mixed with a high pressure heated recycle CO2 stream form the inlet gas stream to a turbine at the required temperature and pressure.


The present control systems can be useful to control the oxygen flow to a combustor to give a required excess O2 concentration in a turbine outlet stream to ensure complete combustion of a fuel.


The present control systems can be useful to control operation of a power production system so that a turbine exhaust stream leaving an economizer heat exchanger can be further cooled by ambient cooling means to maximize the condensation of water formed in the combustion process and reject the net water production from fuel gas combustion together with other fuel or combustion derived impurities.


In one or more embodiments, a power production suitable for implementation of a control system as described herein can be configured for heating via methods other than through combustion of a fossil fuel. As one non-limiting example, solar power can be used to supplement or replace the heat input derived from the combustion of a fossil fuel in a combustor. Other heating means likewise can be used. In some embodiments, any form of heat input into a CO2 recycle stream at a temperature of 400° C. or less can be used. For example, condensing steam, gas turbine exhaust, adiabatically compressed gas streams, and/or other hot fluid streams which can be above 400° C. may be utilized.


In some embodiments, it can be particularly useful to control a turbine outlet temperature at a maximum value that is fixed by the maximum allowable temperature of an economizer heat exchanger being utilized. Such control can be based on the turbine inlet and outlet pressures and the heat exchanger operating hot end temperature difference.


Control systems of the present disclosure can be defined by one or more functions wherein a parameter (e.g., a measured parameter and/or a calculated parameter) can be linked to one or more executable actions. The executable actions can include one or more actions that regulate a flow of a fluid in the system, such as through opening and closing of one or more valves. As non-limiting examples, measured parameters in a control system according to the present disclosure can include a fluid flow rate, a pressure, a temperature, a liquid level, a fluid volume, a fluid composition, and the like. A measured parameter can be measured using any suitable device, such as thermocouples, pressure sensors, transducers, optical detectors, flow meters, analytical equipment (e.g., UV-VIS spectrometers, IR spectrometers, mass spectrometers, gas chromatographs, high performance liquid chromatographs, and the like), gauges, and similar devices. Calculated parameters in a control system according to the present disclosure can include, for example, power consumption of a compressor (e.g., a CO2 compressor), power consumption of a pump (e.g., a CO2 pump), power consumption of a cryogenic oxygen plant, fuel heat input, a pressure drop (e.g., a pressure drop in a heat exchanger) for one or more fluid streams, a temperature differential (e.g., a temperature difference at a heat exchanger hot end and/or heat exchanger cold end), a turbine power output, a generator power output, and system efficiency. A calculated parameter may be calculated, for example, by a computerized supervisory control system based on measured parameters.


Embodiments of the present disclosure are illustrated in FIG. 1, which illustrates a control system that may be used particularly for a closed power cycle. The control system is particularly useful in systems and methods where direct control over the amount of heat entering the system, for instance in solar applications, is not required. In this configuration, a working fluid is circulated through a heater 12, a turbine 10 connected to a generator 11, a first heater/cooler 16, a compressor 30, a second heater/cooler 18, and a pump 20. Optionally, a recuperator heat exchanger 50 can be included so that heat in working fluid stream 101b exiting turbine 10 can be recuperated into the working fluid stream 101g to exit as working fluid stream 101h that is further heated by the heater 12.


Heat entering the power production system in heater 12 is added to the working fluid, which is preferably as a high pressure (e.g., about 10 bar or greater, about 20 bar or greater, about 50 bar or greater, about 80 bar or greater, about 100 bar or greater, about 150 bar or greater, about 200 bar or greater, or about 250 bar or greater) to provide a high pressure, heated working fluid stream 101a. This stream passes to the turbine 10 and is expanded to a lower pressure to exit as working fluid stream 101b. Parameter check point 13 is configured downstream from the turbine 10 and upstream from the first heater/cooler 16 (and optionally upstream from the recuperator heat exchanger 50 if present) and includes a temperature sensor, thermocouple, or the like. Controller 2 (which can be characterized as a pump controller) directs and/or gathers one or more temperature readings (which readings can be continuous or periodic) at parameter check point 13. So as to maintain a substantially constant temperature at parameter check point 13, controller 2 directs power adjustments as necessary for pump 20. For example, controller 2 can control the speed of pump 20 in response to the temperature reading at parameter check point 13. In this manner, controller 2 can be configured to maintain a desired temperature in working fluid stream 101b independent of the amount of heat that is being introduced into the system in heater 12, and likewise independent of the inlet temperature of turbine 10. This is beneficial in that pump 20 can be specifically controlled to deliver the correct mass flow of working fluid at the correct pressure as dictated by the inlet temperature to the turbine 10 as indicated by the amount of heat introduced in heater 12.


Such dynamic control can affect one or more further parameters in the power production system illustrated in FIG. 1. For example, changes in the flow rate through pump 20 causes changes in the suction pressure immediately upstream from the pump in working fluid stream 101f. In order to maintain desired controllability of pump 20, the suction conditions of the pump must remain as constant as possible within the predetermined range. Second heater/cooler 18 can be useful to maintain the suction temperature at pump 20 at a desired value. So as to maintain a substantially constant suction pressure for pump 20, controller 3 (which can be characterized as a pump suction pressure controller) can be configured to monitor a pressure sensor, transducer, or the like positioned at parameter check point 23, and controller 3 can utilize pressure readings taken therefrom to control a spillback valve 31, which can be configured to allow more or less fluid from working fluid stream 101e to spill back to parameter check point 44, which can be at any position in working fluid stream 101c. Controller 3 thus essentially can be configured to control the amount of recirculation flow around compressor 30 via the spillback valve 31. As such, pressure at parameter check point 23 can be increased by reducing fluid flow through spillback valve 31 and can be decreased by increasing fluid flow through the spillback valve. As fluid is spilled back into working fluid stream 101c, it can also be desirable to maintain a substantially constant pressure in working fluid streams 101b and 101c. Accordingly, parameter check point 13 can likewise include a pressure sensor, transducer, or the like. The temperature sensor and the pressure sensor can be configured in the same parameter check point, or different parameter check points can be utilized in working fluid stream 101b for the respective sensors.


Because parameter check point 13 is in fluid communication with parameter check point 44 and parameter check point 43, the respective pressures at points 13, 44, and 43 may differ substantially only due to inherent pressure losses through equipment and piping. Controller 4 can be configured to monitor a pressure sensor, transducer, or the like positioned at parameter check point 43, and controller 4 can be configured to control valve 41 so as to allow fluid from working fluid stream 101d into, or out of, the system in order to maintain a substantially constant pressure at parameter check point 44. As such, parameter check point 44 can include a pressure sensor, transducer, or the like, which can be monitored by controller 4 if desired. Alternatively, because parameter check points 43 and 44 are in fluid communication, the measured pressure at parameter check point 43 can be considered to be substantially identical to the pressure at parameter check point 44. Valve 41 can be configured to remove and/or add fluid to the working fluid stream in order to maintain the desired pressure. In some embodiments, there can be two valves instead of the single valve 41—a first valve (i.e., a fluid outlet valve) configured to allow fluid out to a lower pressure sink, and a second valve (i.e., a fluid inlet valve) configured to allow fluid in from a higher pressure source.


In some embodiments, the illustrated system can be controlled such that valve 41 is either absent or is not utilized, and controller 3 can instead operate to substantially prevent surging by the compressor 30. In such embodiments, controller 2 can still operate to manage temperature at parameter check point 13, and the control look can be a completely closed loop, which configuration can be particularly useful for indirectly heated power production cycles. For example, in one or more embodiments, heater 12 can be configured for provision of solar heating at or above a defined heat level, and the power production system can thus be substantially self-regulating to produce as much power as possible with dynamic response to changes in the solar input. Such configuration could likewise be maintained if additional heat for a further source was continuously or intermittently added in heater 12.


In the illustrated system of FIG. 1, compressor 30 receives its inlet working fluid stream from the turbine 10, and its outlet working fluid stream is delivered ultimately to the pump 20. The compressor 30 can be shaft-mounted on the turbine 10, and the working conditions of the compressor may be substantially unchanged based on the control of the turbine exhaust conditions.


Although controller 2, controller 3, and controller 4 are illustrated and discussed as being separate controllers, it is understood that the respective controllers can be configured as part of a larger unit. For example, a single control unit may include a plurality of subunits that can be individually connected with their designated parameter check points and their controlled devices (e.g., the pump 20, the spillback valve 31, and the valve 41). Moreover, the control units can be configured substantially as subroutines in an overall controller (e.g., a computer or similar electronic device) with a plurality of inputs and a plurality of outputs that are designated for the respective parameter check points and controlled devices.


In embodiments wherein recuperative heat exchanger 50 is included, control of temperature at parameter check point 13 can be particularly important. By maintaining the temperature at parameter check point 13 at or substantially near a steady state value, the temperature profiles in the recuperative heat exchanger 50 can remain substantially constant as well. At a minimum, such control scheme is beneficial because of the reduction or elimination of thermal cycling of the piping, heat exchangers, and other high temperature equipment utilized in the system, which in turn can significantly increase component lifetimes.


Embodiments of the present disclosure are illustrated in FIG. 2, which shows a power production system that is substantially identical to the power production system illustrated in FIG. 1. In the system of FIG. 2, a further controller 1 (which can be characterized as a power controller) is included and can be configured for monitoring a variety of values and directing a number of control commands.


In one or more embodiments, controller 1 can be configured to measure and/or receive measurements in relation to the power output of generator 11. In some embodiments, controller 1 can be configured to direct heat input via heater 12 to generate the required power. Thusly, if power output at generator 11 is above or below the desired output, heat input via heater 12 can be decreased or increased to deliver the desired power output. Similarly, monitoring of power output with controller 1 can enable dynamic changes to the heat input so that a substantially constant power output can be provided. As a non-limiting example, when solar heating is utilized for heater 12, the power output at generator 11 can be utilized as a trigger so that, for example, more mirrors may be aimed at a collection tower to increase heat output when power output drops below a defined level and/or when the power output is insufficient to meet a predefined heating algorithm, such as wherein power output may be automatically increased at a time of day when usage is expected to be increased. As a further non-limiting example, a plurality of heat sources can be utilized wherein a first heat source can be utilized primarily, and a second heat source can be automatically brought online when power output at the generator 11 is insufficient. For example, solar heating may be combined with combustion heating with one being the primary heat source and the other being the secondary heat source to supplement the primary heat source.


As more or less heat is added to the system, the turbine inlet temperature will change and, after expansion through the turbine, the temperature at parameter check point 13 will change. As such, one or more of the control functions described above in relation to FIG. 1 likewise can be implemented in the system as illustrated in FIG. 2.


Embodiments of the present disclosure are further illustrated in FIG. 3, which illustrates a control system that may be used particularly for a semi-closed power cycle. The control system is particularly useful in systems and methods where the cycle is a direct fired oxy-fuel cycle burning a carbonaceous fuel with oxygen. As illustrated at least two components that can be combined to provide an exothermic reaction are introduced to the system through valve 14 and valve 71. The components are shown as being introduced directly to turbine 10; however, in one or more embodiments, the components may be introduced to a reactor, such as a combustor. In some embodiments, turbine 10 is a multi-stage component including a reaction or combustion chamber upstream from a turbine. In FIG. 3, the portion of element 10 below the dashed line can be a combustion chamber, and the portion of element 10 above the dashed line can be a turbine. As a non-limiting example, valve 14 can be configured for metering a fuel, such as natural gas or other fossil fuel, and valve 71 can be configured for metering an oxidant, such as air or substantially pure oxygen (e.g., at least 95%, at least 98%, at least 99%, or at least 99.5% pure oxygen).


In the system exemplified in FIG. 3, controller 1 can be configured to monitor the power output of generator 11. Based upon the measured power output, controller 1 controls fuel valve 14 to allow more fuel or less fuel into the power production system. As more fuel or less fuel is added to the power production system, controller 7 (which can be characterized as a fuel/oxidant ratio controller) compares the fuel flow rate at parameter check point 15 to the oxidant flow rate at parameter check point 72, and controller 7 commands the oxidant valve 71 to allow more oxidant or less oxidant therethrough in order to maintain the prescribed ratio of fuel to oxygen.


Reaction (e.g., combustion) products pass through the turbine 10 (or the turbine section of a combination reactor/turbine) and exit as a turbine exhaust stream. As an example, when natural gas and oxygen are metered through valve 14 and valve 71, the main products in the turbine exhaust stream will be H2O and CO2. The turbine exhaust stream can pass through a recuperator heat exchanger 50 (although such component is optional) and then pass through the first heater/cooler 16. The turbine exhaust stream is then treated in water separator 60 where water can be taken off through valve 61. A substantially pure CO2 stream exits the top of the separator 60 and is passed through compressor 30 (with a fraction being drawn off through valve 41. A compressed recycle CO2 stream exiting compressor 30 is passed through the second heater/cooler 18 and then pump 20 to provide a high pressure recycle CO2 stream, which can be passed back to the turbine 10 (optionally passing through the recuperator heat exchanger 50 to be heated with heat withdrawn from the turbine exhaust stream). A substantially pure CO2 stream can comprise at least 95% by weight, at least 97% by weight, at least 98% by weight, at least 99% by weight, or at least 99.5% by weight CO2.


As illustrated in FIG. 3, the control system used with the exemplary power production system includes controller 2, controller 3, and controller 4, which can function substantially identically as described above in relation to the systems of FIG. 1 and FIG. 2. In addition, controller 6 (which can be characterized as a water separator controller) is utilized to monitor water level in separator 60, which can include one or more sensors suitable for providing a water level output that can be read by controller 6. Based on the water level signal received, controller 6 can direct valve 61 to open at the correct intervals and durations to maintain the water level in the separator 60 at a desired level. Although measurement is referenced in relation to a water level, it is understood that volume, mass, or other parameters may be utilized to provide the signal to controller 6.


Additional embodiments of the present disclosure are illustrated in FIG. 4, which illustrates a control system that may be used particularly for a semi-closed power cycle utilizing an artificial air source. The control system is particularly useful in systems and methods where the cycle is a direct fired oxy-fuel cycle burning a carbonaceous fuel with oxygen. Controller 1 again monitors the power output of generator 11 and meters fuel input through valve 14 accordingly.


As illustrated in FIG. 4, fuel and oxidant enter the combustion section of dual combustor/turbine 10, and a turbine exhaust stream exits the turbine section. The turbine exhaust stream can pass through a recuperator heat exchanger 50 (although such component is optional) and then pass through the first heater/cooler 16. The turbine exhaust stream is then treated in water separator 60 where water can be taken off through valve 61. A substantially pure CO2 stream exits the top of the separator 60 and is passed through compressor 30 (with a fraction being drawn off through valve 41). A compressed recycle CO2 stream exiting compressor 30 is passed through the second heater/cooler 18 and then pump 20 to provide a high pressure recycle CO2 stream, which can be passed back to the dual combustor/turbine 10 (optionally passing through the recuperator heat exchanger 50 to be heated with heat withdrawn from the turbine exhaust stream).


In this configuration, oxidant enters through valve 111 and passes through union 114, where CO2 can be combined with the oxidant. The oxidant stream (optionally diluted with the CO2 stream) passes through heater/cooler 22, is pressurized in compressor 90, passes through heater/cooler 24, and is finally passed through in pump 80. Controller 8 (which can be characterized as an oxidant pump controller) measures the ratio between the mass flow of the fuel (read at parameter check point 26) and the mass flow of the oxidant (read at parameter check point 82). Based upon the calculated ratio, controller 8 can direct variable speed pump 80 to change the power of the pump and allow the delivery of oxidant in the correct mass flow to maintain the desired oxidant to fuel ratio at the required pressure. In this manner, the amount of oxidant supplied to the power production system is consistently at the correct flow rate and correct pressure for passage into the dual combustor/turbine 10. If, for example, the pressure at parameter check point 82 were to rise due to back pressure from the combustor/turbine 10, controller 8 can be configured to command pump 80 to operate at a different speed suitable to provide the correct pressure and oxidant mass flow. Based upon a pressure reading taken at parameter check point 93, controller 9 (which can be characterized as an oxidant pressure controller) can direct spillback valve 91 to decrease or increase the pressure at parameter check point 93 by allowing more or less fluid to spill back (or be recycled) to a point upstream from the compressor 90 (particularly between union 114 and heater/cooler 22. Pressure likewise can be monitored at parameter check point 102 (which pressure corresponds to the suction of compressor 90). Based upon this pressure, controller 100 (which can be characterized as an oxidant pressure controller) can direct valve 103 to divert none or a portion of the fluid upstream of compressor 30 to union 114 so as to maintain a substantially constant pressure at parameter check point 102. The substantially pure CO2 stream diverted through valve 103 can be utilized to dilute the oxidant, and controller 100 likewise can be configured to increase or decrease flow through valve 103 to provide the desired dilution. Mass flow of the CO2 stream provided through valve 103 can be measured at parameter check point 113, and the mass flow of the oxidant provided through valve 111 can be measured at parameter check point 112. Controller 110 (which can be characterized as a dilution controller) can be configured to calculate the ratio of the flows at check points 112 and 113, and can be configured to direct valve 111 to allow more oxidant or less oxidant to enter the system so as ensure that the correct ratio is maintained.


In one or more embodiments, a control system according to the present disclosure can be configured to specifically provide for mass control across a wide range of pressures. Low pressure mass control (e.g., at ambient pressure to about 10 bar, to about 8 bar, or to about 5 bar) can be achieved similarly to the description of controller 4 above. In particular, controller 4 can be configured to open or close valve 41 to relieve excess mass from the power production system. For example, in a system utilizing a recycle CO2 stream as a working fluid and combusting a fossil fuel, excess CO2 can be formed. To maintain the correct mass balance in the system, all or a portion of the formed CO2 can be drawn off through valve 41. The amount of fluid drawn though valve 41 for purposes of mass control can be calculated based upon the known stoichiometry of the combustion reaction, and controller 4 can be configured to control mass flow through valve 41 accordingly. If desired, one or more sensors can be utilized to measure and/or calculate fluid mass downstream from the combustor and/or to measure and/or calculate fluid mass ratio between a stream between the combustor and the valve 41 in relation to a stream that is downstream from the compressor 30 and/or the pump 20.


In the embodiment illustrated in FIG. 5, controller 3 and controller 4 as described above are absent, and further controllers are provided in order to release the excess mass from the power production system at substantially the same pressure as the outlet pressure of the compressor 30 (which is substantially identical to the suction of pump 20). As described above, the speed of pump 20 is controlled by the exhaust temperature of the turbine 10 via controller 2. In the embodiment exemplified in FIG. 5, however, suction pressure of compressor 30 is controlled. In particular, parameter check point 54 can include a pressure sensor, and controller 35 (which can be characterized as a compressor suction controller) can be configured to open and close valve 31 based upon the pressure at the suction of the compressor 30 as measured at parameter check point 54. If the pressure at parameter check point 54 begins dropping, controller 35 can be configured to open valve 31 and allow fluid to spill back to a point upstream from parameter check point 54 (spillback going to parameter check point 44 in the illustrated embodiment) and raise the pressure at parameter check point 54. If the pressure at parameter check point 54 begins increasing, controller 35 can be configured to close valve 31 so as to reduce the amount of fluid spilling back and lower the pressure at parameter check point 54.


In addition to controlling the speed of pump 20, the suction pressure of the pump can also be controlled. In particular, the pressure read at parameter check point 23 can be utilized by controller 75 (which can be characterized as a pump speed controller), which can be configured to open and close valve 88. Accordingly, the suction pressure of pump 20 is controlled by removing excess fluid from the power production system at valve 88, which in turn provides for maintaining the desired system pressure.


In the embodiment illustrated in FIG. 6, the power control system is configured similarly to the construction illustrated in FIG. 5 but without the use of valve 88. In this illustrated embodiment, the compressor 30 operates on suction pressure control as described in relation to FIG. 5, and pump 20 also operates on suction pressure control. In particular, the pressure read at parameter check point 23 can be utilized by controller 75, which can be configured to adjust the speed of pump 20 to maintain controlled suction conditions and output at correct pressure dictated by the further parameters of the combustion cycle. In addition, temperature taken from parameter check point 13 can again be used by controller 2; however, the controller 2 can be configured to direct flow through valve 115 to control the temperature of the exhaust from turbine 10. By allowing more fluid out of the power production system through valve 115 (or keeping more fluid in the power production system), the inlet pressure (and therefore mass flow) through turbine 10 can be controlled, and the outlet temperature of turbine 10 can be likewise controlled.


In one or more embodiments, a power system shown in FIG. 7 can comprise a turbine 10 coupled to an electric generator 11. A fuel stream is metered through valve 14, and oxygen is metered through valve 71, and the fuel is combusted with the oxygen in combustor 10. The fuel and oxygen are mixed with heated, high pressure recycle CO2 stream 120 leaving the economizer heat exchanger 50. Combustion gases pass to the turbine 10b. The turbine discharge stream is cooled in the economizer heat exchanger 50 against the high pressure recycle CO2 stream 119 and is further cooled to near ambient temperature in the first heater/cooler 16. In some embodiments, the first heater/cooler 16 can be an indirect heat exchanger using for example cooling water or it can be a direct contact heat exchanger which both cools the turbine exhaust stream and condenses water. The near ambient temperature stream enters water separator 60 which discharges the condensed liquid water stream through valve 61. The stream can include fuel or combustion derived impurities which are an oxidized state, such as SO2 and NO2. In the case of a direct contact cooler the unit acts as a combined gas cooler gas/water contactor and liquid phase separator. The recycled CO2 stream 116 enters CO2 recycle compressor 30 where its pressure is raised (e.g., from about 30-70 bar to about 80 bar). The compressor 30 is provided with a recycle CO2 line 45 with a valve 31 to reduce the pressure and return a portion of the compressor flow to the suction at point 44. The net CO2 product, which contains all the carbon derived from the fuel gas stream following oxidation in the turbine combustor, is vented from the compressor as stream through valve 41. The net CO2 product can be delivered at pressure from the compressor suction to the pump discharge. The recycled CO2 stream exiting the compressor 30 is cooled to near ambient temperature in second heater/cooler 18. The density increases to typically about 0.7 kg/liter to about 0.85 kg/liter. The dense supercritical CO2 is pumped to typically 320 bar in a multistage centrifugal pump 20. The recycled CO2 stream 119 exiting pump 20 enters the economizer heat exchanger 50.


A portion 119a of the recycled CO2 stream exiting pump 20 is heated in heat exchanger 56 against a heating stream 53, which can be from any source, such as heat withdrawn from an air separation unit. This stream 119a is heated typically to a temperature of about 200° C. to about 400° C. The heated stream is then passed into the heat exchanger 50 at an intermediate point and remixed with the high pressure recycle CO2 stream 119. The system is controlled by control valves which regulate the fluid flows. The system is provided with sensors which measure flow rates, pressures, temperatures and gas compositions. These measurements can be fed, for example, to a digital control system which regulates the power plant using control algorithms together with stored supervisory control programs. The output from the control system regulates the degree of opening of the control valves plus the speed of the pump 20 and other system functions. The objective is to achieve defined high efficiency operation at any required power output, optimum start-up conditions, controlled ramp rates either up or down, shutdown and responds to system malfunctions. Although such digital control system and control algorithms are mentioned in relation to the system of FIG. 7, it is understood that such disclosure applies equally to any further embodiments described herein, including embodiments described in relation to and of FIG. 1 through FIG. 6 an FIG. 8.


The functional control of the system can be defined by the links between the variables measured by sensors and the response of the particular control valve. One or more embodiments of control systems that can be utilized in relation to any embodiments disclosed herein include the following.


The fuel flow rate through valve 14 can be controlled by the electricity demand imposed on the electric generator 58.


The speed of pump 20 can be used to control its discharge flow rate. In particular, the flow rate set point can be varied to maintain a defined turbine outlet temperature.


The outlet pressure of the CO2 compressor 30 can be maintained at a constant defined value by varying the set point of the compressor recycle flow control valve 31.


Venting of CO2 produced in the power production cycle can be controlled by the flow control valve 41. The set point of this flow controller can be varied to maintain a constant inlet pressure to the CO2 compressor and the turbine discharge. In some embodiments wherein venting through valve 41 takes place at the discharge of compressor 30, the control system can be configured to vary the flow through valve 41 and through the recycle valve 31.


The quantity of recycle high pressure CO2 that is heated by the added heat source in heat exchanger 56 can be controlled by the flow control valve 42 and controller 17 (which can be characterized as a side flow heat controller). The set point of the CO2 flow is controlled to minimize the temperature difference at the hot end of heat exchanger 50 between the high pressure CO2 recycle stream 120 and the turbine exhaust stream at point 13 below 50° C.


The discharge of condensed water together with fuel and combustion derived oxidized impurities can be controlled by maintaining a constant water level in the water separator 60 or in the sump of the alternative direct contact cooler. In the latter case, the excess water is discharged while the main water discharge flow is pumped through a cooling water heat exchanger and introduced into the top of the direct contact cooler above the packing layer.


With reference to FIG. 5, the flow rate of oxygen to the combustor can be controlled by the flow control valve 111. The set point of the flow controller can be varied to maintain a defined ratio of oxygen to fuel gas which will ensure typically 1% excess oxygen above the stoichiometric value to ensure complete fuel combustion plus oxidation of any fuel derived impurities. In order to control the adiabatic flame temperature of the integral turbine combustor, it can be useful to dilute the oxygen with a quantity of CO2 to produce a CO2 plus 02 gas mixture having between 15% and 40%, typically 25% (molar) 02 concentration. The oxygen stream can be diluted with a CO2 stream taken from the inlet line of the CO2 compressor 30. The withdrawn CO2 passes through flow control valve 103 and enters union 114 which, in some embodiments, can be a static mixer. The set point of the flow controller for valve 91 can be adjusted by the supervisory computer program to maintain a constant pressure at point 102. The set point of the oxygen inlet flow control valve 111 can be adjusted to maintain a fixed ratio of oxygen to carbon dioxide flow entering the mixer 114. The mixed oxidant stream passes through heater/cooler 22. The cooled oxidant stream enters the oxidant compressor 90 where it is compressed typically to the range of about 90 bar to about 120 bar pressure. The set point of flow control valve 91 can be varied to control the discharge pressure of the oxidant compressor 90. The oxidant compressor 90 can operate with fixed inlet and outlet pressures. The discharge from compressor 90 can be cooled to near ambient temperature in heater/cooler 24. Its density is increased to the range of, for example, about 0.6 kg/liter to about 0.75 kg/liter. The dense supercritical oxidant stream 82 is pumped to typically 320 bar pressure in the multi-stage centrifugal pump 80. The high pressure discharge stream exiting pump 80 enters the economizer heat exchanger 50 where it is heated by a portion of the heat released from the cooling turbine discharge stream. The flow rate of oxidant can be controlled by adjusting the speed of the oxidant pump 80. The flow rate set point can be adjusted to maintain a defined ratio of oxygen to fuel gas which will provide typically 1% excess oxygen above the quantity required for stoichiometric fuel gas combustion to ensure complete fuel gas combustion plus oxidation of any fuel derived impurities.


Many modifications and other embodiments of the invention will come to mind to one skilled in the art to which this invention pertains having the benefit of the teachings presented in the foregoing description. Therefore, it is to be understood that the invention is not to be limited to the specific embodiments disclosed and that modifications and other embodiments are intended to be included within the scope of the appended claims. Although specific terms are employed herein, they are used in a generic and descriptive sense only and not for purposes of limitation.

Claims
  • 1. A power production plant comprising: at least one compressor arranged for compressing a stream of a working fluid;at least one combustor arranged for receiving a fuel, an oxidant, and at least a portion of the stream of the working fluid that has been compressed and configured for providing a combustion product stream;at least one turbine arranged for receiving the combustion product stream and expanding the combustion product stream for power production;one or more components configured for processing the combustion product stream to remove at least water therefrom and provide the stream of the working fluid, the one or more components being positioned downstream from the at least one turbine and upstream from the at least one compressor; anda controller configured to execute one or more control algorithms effective to maintain a specified mass of the working fluid at one or more points in the power production plant.
  • 2. The power production plant of claim 1, wherein the controller is configured to control mass flow of the working fluid through an exit valve positioned at a point between an outlet of the at least one turbine and an inlet of the at least one compressor.
  • 3. The power production plant of claim 2, wherein the controller is configured to calculate a mass of the working fluid to be passed through the exit valve using stoichiometry of combustion of the fuel and the oxidant in the at least one combustor.
  • 4. The power production plant of claim 2, wherein the controller is configured to calculate a mass of the working fluid to be passed through the exit valve based upon readings taken from one or more sensors configured to one or both of measure and calculate fluid mass downstream from the at least one combustor and upstream from the at least one compressor.
  • 5. The power production plant of claim 2, wherein the controller is configured calculate mass flow of the working fluid to be passed through the exit valve based upon readings taken from one or more sensors configure to one or both of measure and calculate a fluid mass ratio between a stream between the combustor and the exit valve relative to a stream that is downstream from the at least one compressor.
  • 6. The power production plant of claim 1, wherein the controller is configured to control mass flow of the working fluid through a spillback valve arranged to receive working fluid from a point downstream of the at least one compressor and upstream of the at least one combustor and is arranged to direct working fluid to a point upstream of the at least one compressor and downstream of the at least one turbine.
  • 7. The power production plant of claim 6, wherein the controller is configured to calculate a mass of the working fluid to be passed through the spillback valve based upon readings taken from one or more sensors configured to one or both of measure and calculate suction pressure at a point directly upstream from the at least one compressor.
  • 8. The power production plant of claim 2, wherein the plant further comprises a pump arranged to receive the stream of the working fluid from the at least one compressor and pump the stream of the working fluid to an increased pressure for input to the at least one combustor.
  • 9. The power production plant of claim 8, wherein the controller is configured to control mass flow of the working fluid through an exit valve positioned at a point between the at least one compressor and the pump.
  • 10. The power production plant of claim 9, wherein the controller is configured calculate mass flow of the working fluid to be passed through the exit valve based upon readings taken from one or more sensors configure to one or both of measure and calculate suction pressure at a point directly upstream from the pump.
  • 11. The power production plant of claim 1, further comprising a recuperator heat exchanger arranged to withdraw heat from the combustion product stream between the at least one turbine and the one or more components configured for processing the combustion product stream.
  • 12. The power production plant of claim 11, wherein the recuperator heat exchanger is arranged to add heat to one or more streams delivered to the at least one combustor.
  • 13. A power production plant comprising: at least one compressor arranged for compressing a stream of a working fluid;at least one combustor arranged for receiving a fuel, an oxidant, and at least a portion of the stream of the working fluid that has been compressed and configured for providing a combustion product stream;at least one turbine arranged for receiving the combustion product stream and expanding the combustion product stream for power production;one or more components configured for processing the combustion product stream and providing the stream of the working fluid, the one or more components being positioned downstream from the at least one turbine and upstream from the at least one compressor; anda controller configured to execute one or more control algorithms effective to maintain a specified mass of the working fluid at one or more points in the power production plant;wherein the controller is configured to control mass flow of the working fluid through a spillback valve arranged to receive working fluid from a point downstream of the at least one compressor and upstream of the at least one combustor and is arranged to direct working fluid to a point upstream of the at least one compressor and downstream of the at least one turbine.
  • 14. A power production plant comprising: at least one compressor arranged for compressing a stream of a working fluid;at least one combustor arranged for receiving a fuel, an oxidant, and at least a portion of the stream of the working fluid that has been compressed and configured for providing a combustion product stream;at least one turbine arranged for receiving the combustion product stream and expanding the combustion product stream for power production;one or more components configured for processing the combustion product stream and providing the stream of the working fluid, the one or more components being positioned downstream from the at least one turbine and upstream from the at least one compressor;a controller configured to execute one or more control algorithms effective to maintain a specified mass of the working fluid at one or more points in the power production plant; anda recuperator heat exchanger arranged to withdraw heat from the combustion product stream between the at least one turbine and the one or more components configured for processing the combustion product stream.
CROSS-REFERENCE TO RELATED APPLICATIONS

The present application is a continuation of U.S. patent application Ser. No. 17/966,342, filed Oct. 14, 2022, which is a continuation of U.S. patent application Ser. No. 17/192,667, filed Mar. 4, 2021, which is a continuation of U.S. patent application Ser. No. 16/149,822, filed Oct. 2, 2018, which is a continuation of U.S. patent application Ser. No. 14/938,309, filed Nov. 11, 2015, and claims priority to U.S. Provisional Patent Application 62/078,833, filed Nov. 12, 2014, the disclosures of which are incorporated herein by reference.

US Referenced Citations (245)
Number Name Date Kind
3369361 Craig Feb 1968 A
3376706 Angelino Apr 1968 A
3503208 Schmidt Mar 1970 A
3523421 Schuetzenduebel Aug 1970 A
3544291 Schlinger et al. Dec 1970 A
3736745 Karig Jun 1973 A
3837788 Craig et al. Sep 1974 A
3868817 Marion et al. Mar 1975 A
3971211 Wethe et al. Jul 1976 A
3976443 Paull et al. Aug 1976 A
4132065 McGann Jan 1979 A
4154581 Nack et al. May 1979 A
4191500 Oberg et al. Mar 1980 A
4193259 Muenger et al. Mar 1980 A
4206610 Santhanam Jun 1980 A
4275557 Marvin et al. Jun 1981 A
4350008 Zickwolf, Jr. et al. Sep 1982 A
4418539 Wakamatsu Dec 1983 A
4434613 Stahl Mar 1984 A
4455614 Martz Jun 1984 A
4498289 Osgerby Feb 1985 A
4522628 Savins Jun 1985 A
4589255 Martens May 1986 A
4602483 Wilks et al. Jul 1986 A
4622472 Bronicki Nov 1986 A
4702747 Meyer et al. Oct 1987 A
4721420 Santhanam et al. Jan 1988 A
4735052 Maeda et al. Apr 1988 A
4765143 Crawford et al. Aug 1988 A
4765781 Wilks et al. Aug 1988 A
4839030 Comolli et al. Jun 1989 A
4852996 Knop et al. Aug 1989 A
4881366 Nurse Nov 1989 A
4957515 Hegarty Sep 1990 A
4982569 Bronicki Jan 1991 A
4999992 Nurse Mar 1991 A
4999995 Nurse Mar 1991 A
5175995 Pak et al. Jan 1993 A
5247791 Pak et al. Sep 1993 A
5265410 Hisatome Nov 1993 A
5345756 Jahnke et al. Sep 1994 A
5353721 Mansour et al. Oct 1994 A
5394686 Child et al. Mar 1995 A
5415673 Hilton et al. May 1995 A
5421166 Allam et al. Jun 1995 A
5507141 Stigsson Apr 1996 A
5520894 Heesink et al. May 1996 A
5533329 Ohyama et al. Jul 1996 A
5590519 Almlöf et al. Jan 1997 A
5595059 Huber et al. Jan 1997 A
5692890 Graville Dec 1997 A
5709077 Beichel Jan 1998 A
5715673 Beichel Feb 1998 A
5724805 Golomb et al. Mar 1998 A
5802840 Wolf Sep 1998 A
5906806 Clark May 1999 A
5937652 Abdelmalek Aug 1999 A
6024029 Clark Feb 2000 A
6092362 Nagafuchi et al. Jul 2000 A
6148602 Demetri Nov 2000 A
6170264 Viteri et al. Jan 2001 B1
6196000 Fassbender Mar 2001 B1
6199364 Kendall et al. Mar 2001 B1
6202574 Liljedahl et al. Mar 2001 B1
6209307 Hartman Apr 2001 B1
6260348 Sugishita et al. Jul 2001 B1
6263661 Van der Burgt et al. Jul 2001 B1
6269624 Frutschi et al. Aug 2001 B1
6289666 Ginter Sep 2001 B1
6298664 Åsen et al. Oct 2001 B1
6333015 Lewis Dec 2001 B1
6389814 Viteri et al. May 2002 B2
6430916 Sugishita et al. Aug 2002 B2
6463738 Pinkerton et al. Oct 2002 B1
6532745 Neary Mar 2003 B1
6536205 Sugishita et al. Mar 2003 B2
6543214 Sasaki et al. Apr 2003 B2
6550234 Guillard Apr 2003 B2
6598398 Viteri et al. Jul 2003 B2
6612113 Guillard Sep 2003 B2
6622470 Viteri et al. Sep 2003 B2
6629414 Fischer Oct 2003 B2
6637183 Viteri et al. Oct 2003 B2
6684643 Frutschi Feb 2004 B2
6764530 Iijima Jul 2004 B2
6775987 Sprouse et al. Aug 2004 B2
6802178 Sprouse et al. Oct 2004 B2
6820689 Sarada Nov 2004 B2
6824710 Viteri et al. Nov 2004 B2
6871502 Marin et al. Mar 2005 B2
6877319 Linder et al. Apr 2005 B2
6877322 Fan Apr 2005 B2
6898936 Ochs et al. May 2005 B1
6910335 Viteri et al. Jun 2005 B2
6918253 Fassbender Jul 2005 B2
6945029 Viteri Sep 2005 B2
6945052 Frutschi et al. Sep 2005 B2
6993912 Fischer Feb 2006 B2
7007474 Ochs et al. Mar 2006 B1
7007486 Sprouse et al. Mar 2006 B2
7021063 Viteri Apr 2006 B2
7022168 Schimkat et al. Apr 2006 B2
7043920 Viteri et al. May 2006 B2
7074033 Neary Jul 2006 B2
7089743 Frutschi et al. Aug 2006 B2
7111463 Sprouse et al. Sep 2006 B2
7124589 Neary Oct 2006 B2
7147461 Neary Dec 2006 B2
7191587 Marin et al. Mar 2007 B2
7191588 Tanaka et al. Mar 2007 B2
7192569 Stewart Mar 2007 B2
7269952 Arar Sep 2007 B2
7281590 Van de Waal Oct 2007 B2
7284362 Marin et al. Oct 2007 B2
7299637 Becker Nov 2007 B2
7303597 Sprouse et al. Dec 2007 B2
7328581 Christensen et al. Feb 2008 B2
7334631 Kato et al. Feb 2008 B2
7360639 Sprouse et al. Apr 2008 B2
7363764 Griffin et al. Apr 2008 B2
7377111 Agnew May 2008 B2
7387197 Sprouse et al. Jun 2008 B2
7395670 Drnevich et al. Jul 2008 B1
7402188 Sprouse Jul 2008 B2
7469544 Farhangi Dec 2008 B2
7469781 Chataing et al. Dec 2008 B2
7516607 Farhangi et al. Apr 2009 B2
7516609 Agnew Apr 2009 B2
7547419 Sprouse et al. Jun 2009 B2
7547423 Sprouse et al. Jun 2009 B2
7553463 Zauderer Jun 2009 B2
7615198 Sprouse et al. Nov 2009 B2
7665291 Anand et al. Feb 2010 B2
7717046 Sprouse et al. May 2010 B2
7722690 Shires et al. May 2010 B2
7731783 Sprouse et al. Jun 2010 B2
7739874 Nigro Jun 2010 B2
7740671 Yows et al. Jun 2010 B2
7740672 Sprouse Jun 2010 B2
7814975 Hagen et al. Oct 2010 B2
7826054 Zillmer et al. Nov 2010 B2
7827797 Pronske et al. Nov 2010 B2
7874140 Fan et al. Jan 2011 B2
7882692 Pronske et al. Feb 2011 B2
7927574 Stewart Apr 2011 B2
7934383 Gutierrez et al. May 2011 B2
7950243 Gurin May 2011 B2
7966829 Finkenrath et al. Jun 2011 B2
8043588 Hustad et al. Oct 2011 B2
8088196 White et al. Jan 2012 B2
8099227 Shafique et al. Jan 2012 B2
8109095 Henriksen et al. Feb 2012 B2
8220248 Wijmans et al. Jul 2012 B2
8596075 Allam et al. Dec 2013 B2
8776532 Allam et al. Jul 2014 B2
8826670 Hoffman et al. Sep 2014 B2
8850789 Evulet et al. Oct 2014 B2
8916735 McAlister Dec 2014 B2
8959887 Allam et al. Feb 2015 B2
8986002 Palmer et al. Mar 2015 B2
9068743 Palmer et al. Jun 2015 B2
9353682 Wichmann et al. May 2016 B2
9482159 Ozawa Nov 2016 B2
9938861 Huntington Apr 2018 B2
20010039796 Bronicki et al. Nov 2001 A1
20020043064 Griffin et al. Apr 2002 A1
20020078694 Nazeer et al. Jun 2002 A1
20020134085 Frutschi Sep 2002 A1
20030029169 Hanna et al. Feb 2003 A1
20030131582 Anderson et al. Jul 2003 A1
20030213246 Coll Nov 2003 A1
20030221409 McGowan Dec 2003 A1
20040011057 Huber Jan 2004 A1
20040112037 Yagi et al. Jun 2004 A1
20040123601 Fan Jul 2004 A1
20040134197 Marin et al. Jul 2004 A1
20050126156 Anderson et al. Jun 2005 A1
20050236602 Viteri et al. Oct 2005 A1
20060117753 Bronicki Jun 2006 A1
20060196190 Arar Sep 2006 A1
20060242907 Sprouse et al. Nov 2006 A1
20070180768 Briesch et al. Aug 2007 A1
20070274876 Chiu et al. Nov 2007 A1
20080010967 Griffin et al. Jan 2008 A1
20080104958 Finkenrath et al. May 2008 A1
20080115500 MacAdam et al. May 2008 A1
20080166672 Schlote et al. Jul 2008 A1
20080187877 Fitzsimmons et al. Aug 2008 A1
20080190214 Ubowski et al. Aug 2008 A1
20080309087 Evulet et al. Dec 2008 A1
20090025390 Christensen et al. Jan 2009 A1
20090061264 Agnew Mar 2009 A1
20090130660 Faham et al. May 2009 A1
20090150040 Rofka et al. Jun 2009 A1
20090229271 Ruyck et al. Sep 2009 A1
20090260585 Hack et al. Oct 2009 A1
20090301054 Simpson et al. Dec 2009 A1
20100018218 Riley et al. Jan 2010 A1
20100024378 Ackermann et al. Feb 2010 A1
20100024381 Ackermann et al. Feb 2010 A1
20100024433 Ackermann et al. Feb 2010 A1
20100031668 Kepplinger Feb 2010 A1
20100077752 Papile Apr 2010 A1
20100300063 Palmer et al. Dec 2010 A1
20100326084 Anderson et al. Dec 2010 A1
20110036011 Sprouse et al. Feb 2011 A1
20110127773 Freund et al. Jun 2011 A1
20110179799 Allam et al. Jul 2011 A1
20110185701 Koda et al. Aug 2011 A1
20110233940 Aoyama et al. Sep 2011 A1
20110239651 Aoyama et al. Oct 2011 A1
20110308249 Mandelberg Dec 2011 A1
20120036860 Wettstein et al. Feb 2012 A1
20120067054 Palmer et al. Mar 2012 A1
20120067056 Palmer et al. Mar 2012 A1
20120073261 Palmer et al. Mar 2012 A1
20120131925 Mittricker et al. May 2012 A1
20120151926 Labbe Jun 2012 A1
20120159922 Gurin Jun 2012 A1
20120237881 Allam et al. Sep 2012 A1
20120317981 Perego et al. Dec 2012 A1
20130081395 Frey et al. Apr 2013 A1
20130104525 Allam et al. May 2013 A1
20130118145 Palmer et al. May 2013 A1
20130172636 McAlister Jul 2013 A1
20130199195 Allam et al. Aug 2013 A1
20130205746 Allam et al. Aug 2013 A1
20130213049 Allam et al. Aug 2013 A1
20130229018 Karni et al. Sep 2013 A1
20130232989 Osorio Sep 2013 A1
20130269360 Wichmann Oct 2013 A1
20130327050 Slobodyanskiy Dec 2013 A1
20140000271 Mittricker et al. Jan 2014 A1
20140053529 Allam et al. Feb 2014 A1
20140230445 Huntington Aug 2014 A1
20140331687 Palmer et al. Nov 2014 A1
20150020497 Iwai et al. Jan 2015 A1
20150027099 Iwai et al. Jan 2015 A1
20150059313 Itoh et al. Mar 2015 A1
20150152791 White Jun 2015 A1
20150377146 Della-Fera et al. Dec 2015 A1
20160363009 Fetvedt et al. Dec 2016 A1
20180156127 Hausmann et al. Jun 2018 A1
20180179939 Beutel et al. Jun 2018 A1
20190271266 Allam Sep 2019 A1
Foreign Referenced Citations (16)
Number Date Country
1898499 Jan 2007 CN
101201171 Jun 2008 CN
101324203 Dec 2008 CN
102834670 Dec 2012 CN
103221640 Jul 2013 CN
1698829 Sep 2006 EP
2225905 Sep 1990 JP
6-26362 Feb 1994 JP
3110114 Nov 2000 JP
2000-337107 Dec 2000 JP
2001-132472 May 2001 JP
3454372 Oct 2003 JP
WO 9512757 May 1995 WO
WO 2009041617 Apr 2009 WO
WO 2012003079 Jan 2012 WO
WO2014106265 Jul 2014 WO
Non-Patent Literature Citations (10)
Entry
Allam et al., “High Efficiency and Low Cost of Electricity Generation from Fossil Fuels While Eliminating Atmospheric Emissions, Including Carbon Dioxide,” GHGT-11, Energy Procedia 00, 2012, pp. 1-12.
Combs, Jr. “An Investigation of the Supercritical CO2 Cycle (Feher Cycle) for Shipboard Application,” 1977, Submitted in Partial Fulfillment of the Requirements for the Degree of Ocean Engineer and the Degree of Master of Science in Mechanical Engineering at the Massachusetts Institute of Technology, 148.
Dostal et al., “A Supercritical Carbon Dioxide Cycle for Next Generation Nuclear Reactors,” 2004, (Research Paper) Advanced Nuclear Power Technology Program at MIT, 326 pages.
Hong et al., “Analysis of Oxy-Fuel Combustion Power Cycle Utilizing a Pressurized Coal Combustor,” Energy, Available Online Jun. 21, 2009, pp. 1332-1340, vol. 34, No. 9.
Iantovski et al., “Highly Efficient Zero Emission CO2-Based Power Plant” Energy Convers. Mgmt, 1997, Suppl. pp. S141-S146, vol. 38.
Mathieu et al., “Sensitivity Analysis of the MATIANT Cycle”, Energy Conversion & Management, 1999, pp. 1687-1700, vol. 40.
Wall et al., “A Zero Emission Combustion Power Plant for Enhanced Oil Recovery,” Energy, 1995, pp. 823-828, vol. 20, No. 8.
Yantovskii et al. , “Computer Exergonomics of Power Plants Without Exhaust Gases,” Energy Convers. Mgmt., Publ. 1992, vol. 33, No. 5-8, pp. 405-412.
http://www.graz-cycle.tugraz.at/pdfs/Bolland_Kvamsdal_Boden_Liege.pdf; Boland, “A Thermodynamic Comparison of the Oxy-Fuel Power Cycles Water-Cycle, Graz-Cycle and Matiant-Cycle,” Norwegian University of Science and Technology, Trondheim, Norway.
http://www2.ulg.ac.be/genienuc/pageco2.htm; Université de Liège, Department of Power Generation, “CO2 Researches”.
Related Publications (1)
Number Date Country
20230296059 A1 Sep 2023 US
Provisional Applications (1)
Number Date Country
62078833 Nov 2014 US
Continuations (4)
Number Date Country
Parent 17966342 Oct 2022 US
Child 18201903 US
Parent 17192667 Mar 2021 US
Child 17966342 US
Parent 16149822 Oct 2018 US
Child 17192667 US
Parent 14938309 Nov 2015 US
Child 16149822 US