The present disclosure generally relates to ultrasonic surgical systems and, more particularly, to ultrasonic systems that allow surgeons to perform cutting and coagulation of tissue.
Over the years, a variety of different types of non-ultrasonically powered cutters and shaving devices for performing surgical procedures have been developed. Some of these devices employ a rotary cutting instrument and other devices employ a reciprocating cutting member. For example, shavers are widely used in arthroscopic surgery. These devices generally consist of a power supply, a handpiece, and a single-use end effector. The end effector commonly has an inner and outer tube. The inner tube rotates relative to the outer tube and will cut tissue with its sharpened edges. The inner tube can rotate continuously or oscillate. In addition, such device may employ a suction channel that travels through the interior of the inner tube. For example, U.S. Pat. No. 4,850,354 to McGurk-Burleson, et al., discloses a non-ultrasonically powered surgical cutting instrument that comprises a rotary cutter for cutting material with a shearing action. It employs an inner cutting member which is rotatable within an outer tube.
U.S. Pat. No. 3,776,238 to Peyman et al. discloses an ophthalmic instrument in which tissue is cut by a chopping action set-up by the sharp end of an inner tube moving against the inner surface of the end of an outer tube. U.S. Pat. No. 5,226,910 to Kajiyama et al. discloses another surgical cutting instrument that has an inner member which moves relative to an outer member to cut tissue entering through an aperture in the outer member.
U.S. Pat. No. 4,922,902 to Wuchinich et al. discloses a method and apparatus for endoscopic removal of tissue utilizing an ultrasonic aspirator. The device uses an ultrasonic probe which disintegrates compliant tissue and aspirates it through a narrow orifice. U.S. Pat. No. 4,634,420 to Spinosa et al. discloses an apparatus and method for removing tissue from an animal and includes an elongated instrument having a needle or probe, which is vibrated at an ultrasonic frequency in the lateral direction. The ultrasonic movement of the needle breaks-up the tissue into fragments. Pieces of tissue can be removed from the area of treatment by aspiration through a conduit in the needle. U.S. Pat. No. 3,805,787 to Banko discloses yet another ultrasonic instrument that has a probe that is shielded to narrow the beam of ultrasonic energy radiated from the tip of the probe. In one embodiment the shield extends past the free-end of the probe to prevent the probe from coming into contact with the tissue. U.S. Pat. No. 5,213,569 to Davis discloses a phaco-emulsification needle which focuses the ultrasonic energy. The focusing surfaces can be beveled, curved or faceted. U.S. Pat. No. 6,984,220 to Wuchinich and U.S. Patent Application Publication No. US 2005/0177184 to Easley disclose ultrasonic tissue dissection systems that provide combined longitudinal and torsional motion through the use of longitudinal-torsional resonators. U. S Patent Application Publication No. US 2006/0030797 A1 to Zhou et al. discloses an orthopedic surgical device that has a driving motor for driving an ultrasound transducer and horn. An adapter is provided between the driving motor and transducer for supplying ultrasonic energy signals to the transducer.
While the use of ultrasonically powered surgical instruments provide several advantages over traditional mechanically powered saws, drills, and other instruments, temperature rise in bone and adjacent tissue due to frictional heating at the bone/tissue interface can still be a significant problem. Current arthroscopic surgical tools include punches, reciprocating shavers and radio frequency (RF) devices. Mechanical devices such as punches and shavers create minimal tissue damage, but can sometimes leave behind ragged cut lines, which are undesirable. RF devices can create smoother cut lines and also ablate large volumes of soft tissue; however, they tend to create more tissue damage than mechanical means. Thus, device which could provide increased cutting precision while forming smooth cutting surfaces without creating excessive tissue damage would be desirable.
Arthroscopic surgery involves performing surgery in the joint space. To perform the surgery, the joints are commonly filled with pressurized saline for distention and visualization. Ultrasonic instruments which may be used in such surgeries must withstand the fluid pressure without leaking. However, conventional ultrasonic instruments generally experience significant forces during use. Current seals on ultrasonic devices are generally not robust enough to withstand this environment without leaking.
It would be desirable to provide an ultrasonic surgical instrument that overcomes some of the deficiencies of current instruments. The ultrasonic surgical instruments described herein overcome many of those deficiencies.
It would also be desirable to provide more robust sealing arrangements for ultrasonic surgical instruments used to cut and coagulate in the aqueous environment of arthroscopic surgery.
The foregoing discussion is intended only to illustrate some of the shortcomings present in the field of various embodiments of the invention at the time, and should not be taken as a disavowal of claim scope.
In one general aspect, various embodiments are directed to systems and methods for controlling a surgical instrument. The surgical instrument may comprise an ultrasonic transducer, a blade extending distally from the ultrasonic transducer along a longitudinal axis, and a motor coupled to the ultrasonic transducer. The motor, when activated, may rotate the ultrasonic transducer and the blade about the longitudinal axis. A control system may receive an indication to operate the surgical instrument according to an ultrasonic-only mode. The control system may instruct the motor to rotate the blade to a park position, and activate the ultrasonic transducer to longitudinally vibrate the blade.
The features of various non-limiting embodiments are set forth with particularity in the appended claims. The various non-limiting embodiments, however, both as to organization and methods of operation, together with further objects and advantages thereof, may best be understood by reference to the following description, taken in conjunction with the accompanying drawings as follows.
The owner of the present application also owns the following U.S. patent applications that were filed on Feb. 11, 2010, and which are herein incorporated by reference in their respective entireties:
U.S. patent application Ser. No. 12/703,860, now U.S. Pat. No. 8,531,064, entitled ULTRASONICALLY POWERED SURGICAL INSTRUMENTS WITH ROTATING CUTTING IMPLEMENT;
U.S. patent application Ser. No. 12/703,864, now U.S. Pat. No. 8,323,302, entitled METHODS OF USING ULTRASONICALLY POWERED SURGICAL INSTRUMENTS WITH ROTATABLE CUTTING IMPLEMENTS;
U.S. patent application Ser. No. 12/703,870, now U.S. Patent Application Publication No. 2011-0196399 A1, entitled ULTRASONIC SURGICAL INSTRUMENTS WITH ROTATABLE BLADE AND HOLLOW SHEATH ARRANGEMENTS
U.S. patent application Ser. No. 12/703,875, now U.S. Pat. No. 8,469,981, entitled ROTATABLE CUTTING IMPLEMENT ARRANGEMENTS FOR ULTRASONIC SURGICAL INSTRUMENTS;
U.S. patent application Ser. No. 12/703,877, now U.S. Pat. No. 8,382,782, entitled ULTRASONIC SURGICAL INSTRUMENTS WITH PARTIALLY ROTATING BLADE AND FIXED PAD ARRANGEMENT;
U.S. patent application Ser. No. 12/703,879, now U.S. Pat. No. 8,486,096, entitled DUAL PURPOSE SURGICAL INSTRUMENT FOR CUTTING AND COAGULATING TISSUE;
U.S. patent application Ser. No. 12/703,885, now U.S. Pat. No. 8,579,928, entitled OUTER SHEATH AND BLADE ARRANGEMENTS FOR ULTRASONIC SURGICAL INSTRUMENTS;
U.S. patent application Ser. No. 12/703,893, now U.S. Patent Application Publication No. 2011-0196404 A1, entitled ULTRASONIC SURGICAL INSTRUMENTS WITH MOVING CUTTING IMPLEMENT; and
U.S. patent application Ser. No. 12/703,899, now U.S. Pat. No. 8,419,759, entitled ULTRASONIC SURGICAL INSTRUMENT WITH COMB-LIKE TISSUE TRIMMING DEVICE.
Various embodiments are directed to apparatuses, systems, and methods for the treatment of tissue Numerous specific details are set forth to provide a thorough understanding of the overall structure, function, manufacture, and use of the embodiments as described in the specification and illustrated in the accompanying drawings. It will be understood by those skilled in the art, however, that the embodiments may be practiced without such specific details. In other instances, well-known operations, components, and elements have not been described in detail so as not to obscure the embodiments described in the specification. Those of ordinary skill in the art will understand that the embodiments described and illustrated herein are non-limiting examples, and thus it can be appreciated that the specific structural and functional details disclosed herein may be representative and do not necessarily limit the scope of the embodiments, the scope of which is defined solely by the appended claims.
Reference throughout the specification to “various embodiments,” “some embodiments,” “one embodiment,” or “an embodiment”, or the like, means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment. Thus, appearances of the phrases “in various embodiments,” “in some embodiments,” “in one embodiment,” or “in an embodiment”, or the like, in places throughout the specification are not necessarily all referring to the same embodiment. Furthermore, the particular features, structures, or characteristics may be combined in any suitable manner in one or more embodiments. Thus, the particular features, structures, or characteristics illustrated or described in connection with one embodiment may be combined, in whole or in part, with the features structures, or characteristics of one or more other embodiments without limitation.
Various embodiments are directed to improved ultrasonic surgical systems and instruments configured for effecting tissue dissecting, cutting, and/or coagulation during surgical procedures as well as the cutting implements and sealing features employed thereby. In one embodiment, an ultrasonic surgical instrument apparatus is configured for use in open surgical procedures, but has applications in other types of surgery, such as laparoscopic, endoscopic, and robotic-assisted procedures. Versatile use is facilitated by selective use of ultrasonic energy and the selective rotation of the cutting/coagulation implement.
It will be appreciated that the terms “proximal” and “distal” are used herein with reference to a clinician gripping a handpiece assembly. Thus, an end effector is distal with respect to the more proximal handpiece assembly. It will be further appreciated that, for convenience and clarity, spatial terms such as “top” and “bottom” also are used herein with respect to the clinician gripping the handpiece assembly. However, surgical instruments are used in many orientations and positions, and these terms are not intended to be limiting and absolute.
Surgical Systems
As can also be seen in
In an alternative embodiment, the ultrasonic generator 12 and the control system 20 may be housed in the same enclosure 105. See
In various embodiments, the ultrasonic generator 12 may include an ultrasonic generator module 13 and a signal generator module 15. See
Various forms of ultrasonic generators, ultrasonic generator modules and signal generator modules are known. For example, such devices are disclosed in commonly owned U.S. patent application Ser. No. 12/503,770, now U.S. Pat. No. 8,461,744, entitled ROTATING TRANSDUCER MOUNT FOR ULTRASONIC SURGICAL INSTRUMENTS, filed Jul. 15, 2009, which is herein incorporated by reference in its entirety. Other such devices are disclosed in one or more of the following U.S. patents, all of which are incorporated by reference herein: U.S. Pat. No. 6,480,796 (METHOD FOR IMPROVING THE START UP OF AN ULTRASONIC SYSTEM UNDER ZERO LOAD CONDITIONS); U.S. Pat. No. 6,537,291 (METHOD FOR DETECTING A LOOSE BLADE IN A HANDLE CONNECTED TO AN ULTRASONIC SURGICAL SYSTEM); U.S. Pat. No. 6,626,926 (METHOD FOR DRIVING AN ULTRASONIC SYSTEM TO IMPROVE ACQUISITION OF BLADE RESONANCE FREQUENCY AT STARTUP); U.S. Pat. No. 6,633,234 (METHOD FOR DETECTING BLADE BREAKAGE USING RATE AND/OR IMPEDANCE INFORMATION); U.S. Pat. No. 6,662,127 (METHOD FOR DETECTING PRESENCE OF A BLADE IN AN ULTRASONIC SYSTEM); U.S. Pat. No. 6,678,621 (OUTPUT DISPLACEMENT CONTROL USING PHASE MARGIN IN AN ULTRASONIC SURGICAL HANDLE); U.S. Pat. No. 6,679,899 (METHOD FOR DETECTING TRANSVERSE VIBRATIONS IN AN ULTRASONIC HANDLE); U.S. Pat. No. 6,908,472 (APPARATUS AND METHOD FOR ALTERING GENERATOR FUNCTIONS IN AN ULTRASONIC SURGICAL SYSTEM); U.S. Pat. No. 6,977,495 (DETECTION CIRCUITRY FOR SURGICAL HANDPIECE SYSTEM); U.S. Pat. No. 7,077,853 (METHOD FOR CALCULATING TRANSDUCER CAPACITANCE TO DETERMINE TRANSDUCER TEMPERATURE); U.S. Pat. No. 7,179,271 (METHOD FOR DRIVING AN ULTRASONIC SYSTEM TO IMPROVE ACQUISITION OF BLADE RESONANCE FREQUENCY AT STARTUP); and U.S. Pat. No. 7,273,483 (APPARATUS AND METHOD FOR ALERTING GENERATOR FUNCTION IN AN ULTRASONIC SURGICAL SYSTEM).
Surgical Instruments
As can be seen in
The self-contained ultrasonic surgical instrument 110 may comprise a surgical instrument that is manufactured and sold by Ethicon Endo-Surgery under Model No. HP054. However, other ultrasonic instruments may be successfully employed. It will be understood that the term “self-contained” as used herein means that the ultrasonic surgical instrument may be effectively used as an ultrasonic surgical instrument on its own, apart from use with the surgical instrument 100. As illustrated in more detail in
The parts of the ultrasonic instrument 110 may be designed such that the combination will oscillate at the same resonant frequency. In particular, the elements may be tuned such that the resulting length of each such element is one-half wavelength or a multiple thereof. Longitudinal back and forth motion is amplified as the diameter closer to the blade 200 of the acoustical mounting horn 124 decreases. Thus, the horn 124 as well as the blade/coupler may be shaped and dimensioned so as to amplify blade motion and provide ultrasonic vibration in resonance with the rest of the acoustic system, which produces the maximum back and forth motion of the end of the acoustical mounting horn 124 close to the blade 200. A motion from 20 to 25 microns at the ultrasonic transducer assembly 114 may be amplified by the horn 124 into blade movement of about 40 to 100 microns.
When power is applied to the ultrasonic instrument 110 by operation of the foot pedal 30 or other switch arrangement, the control system 20 may, for example, cause the blade 200 to vibrate longitudinally at approximately 55.5 kHz, and the amount of longitudinal movement will vary proportionately with the amount of driving power (current) applied, as adjustably selected by the user. When relatively high cutting power is applied, the blade 200 may be designed to move longitudinally in the range of about 40 to 100 microns at the ultrasonic vibrational rate. Such ultrasonic vibration of the blade 200 will generate heat as the blade contacts tissue, i.e., the acceleration of the blade 200 through the tissue converts the mechanical energy of the moving blade 200 to thermal energy in a very narrow and localized area. This localized heat creates a narrow zone of coagulation, which will reduce or eliminate bleeding in small vessels, such as those less than one millimeter in diameter. The cutting efficiency of the blade 200, as well as the degree of hemostasis, will vary with the level of driving power applied, the cutting rate or force applied by the surgeon to the blade, the nature of the tissue type and the vascularity of the tissue.
As can be seen in
When power is applied to motor 190, motor 190 applies a “gross rotational motion” to the handpiece 110 to cause the ultrasonic surgical instrument 110 and blade 200 to rotate about central axis A-A. As used herein, the term “gross rotational motion” is to be distinguished from that “torsional ultrasonic motion” that may be achieved when employing a non-homogeneous formed ultrasonic blade. The term “gross rotational motion” instead encompasses rotational motion that is not solely generated by operation of the ultrasonic transducer assembly 114.
To provide the ultrasonic instrument 110 with power from the ultrasonic generator 12, a slip ring assembly 150 may be employed. As can be seen in
Various embodiments also include a distal nosepiece 160 that may be removably attached to the distal end 103 of the housing 102 by fasteners 161. See
Also in various embodiments, an outer sheath 230 may be coaxially aligned with the inner sheath 220 and blade member 200 and be attached to a distal end 163 of nosepiece 160 by, for example, welding, brazing, overmolding or pressfit. As can be seen in
Various embodiments of the surgical system 10 provide the ability to selectively apply ultrasonic axial motion to the blade 200 and gross rotational motion to the blade 200 as well. If desired, the clinician may simply activate the ultrasonic transducer assembly 114 without activating the motor 190. In such cases, the instrument 100 may be used in ultrasonic mode simply as an ultrasonic instrument. Frequency ranges for longitudinal ultrasonic motion may be on the order of, for example, 30-80 kHz. Similarly, the clinician may desire to active the motor 190 without activating the ultrasonic transducer assembly 114. Thus, gross rotational motion will be applied to the blade 200 in the rotation mode, without the application of longitudinal ultrasonic motion thereto. Gross rotational speeds may be, for example, on the order of 1-6000 rpm. In other applications, the clinician may desire to use the instrument 100 in the ultrasonics and rotational modes wherein the blade 200 will experience longitudinal ultrasonic motion from the transducer assembly 114 and gross rotational motion from the motor. Oscillatory motion of, for example, 2 to 10 revolutions per cycle (720 to 3600 degrees) or continuous unidirectional rotation may be achieved. Those of ordinary skill in the art will readily appreciate that various embodiments of the surgical system 10 may be affectively employed in connection with arthroscopic as well as other surgical applications.
At least one non-limiting embodiment may further include a control arrangement 170 on the housing 102. See
Those of ordinary skill in the art will understand that the housing member 102 and the mounting adapters 130 and 134 may be configured to operably support various different types and shapes of ultrasonic handpieces therein that may be independently used apart from the surgical instrument 100. Thus, the control system 20 and instrument 100 may be provided in “kit form” without the ultrasonic handpiece 110 to enable the purchaser to install their existing ultrasonic handpiece therein without departing from the spirit and scope of the various non-limiting embodiments disclosed herein as well as their respective equivalent structures.
In this embodiment, the ultrasonic transducer assembly 314 has magnets 316 embedded or otherwise attached thereto to form an integral motor rotor, generally designated as 320. A motor stator ring 330 is mounted within the housing 302 as shown. Conductors 332, 334 are attached to the motor stator ring 330 and pass through the common sheath 76 to be attached to the motor cable 33 in the control system 20 as described above. A hollow shaft 340 extends through the motor rotor 320 to form a passage for conductors 151, 152. Conductors 151, 152 are coupled to the ultrasonic transducer assembly 314 and an inner contact 154. The inner contact 154 is attached to a portion of the hollow shaft 340 that rotatably extends into a slip ring assembly 150 that is also supported within the housing 302. The hollow shaft 340 is rotatably supported within the housing 302 by a proximal bearing 342. The slip ring assembly 150 is fixed (i.e., non-rotatable) within the housing 302 and includes a fixed outer contact 156 that is coupled to conductors 157, 158 that form generator cable 14 as was described above. When power is supplied to the motor stator 330, the rotor 320 and the integral ultrasonic transducer 314 are caused to rotate about axis A-A. Ultrasonic signals from the ultrasonic generator 12 are transferred to the inner contact 154 by virtue of rotating contact or electrical communication between the inner contact 154 and the outer contact 156. Those signals are transmitted to the ultrasonic transducer assembly 314 by conductors 151, 152. The surgical instrument 300 may include a control arrangement of the type described above and be used in the various modes described above. A suction may be applied between the blade 200 and outer sheath 230 through port 240. A collection receptacle 243 and source of suction 240 may be attached to the port 240 by tube 242. The distal end of the blade is exposed through a window in the distal end of the outer sheath 230 to expose the blade to tissue as will be further discussed below.
In this embodiment, a brushed motor 410 is integrally attached to the ultrasonic transducer assembly 314. As used herein “integrally attached” means directly attached to or otherwise formed with the ultrasonic transducer assembly 314 for travel therewith. The term “integrally attached” as used with reference to the attachment of the brushed motor 410 to the ultrasonic transducer assembly 314 does not encompass those configurations wherein the ultrasonic transducer assembly is attached to the motor via a driven shaft arrangement. Also in this embodiment, magnets 426 are provided in a stator ring 420 that is fixed within the housing 302. Conductors 432, 434 extend through a hollow shaft 340 that is attached to the brushed motor 410. The hollow shaft 340 is rotatably supported within the housing 302 by proximal bearing 342. The motor conductor 432 is attached to a first inner motor contact 436 and the motor conductor 434 is attached to a second inner motor contact 438. The first and second inner motor contacts 436, 438 are supported on the portion of the hollow shaft 340 that extends into a slip ring assembly, generally designated as 450. The slip ring assembly 450 is fixed (i.e., non-rotatable) within the housing 302 and includes a first outer motor contact 440 that is coupled to conductor 441 and a second outer motor contact 442 that is coupled to conductor 443. The conductors 441, 443 form motor cable 74 as was described above. When the clinician desires to apply gross rotational motion to the ultrasonic transducer assembly 314 and ultimately to the blade 200, the clinician causes power to be supplied to the brushed motor 410 from the motor drive 26.
Also in this embodiment, conductors 151, 152 are attached to the ultrasonic transducer assembly 314 and extend through the hollow shaft 340 to be coupled to inner transducer contact 154 that is attached to the hollow shaft 340. The slip ring assembly 450 includes a fixed outer transducer contact 156 that is coupled to conductors 157, 158 that form generator cable 14 as was described above. When power is supplied to the brushed motor 410, the motor 410, ultrasonic transducer assembly 314, and motor shaft 340 are caused to rotate about axis A-A. Ultrasonic signals from the ultrasonic generator 12 are transferred to the inner contact 154 by virtue of rotational sliding contact or electrical communication between the inner contact 154 and the outer contact 156. Those signals are transmitted to the ultrasonic transducer assembly 314 by conductors 151, 152. The surgical instrument 400 may include a control arrangement of the type described above and be used in the various modes described above. It will be understood that the instrument 400 may be used in rotation mode, ultrasonic mode, rotation and ultrasonic mode (“duel mode”) or coagulation mode as described above. A suction may be applied between the blade 200 and outer sheath 230 through port 240. A collection receptacle 243 and source of suction 240 may be attached to the port 240 by tube 242. The distal end of the blade is exposed through a window in the distal end of the outer sheath 230 to expose the blade to tissue as will be further discussed below.
This embodiment includes a motor 510 that may comprise a stepper motor of the type and construction described above and may have an encoder portion associated therewith that communicates with the control module 24 as was described above. The motor 510 may receive power from the motor drive 26 through conductors 511, 512 that comprise motor cable 74 that extends through the common sheath 76. The motor 510 has a hollow motor shaft 520 attached thereto that extends through a slip ring assembly 150. The hollow drive shaft 520 is rotatably supported within the housing 302 by a proximal bearing 342. The slip ring assembly 150 is fixed (i.e., non-rotatable) within the housing 302 and includes a fixed outer contact 156 that is coupled to conductors 157, 158 that form generator cable 14 as was described above. An inner contact 154 is mounted on the hollow drive shaft 520 and is in electrical contact or communication with outer contact 156. Conductors 151, 152 are attached to the inner contact 154 and extend through the hollow drive shaft 520 to be coupled to the ultrasonic transducer assembly 530.
In various embodiments, to facilitate ease of assembly and also to acoustically isolate the motor from the ultrasonic transducer assembly 530, the hollow drive shaft 520 may be detachably coupled to the ultrasonic transducer stack 530 by a coupling assembly, generally designated as 540. As can be seen in
When power is supplied to the motor 510, the drive shaft 520 rotates bout axis A-A which also causes the transducer assembly 530 to rotate about axis A-A. When the clinician desires to power the ultrasonic transducer assembly 530, power is supplied form the ultrasonic generator 12 to the fixed contact 156 in the slip ring assembly 150. Power is transmitted to the ultrasonic transducer assembly 530 by virtue of rotational sliding contact or electrical communication between the inner contact 154 and the outer contact 156. Those signals are transmitted to the ultrasonic transducer assembly 530 by conductors 151, 152. The surgical instrument 500 may include a control arrangement of the type described above and be used in the various modes described above. It will be understood that the instrument 400 may be used in rotation mode, ultrasonic mode, rotation and ultrasonic mode (“duel mode”) or coagulation mode as described above. A suction may be applied between the blade 200 and outer sheath 230 through port 240. A collection receptacle 243 and source of suction 240 may be attached to the port 240 by tube 242. The distal end of the blade is exposed through a window in the distal end of the outer sheath 230 to expose the blade to tissue as will be further discussed below.
This embodiment includes a motor 510 that may comprise a stepper motor of the type and construction described above. The motor 510 may have an encoder associated therewith that communicates with the control module 24 (
The slip ring assembly 150 is fixed (i.e., non-rotatable) within the housing 302 and includes a fixed outer contact 156 that is coupled to conductors 157, 158 that form generator cable 14 as was described above. An inner contact 154 is mounted on the rotatable hollow drive shaft 520 and is in electrical contact or communication with outer contact 156. Conductors 151, 152 are attached to the inner contact 154 and extend through the hollow drive shaft 520 to be coupled to the ultrasonic transducer assembly 314. In various embodiments, to facilitate ease of assembly and also acoustically isolate the motor 510 from the ultrasonic transducer assembly 314, the hollow drive shaft 520 may be detachably coupled to the PZT housing 602 by a coupling assembly, generally designated as 540. The coupling assembly 540 may include a thin plate member 542 that is attached to a distal end 521 of the hollow drive shaft 520. As discussed above, the thin plate member 542 may be fabricated from a material that has a relatively low stiffness in the axial direction and a high stiffness in rotation. The PZT housing 602 has a proximal end portion 604 that has a hole 603 sized to receive the thin plate member 542 therein. In various embodiments, the thin plate member 542 may be sized to be pressed into the hole 603 such that rotation of the thin plate member 542 about axis A-A will cause the PZT housing 602 and ultrasonic transducer assembly 314 and ultrasonic horn 324 to rotate about axis A-A. In other embodiments, a separate fastener plate (not shown) or snap rings (not shown) or snap features (not shown) may be provided to retain the thin plate member 542 in non-rotatable engagement with the proximal end portion 604 of the PZT housing 602. This embodiment could also employ the thin plate member 542′ as was discussed above.
When power is supplied to the motor 510, the drive shaft 520 rotates about axis A-A which also causes the PZT housing 602 and ultrasonic transducer assembly 314 to rotate about axis A-A. When the clinician desires to power the ultrasonic transducer assembly 314, power is supplied from the ultrasonic generator 12 to the fixed contact 156 in the slip ring assembly 150. Power is transmitted to the ultrasonic transducer assembly 314 by virtue of rotational sliding contact or electrical communication between the inner contact 154 and the outer contact 156. Those signals are transmitted to the ultrasonic transducer assembly 314 by conductors 151, 152. The surgical instrument 500 may include a control arrangement of the type described above and be used in the various modes described above. It will be understood that the instrument 400 may be used in rotation mode, ultrasonic mode, rotation and ultrasonic mode (“duel mode”) or coagulation mode as described above. A suction may be applied between the blade 200 and outer sheath 230 through port 240. A collection receptacle 243 and source of suction 240 may be attached to the port 240 by tube 242. The distal end of the blade is exposed through a window in the distal end of the outer sheath 230 to expose the blade to tissue as will be further discussed below.
In an effort to reduce the overall size of the housing 302 employed in each of the instruments 300, 400, 500, and 600, the ultrasonic transducer assemblies employed in each of those respective instruments could be replaced with a half wave transducer that is physically shorter in length.
Ultrasonic Blade and Sheath Embodiments
Current arthroscopic tools include punches, reciprocating shavers, and radio frequency (RF) powered devices. Mechanical devices such as punches and shavers tend to create minimal tissue damage, but can sometimes leave behind ragged cut lines which are not desirable. RF powered blades can leave behind smoother cut lines and also ablate large volumes of soft tissue. However, such devices can create more tissue damage than pure mechanical instruments. The various non-limiting surgical instruments embodiments described above provide a host of advantages over conventional RF powered surgical instruments as well as conventional mechanical shavers that employ a rotating tissue cutting member. As will be discussed in further detail below, additional advantages may be realized by employing the unique and novel blade and sheath configurations of various non-limiting embodiments.
As can be seen in
In use, as the blade 200 is rotated about axis A-A within the outer sheath 230 and introduced to tissue, the tissue is drawn into the window 722 by means of the suction applied between the inner sheath 220 (
In another embodiment, an axial suction passage 730 may be provided through the neck portion 710 of the blade 200. See
In use, the clinician may elect to rotate the blade 200 within the outer sheath 230 without applying ultrasonic motion thereto. The clinician may also elect to apply ultrasonic motion to the rotating blade or the clinician may wish apply ultrasonic motion to a parked (non-rotating) blade to use the portion of the blade exposed in the window 722 to coagulate tissue.
As can be seen in
The outer sheath 850 may be substantially similar to the outer sheath 230 described above and have a distal sheath tip 852 attached thereto that has a window or opening 854 formed therein to expose the distal end portion 810 of the blade 800. See
This embodiment includes a rotatable blade 2020 that is rotatably supported within the outer sheath 2010 and is coupled to a motor 510 supported within the housing 302. The motor 510 may, for example, comprise a stepper motor of the type and construction described above. The motor 510 may have an encoder associated therewith that communicates with a control module 24 (
As can be further seen in
Also in various embodiments, a distal end portion 2011 of the hollow outer sheath is closed and at least one opening or window 2012 is provided therein to expose a distal tissue cutting portion 2025 of the blade 2020. In at least one embodiment window 2012 comprises an elongated slot and the distal tissue cutting portion also comprises an elongated slot 2026 in the blade 2020 (
In use, the clinician may activate the rotating blade 2020 to cut and evacuate tissue. When a bleeder is encountered, the clinician may activate the ultrasonic transducer assembly 314 to send ultrasonic motions to the outer sheath 2010 for coagulation purposes. For example, spinal fusion surgeries require the removal of disc material due to a variety of disease states. Often times this material is toughened and requires quite a bit of force with conventional instrumentation to break up the disc and remove its fragments. Once the disc material is removed, the end plates must be scraped to reveal fresh surfaces to promote fusion of the plates to the cage. The plates must also be shaped to provide a good fit with the type of cage being used. Conventional instrumentation generally requires high forces from the surgeon very close to critical structures. In other embodiments, the motor may be coupled to rotate the ultrasonic transducer assembly and the blade may be attached to the ultrasonic transducer assembly as was described above so that the blade rotates and may have ultrasonic motion applied thereto.
Use of the above-described surgical instrument 2000 may be particularly advantageous when performing, for example, a discectomy as shown in
This embodiment also employs a blade 960 that can be used in connection with any of the surgical instrument embodiments described above or others. For example, a waveguide or proximal portion of the blade may be configured for attachment to the instrument's ultrasonic horn or motor drive shaft by a threaded or other connection. As can be seen in
This embodiment also employs a blade 980 that has a waveguide or proximal portion that is configured for attachment to the ultrasonic horn or motor drive shaft of any of the various surgical instrument embodiments described above 324 by a threaded or other suitable connection. In various embodiments, the blade 980 may be substantially the same as blade 960 described above (with radially-opposed sharpened cutting edges 982), except that blade 980 has a rounded/substantially blunted distal tip portion 984 that protrudes out through the blade access hole 976 in the outer sheath 970. See
These embodiments also employ a blade 1000 that has a waveguide or proximal portion that is configured for attachment to the ultrasonic horn or motor drive shaft of any of the above-described surgical instruments or others by a threaded or other suitable connection arrangement. As can be seen in
These embodiments also employ a blade 1020 that has a waveguide or proximal portion that is configured for attachment to the ultrasonic horn or motor drive shaft of any of the above-described surgical instruments or others by a threaded or other suitable connection. As can be seen in
These embodiments also employ a blade 1040 that has a waveguide or proximal portion that is configured for attachment to the ultrasonic horn or motor drive shaft of any of the surgical instruments described herein or others by a threaded or other suitable connection. As can be seen in
These embodiments also employ a blade 1120 that has a waveguide or proximal portion that is configured for attachment to the ultrasonic horn or motor drive shaft of any of the surgical instrument embodiments described above or others by a threaded or other suitable connection arrangement. As can be seen in
This embodiment further comprises a blade 1220 that has a waveguide or proximal portion that is configured for attachment to the ultrasonic transducer assembly of any of the surgical instruments described above. The blade 1220 further has a distal end portion 1221 that has a cavity 1222 that serves to define a pair of arcuate cutting portions 1224, 1226 that extend above the arcuate lateral side portions 1216, 1218 of the hollow sheath 1210. One, both or neither of the cutting portions 1224, 1226 may have serrated teeth 1227. In the embodiment depicted in
In various embodiments, the blade 1220 may be fabricated from, for example, Titanium and be sized relative to the distal nose portion 1212 of the hollow sheath 1210 such that the bottom portion 1232 of the blade 1220 extends downward beyond the lateral sides 1216, 1218 of the nose portion 1212. Likewise, the cutting edges of the arcuate side portions 1224, 1226 extend above the lateral sides 1216, 1218 as shown in
The proximal end 1211 of the hollow sheath 1210 protrudes from a handle housing 1240 as shown in
The device 1300 may further include an outer sheath 1330 that is movably received on the inner sheath 1320. The outer sheath 1330 may be sized relative to the inner sheath 1320 such that a suction tube 1350 may extend between a portion of the inner sheath 1320 and a portion of the outer sheath 1330. The suction tube 1350 may communicate with a source of suction generally depicted as 1352. See
In use, the swing arm portion 1332 may cover portions of the distal end 1360 of the blade 200. In one mode of use, the outer sheath 1330 is retained in position wherein the swing arm portion 1332 covers the back side of the blade 200 as shown in
In the embodiment depicted in
In some embodiments, the swing arm portion 1332 may be permanently retained in position against the blade 200. In still other embodiments, a lubricious or low friction pad (not shown) may be mounted to the swing arm portion 1332 such that the pad contacts the blade 200. In other embodiments, a 0.002″-0.010″ clearance may be provided between the swing arm portion 1332 and the blade 200. In other embodiments, the swing arm portion 1332 extends around the length of the curved portion of the blade 200 so that the entire blade 200 is covered from the back side.
The various non-limiting embodiments described hereinabove may be effectively employed in a connection with a variety of different surgical applications and are particularly well-suited for cutting and coagulating tissue in the aqueous environment of arthroscopic surgery. In such applications, however, if fluid passes between the blade or waveguide and the inner sheath, the fluid may enter the housing and damage the components therein. Various sealing arrangements are known for use with ultrasonically powered surgical instruments. For example, U.S. Pat. Nos. 5,935,144 and 5,944,737, the disclosures of which are each herein incorporated by reference in their respective entireties, each disclose various sealing arrangement for use with ultrasonic surgical instruments in the traditional environment of laparoscopic surgery and open surgery (i.e., non-aqueous environments). However, various non-limiting embodiments discussed below employ improved sealing arrangements that may be better suited for use in aqueous environments.
More particularly and with reference to
As can also be seen in
Various of the above-described embodiments employ rotating blades that serve to shear off tissue between cutting edges formed on the blade and edges of the surrounding outer sheath. While such arrangements are very effective in cutting most tissues, tough tissue, such as tendon tissue for example, can be difficult to effectively cut because it can tend to “milk” between the blade and the outer sheath. Such problem is akin to problems encountered when scissors are used to cut through a tough material such as leather, for example. In short, the scissor blades separate and the material does not get cut. This phenomenon is graphically depicted in
In various blade and sheath embodiments disclosed herein, it may be advantageous to minimize the amount of clearance between the cutting portion of the outer sheath and the cutting edge(s) of the blades. For example, it may be desirable to maintain the amount of clearance between the cutting portion of the outer sheath and the cutting edge(s) on the blades within the range of 0.001″ to 0.005″. In other non-limiting embodiments, one cutting edge or portion is harder than the other cutting portion. For example, the cutting edge(s) on the blades may be harder than the cutting portion of the outer sheath or visa versa. The motor may then be activated with or without ultrasound to achieve a near zero clearance between the cutting edges/portion. In addition to such approaches or in place of such approaches, other embodiments may employ structure to bias at least a distal portion the blade in an “off-center” arrangement within the outer sheath while still facilitating the rotation of the blade therein. More particularly and with reference to
In the embodiment depicted in
As can be seen in
The waveguide or proximal portion 701 of the blade 200 may be attached to an ultrasonic horn (not shown) and extend through an inner sheath 3070 in the various manners described above. The proximal portion 701 of the blade 200 may be rotatably supported within the inner sheath 3070 by a bushing 3040 as was described above. A distal portion 711 of the blade 200 rotatably extends through a lumen 3054 in the distal outer sheath tip 3050. See
In the embodiments depicted in
Also, to facilitate the drawing of tissue into the window opening 3056, suction must be applied within the distal outer sheath tip 3050 from a source of suction (not shown) in the various manners described above. In this embodiment, for example, a suction path 3080 is provided in the distal outer sheath tip 3050 as shown in
Various ultrasonic surgical instruments that employ an outer sheath and rotatable cutting member arrangement also face the challenge of outer sheath and blade deformation due to heat and high contact forces between those two components. Deformation of the distal tip portion of the outer sheath can be reduced by changing the tip material to metal, but this can result in the undesirable effect of damaging the blade via galling, which can ultimately result in broken blades and extremely limited blade life. Such sheath tip blade galling damage can occur due to metal-to-metal contact between the blade and the sheath tip. This condition may be exacerbated when cutting tough tissues such as tendon and the like. As was discussed above, such tough tissues may bias the cutting edges away from each other and force the opposite cutting edge or face of the blade into contact with the sheath tip, thereby resulting in galling.
Various non-limiting embodiments described herein and their respective equivalents may employ a thin friction-reducing material on the inner wall of the tip cavity formed within the distal tip portion of the outer sheath or, in alternative embodiments, a low friction or friction reducing pad may be affixed within the tip cavity to protect the blade. One exemplary embodiment is depicted in
The devices disclosed herein can be designed to be disposed of after a single use, or they can be designed to be used multiple times. In either case, however, the device can be reconditioned for reuse after at least one use. Reconditioning can include any combination of the steps of disassembly of the device, followed by cleaning or replacement of particular pieces, and subsequent reassembly. In particular, the device can be disassembled, and any number of the particular pieces or parts of the device can be selectively replaced or removed in any combination. Upon cleaning and/or replacement of particular parts, the device can be reassembled for subsequent use either at a reconditioning facility, or by a surgical team immediately prior to a surgical procedure. Those skilled in the art will appreciate that reconditioning of a device can utilize a variety of techniques for disassembly, cleaning/replacement, and reassembly. Use of such techniques, and the resulting reconditioned device, are all within the scope of the present application.
Preferably, the various embodiments described herein will be processed before surgery. First, a new or used instrument is obtained and if necessary cleaned. The instrument can then be sterilized. In one sterilization technique, the instrument is placed in a closed and sealed container, such as a plastic or TYVEK bag. The container and instrument are then placed in a field of radiation that can penetrate the container, such as gamma radiation, x-rays, or high-energy electrons. The radiation kills bacteria on the instrument and in the container. The sterilized instrument can then be stored in the sterile container. The sealed container keeps the instrument sterile until it is opened in the medical facility. Sterilization can also be done by any number of ways known to those skilled in the art including beta or gamma radiation, ethylene oxide, and/or steam.
In various embodiments, an ultrasonic surgical instrument can be supplied to a surgeon with a waveguide and/or end effector already operably coupled with a transducer of the surgical instrument. In at least one such embodiment, the surgeon, or other clinician, can remove the ultrasonic surgical instrument from a sterilized package, plug the ultrasonic instrument into a generator, as outlined above, and use the ultrasonic instrument during a surgical procedure. Such a system can obviate the need for a surgeon, or other clinician, to assemble a waveguide and/or end effector to the ultrasonic surgical instrument. After the ultrasonic surgical instrument has been used, the surgeon, or other clinician, can place the ultrasonic instrument into a sealable package, wherein the package can be transported to a sterilization facility. At the sterilization facility, the ultrasonic instrument can be disinfected, wherein any expended parts can be discarded and replaced while any reusable parts can be sterilized and used once again. Thereafter, the ultrasonic instrument can be reassembled, tested, placed into a sterile package, and/or sterilized after being placed into a package. Once sterilized, the reprocessed ultrasonic surgical instrument can be used once again.
Although various embodiments have been described herein, many modifications and variations to those embodiments may be implemented. For example, different types of end effectors may be employed. Also, where materials are disclosed for certain components, other materials may be used. The foregoing description and following claims are intended to cover all such modification and variations.
All of the above U.S. patents and U.S. patent applications, and published U.S. patent applications referred to in this specification are incorporated herein by reference in their entirety, but only to the extent that the incorporated material does not conflict with existing definitions, statements, or other disclosure material set forth in this disclosure. As such, and to the extent necessary, the disclosure as explicitly set forth herein supersedes any conflicting material incorporated herein by reference. Any material, or portion thereof, that is said to be incorporated by reference herein, but which conflicts with existing definitions, statements, or other disclosure material set forth herein will only be incorporated to the extent that no conflict arises between that incorporated material and the existing disclosure material.
This application is a divisional application claiming priority under 35 U.S.C. § 121 to U.S. patent application Ser. No. 14/715,281, entitled CONTROL SYSTEMS FOR ULTRASONICALLY POWERED SURGICAL INSTRUMENTS, filed on May 18, 2015, now U.S. Patent Application Publication No. 2015/0250495, which application is a divisional application claiming priority under 35 U.S.C. § 121 and/or 35 U.S.C. § 120 to U.S. patent application Ser. No. 14/590,580, entitled SEAL ARRANGEMENTS FOR ULTRASONICALLY POWERED SURGICAL INSTRUMENTS, filed on Jan. 6, 2015, now U.S. Pat. No. 9,649,126, which is a divisional application claiming priority under 35 U.S.C. § 121 to U.S. patent application Ser. No. 12/703,866, entitled SEAL ARRANGEMENTS FOR ULTRASONICALLY POWERED SURGICAL INSTRUMENTS, filed Feb. 11, 2010, now U.S. Pat. No. 8,951,272, the entire disclosures of which are hereby incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
969528 | Disbrow | Sep 1910 | A |
1570025 | Young | Jan 1926 | A |
1813902 | Bovie | Jul 1931 | A |
2188497 | Calva | Jan 1940 | A |
2366274 | Luth et al. | Jan 1945 | A |
2425245 | Johnson | Aug 1947 | A |
2442966 | Wallace | Jun 1948 | A |
2458152 | Eakins | Jan 1949 | A |
2510693 | Green | Jun 1950 | A |
2597564 | Bugg | May 1952 | A |
2704333 | Calosi et al. | Mar 1955 | A |
2736960 | Armstrong | Mar 1956 | A |
2743726 | Grieshaber | May 1956 | A |
2748967 | Roach | Jun 1956 | A |
2845072 | Shafer | Jul 1958 | A |
2849788 | Creek | Sep 1958 | A |
2867039 | Zach | Jan 1959 | A |
2874470 | Richards | Feb 1959 | A |
2990616 | Balamuth et al. | Jul 1961 | A |
RE25033 | Balamuth et al. | Aug 1961 | E |
3015961 | Roney | Jan 1962 | A |
3033407 | Alfons | May 1962 | A |
3053124 | Balamuth et al. | Sep 1962 | A |
3082805 | Royce | Mar 1963 | A |
3166971 | Stoecker | Jan 1965 | A |
3322403 | Murphy | May 1967 | A |
3432691 | Shoh | Mar 1969 | A |
3433226 | Boyd | Mar 1969 | A |
3489930 | Shoh | Jan 1970 | A |
3503396 | Pierie et al. | Mar 1970 | A |
3503397 | Fogarty et al. | Mar 1970 | A |
3503398 | Fogarty et al. | Mar 1970 | A |
3513848 | Winston et al. | May 1970 | A |
3514856 | Camp et al. | Jun 1970 | A |
3525912 | Wallin | Aug 1970 | A |
3526219 | Balamuth | Sep 1970 | A |
3554198 | Tatoian et al. | Jan 1971 | A |
3580841 | Cadotte et al. | May 1971 | A |
3606682 | Camp et al. | Sep 1971 | A |
3614484 | Shoh | Oct 1971 | A |
3616375 | Inoue | Oct 1971 | A |
3629726 | Popescu | Dec 1971 | A |
3636943 | Balamuth | Jan 1972 | A |
3668486 | Silver | Jun 1972 | A |
3702948 | Balamuth | Nov 1972 | A |
3703651 | Blowers | Nov 1972 | A |
3776238 | Peyman et al. | Dec 1973 | A |
3777760 | Essner | Dec 1973 | A |
3792701 | Kloz et al. | Feb 1974 | A |
3805787 | Banko | Apr 1974 | A |
3809977 | Balamuth et al. | May 1974 | A |
3830098 | Antonevich | Aug 1974 | A |
3832776 | Sawyer | Sep 1974 | A |
3854737 | Gilliam, Sr. | Dec 1974 | A |
3862630 | Balamuth | Jan 1975 | A |
3875945 | Friedman | Apr 1975 | A |
3885438 | Harris, Sr. et al. | May 1975 | A |
3900823 | Sokal et al. | Aug 1975 | A |
3918442 | Nikolaev et al. | Nov 1975 | A |
3924335 | Balamuth et al. | Dec 1975 | A |
3946738 | Newton et al. | Mar 1976 | A |
3955859 | Stella et al. | May 1976 | A |
3956826 | Perdreaux, Jr. | May 1976 | A |
3989952 | Hohmann | Nov 1976 | A |
4005714 | Hiltebrandt | Feb 1977 | A |
4012647 | Balamuth et al. | Mar 1977 | A |
4034762 | Cosens et al. | Jul 1977 | A |
4057660 | Yoshida et al. | Nov 1977 | A |
4058126 | Leveen | Nov 1977 | A |
4074719 | Semm | Feb 1978 | A |
4085893 | Durley, III | Apr 1978 | A |
4156187 | Murry et al. | May 1979 | A |
4167944 | Banko | Sep 1979 | A |
4169984 | Parisi | Oct 1979 | A |
4173725 | Asai et al. | Nov 1979 | A |
4188927 | Harris | Feb 1980 | A |
4193009 | Durley, III | Mar 1980 | A |
4200106 | Douvas et al. | Apr 1980 | A |
4203430 | Takahashi | May 1980 | A |
4203444 | Bonnell et al. | May 1980 | A |
4220154 | Semm | Sep 1980 | A |
4237441 | van Konynenburg et al. | Dec 1980 | A |
4281785 | Brooks | Aug 1981 | A |
4300083 | Helges | Nov 1981 | A |
4302728 | Nakamura | Nov 1981 | A |
4304987 | van Konynenburg | Dec 1981 | A |
4306570 | Matthews | Dec 1981 | A |
4314559 | Allen | Feb 1982 | A |
4352459 | Berger et al. | Oct 1982 | A |
4445063 | Smith | Apr 1984 | A |
4452473 | Ruschke | Jun 1984 | A |
4463759 | Garito et al. | Aug 1984 | A |
4491132 | Aikins | Jan 1985 | A |
4492231 | Auth | Jan 1985 | A |
4494759 | Kieffer | Jan 1985 | A |
4504264 | Kelman | Mar 1985 | A |
4512344 | Barber | Apr 1985 | A |
4526571 | Wuchinich | Jul 1985 | A |
4535773 | Yoon | Aug 1985 | A |
4541638 | Ogawa et al. | Sep 1985 | A |
4545374 | Jacobson | Oct 1985 | A |
4545926 | Fouts, Jr. et al. | Oct 1985 | A |
4550870 | Krumme et al. | Nov 1985 | A |
4553544 | Nomoto et al. | Nov 1985 | A |
4562838 | Walker | Jan 1986 | A |
4574615 | Bower et al. | Mar 1986 | A |
4582236 | Hirose | Apr 1986 | A |
4617927 | Manes | Oct 1986 | A |
4633119 | Thompson | Dec 1986 | A |
4633874 | Chow et al. | Jan 1987 | A |
4634420 | Spinosa et al. | Jan 1987 | A |
4640279 | Beard | Feb 1987 | A |
4641053 | Takeda | Feb 1987 | A |
4646738 | Trott | Mar 1987 | A |
4646756 | Watmough et al. | Mar 1987 | A |
4649919 | Thimsen et al. | Mar 1987 | A |
4662068 | Polonsky | May 1987 | A |
4663677 | Griffith et al. | May 1987 | A |
4674502 | Imonti | Jun 1987 | A |
4696667 | Masch | Sep 1987 | A |
4708127 | Abdelghani | Nov 1987 | A |
4712722 | Hood et al. | Dec 1987 | A |
4735603 | Goodson et al. | Apr 1988 | A |
4750488 | Wuchinich et al. | Jun 1988 | A |
4761871 | O'Connor et al. | Aug 1988 | A |
4783997 | Lynnworth | Nov 1988 | A |
4808154 | Freeman | Feb 1989 | A |
4819635 | Shapiro | Apr 1989 | A |
4821719 | Fogarty | Apr 1989 | A |
4827911 | Broadwin et al. | May 1989 | A |
4830462 | Karny et al. | May 1989 | A |
4832683 | Idemoto et al. | May 1989 | A |
4836186 | Scholz | Jun 1989 | A |
4838853 | Parisi | Jun 1989 | A |
4844064 | Thimsen et al. | Jul 1989 | A |
4849133 | Yoshida et al. | Jul 1989 | A |
4850354 | Mcgurk-Burleson et al. | Jul 1989 | A |
4852578 | Companion et al. | Aug 1989 | A |
4860745 | Farin et al. | Aug 1989 | A |
4862890 | Stasz et al. | Sep 1989 | A |
4865159 | Jamison | Sep 1989 | A |
4867157 | Mcgurk-Burleson et al. | Sep 1989 | A |
4869715 | Sherburne | Sep 1989 | A |
4878493 | Pasternak et al. | Nov 1989 | A |
4880015 | Nierman | Nov 1989 | A |
4881550 | Kothe | Nov 1989 | A |
4896009 | Pawlowski | Jan 1990 | A |
4903696 | Stasz et al. | Feb 1990 | A |
4910389 | Sherman et al. | Mar 1990 | A |
4915643 | Samejima et al. | Apr 1990 | A |
4920978 | Colvin | May 1990 | A |
4922902 | Wuchinich et al. | May 1990 | A |
4936842 | D'Amelio et al. | Jun 1990 | A |
4954960 | Lo et al. | Sep 1990 | A |
4965532 | Sakurai | Oct 1990 | A |
4978067 | Berger et al. | Dec 1990 | A |
4979952 | Kubota et al. | Dec 1990 | A |
4981756 | Rhandhawa | Jan 1991 | A |
4983160 | Steppe et al. | Jan 1991 | A |
5013956 | Kurozumi et al. | May 1991 | A |
5015227 | Broadwin et al. | May 1991 | A |
5020514 | Heckele | Jun 1991 | A |
5026370 | Lottick | Jun 1991 | A |
5026387 | Thomas | Jun 1991 | A |
5035695 | Weber, Jr. et al. | Jul 1991 | A |
5042461 | Inoue et al. | Aug 1991 | A |
5042707 | Taheri | Aug 1991 | A |
5047043 | Kubota et al. | Sep 1991 | A |
5057119 | Clark et al. | Oct 1991 | A |
5058570 | Idemoto et al. | Oct 1991 | A |
5059210 | Clark et al. | Oct 1991 | A |
5061269 | Muller | Oct 1991 | A |
5084052 | Jacobs | Jan 1992 | A |
5088687 | Stender | Feb 1992 | A |
5096532 | Neuwirth et al. | Mar 1992 | A |
5099840 | Goble et al. | Mar 1992 | A |
5104025 | Main et al. | Apr 1992 | A |
5105117 | Yamaguchi | Apr 1992 | A |
5106538 | Barma et al. | Apr 1992 | A |
5108383 | White | Apr 1992 | A |
5109819 | Custer et al. | May 1992 | A |
5112300 | Ureche | May 1992 | A |
5123903 | Quaid et al. | Jun 1992 | A |
5126618 | Takahashi et al. | Jun 1992 | A |
D327872 | McMills et al. | Jul 1992 | S |
D330253 | Burek | Oct 1992 | S |
5152762 | McElhenney | Oct 1992 | A |
5156613 | Sawyer | Oct 1992 | A |
5156633 | Smith | Oct 1992 | A |
5159226 | Montgomery | Oct 1992 | A |
5160334 | Billings et al. | Nov 1992 | A |
5162044 | Gahn et al. | Nov 1992 | A |
5163421 | Bernstein et al. | Nov 1992 | A |
5163537 | Radev | Nov 1992 | A |
5167619 | Wuchinich | Dec 1992 | A |
5167725 | Clark et al. | Dec 1992 | A |
5172344 | Ehrlich | Dec 1992 | A |
5174276 | Crockard | Dec 1992 | A |
D332660 | Rawson et al. | Jan 1993 | S |
5176677 | Wuchinich | Jan 1993 | A |
5176695 | Dulebohn | Jan 1993 | A |
5184605 | Grzeszykowski | Feb 1993 | A |
5188102 | Idemoto et al. | Feb 1993 | A |
D334173 | Liu et al. | Mar 1993 | S |
5190518 | Takasu | Mar 1993 | A |
5190541 | Abele et al. | Mar 1993 | A |
5196007 | Ellman et al. | Mar 1993 | A |
5205459 | Brinkerhoff et al. | Apr 1993 | A |
5205817 | Idemoto et al. | Apr 1993 | A |
5209719 | Baruch et al. | May 1993 | A |
5209776 | Bass et al. | May 1993 | A |
5213103 | Martin et al. | May 1993 | A |
5213569 | Davis | May 1993 | A |
5214339 | Naito | May 1993 | A |
5217460 | Knoepfler | Jun 1993 | A |
5218529 | Meyer et al. | Jun 1993 | A |
5221282 | Wuchinich | Jun 1993 | A |
5222937 | Kagawa | Jun 1993 | A |
5226909 | Evans et al. | Jul 1993 | A |
5226910 | Kajiyama et al. | Jul 1993 | A |
5234428 | Kaufman | Aug 1993 | A |
5234436 | Eaton et al. | Aug 1993 | A |
5241236 | Sasaki et al. | Aug 1993 | A |
5241968 | Slater | Sep 1993 | A |
5242385 | Strukel | Sep 1993 | A |
5242460 | Klein et al. | Sep 1993 | A |
5254129 | Alexander | Oct 1993 | A |
5257988 | L'Esperance, Jr. | Nov 1993 | A |
5258004 | Bales et al. | Nov 1993 | A |
5258006 | Rydell et al. | Nov 1993 | A |
5261922 | Hood | Nov 1993 | A |
5263957 | Davison | Nov 1993 | A |
5264925 | Shipp et al. | Nov 1993 | A |
5269297 | Weng et al. | Dec 1993 | A |
5275166 | Vaitekunas et al. | Jan 1994 | A |
5275607 | Lo et al. | Jan 1994 | A |
5275609 | Pingleton et al. | Jan 1994 | A |
5282800 | Foshee et al. | Feb 1994 | A |
5282817 | Hoogeboom et al. | Feb 1994 | A |
5285795 | Ryan et al. | Feb 1994 | A |
5285945 | Brinkerhoff et al. | Feb 1994 | A |
5289436 | Terhune | Feb 1994 | A |
5290286 | Parins | Mar 1994 | A |
5293863 | Zhu et al. | Mar 1994 | A |
5300068 | Rosar et al. | Apr 1994 | A |
5304115 | Pflueger et al. | Apr 1994 | A |
5306280 | Bregen et al. | Apr 1994 | A |
D347474 | Olson | May 1994 | S |
5307976 | Olson et al. | May 1994 | A |
5309927 | Welch | May 1994 | A |
5312023 | Green et al. | May 1994 | A |
5312327 | Bales et al. | May 1994 | A |
5312425 | Evans et al. | May 1994 | A |
5318525 | West et al. | Jun 1994 | A |
5318563 | Malis et al. | Jun 1994 | A |
5318564 | Eggers | Jun 1994 | A |
5318570 | Hood et al. | Jun 1994 | A |
5318589 | Lichtman | Jun 1994 | A |
5322055 | Davison et al. | Jun 1994 | A |
5323055 | Yamazaki | Jun 1994 | A |
5324297 | Hood et al. | Jun 1994 | A |
5324299 | Davison et al. | Jun 1994 | A |
5326013 | Green et al. | Jul 1994 | A |
5326342 | Pflueger et al. | Jul 1994 | A |
5330471 | Eggers | Jul 1994 | A |
5330502 | Hassler et al. | Jul 1994 | A |
5339723 | Huitema | Aug 1994 | A |
5342292 | Nita et al. | Aug 1994 | A |
5342359 | Rydell | Aug 1994 | A |
5344420 | Hilal et al. | Sep 1994 | A |
5345937 | Middleman et al. | Sep 1994 | A |
5346502 | Estabrook et al. | Sep 1994 | A |
5353474 | Good et al. | Oct 1994 | A |
5354265 | Mackool | Oct 1994 | A |
5356064 | Green et al. | Oct 1994 | A |
5357164 | Imabayashi et al. | Oct 1994 | A |
5357423 | Weaver et al. | Oct 1994 | A |
5358506 | Green et al. | Oct 1994 | A |
5359994 | Krauter et al. | Nov 1994 | A |
5361583 | Huitema | Nov 1994 | A |
5366466 | Christian et al. | Nov 1994 | A |
5368557 | Nita et al. | Nov 1994 | A |
5370645 | Klicek et al. | Dec 1994 | A |
5371429 | Manna | Dec 1994 | A |
5372585 | Tiefenbrun et al. | Dec 1994 | A |
5374813 | Shipp | Dec 1994 | A |
D354564 | Medema | Jan 1995 | S |
5381067 | Greenstein et al. | Jan 1995 | A |
5383874 | Jackson et al. | Jan 1995 | A |
5383883 | Wilk et al. | Jan 1995 | A |
5387207 | Dyer et al. | Feb 1995 | A |
5387215 | Fisher | Feb 1995 | A |
5389098 | Tsuruta et al. | Feb 1995 | A |
5391144 | Sakurai et al. | Feb 1995 | A |
5394187 | Shipp | Feb 1995 | A |
5395033 | Byrne et al. | Mar 1995 | A |
5395312 | Desai | Mar 1995 | A |
5395363 | Billings et al. | Mar 1995 | A |
5395364 | Anderhub et al. | Mar 1995 | A |
5396266 | Brimhall | Mar 1995 | A |
5396900 | Slater et al. | Mar 1995 | A |
5397293 | Alliger et al. | Mar 1995 | A |
5400267 | Denen et al. | Mar 1995 | A |
5403312 | Yates et al. | Apr 1995 | A |
5403334 | Evans et al. | Apr 1995 | A |
5406503 | Williams, Jr. et al. | Apr 1995 | A |
5408268 | Shipp | Apr 1995 | A |
5409453 | Lundquist et al. | Apr 1995 | A |
D358887 | Feinberg | May 1995 | S |
5411481 | Allen et al. | May 1995 | A |
5413107 | Oakley et al. | May 1995 | A |
5417709 | Slater | May 1995 | A |
5419761 | Narayanan et al. | May 1995 | A |
5421829 | Olichney et al. | Jun 1995 | A |
5423844 | Miller | Jun 1995 | A |
5428504 | Bhatia | Jun 1995 | A |
5429131 | Scheinman et al. | Jul 1995 | A |
5438997 | Sieben et al. | Aug 1995 | A |
5441499 | Fritzsch | Aug 1995 | A |
5443463 | Stern et al. | Aug 1995 | A |
5445638 | Rydell et al. | Aug 1995 | A |
5445639 | Kuslich et al. | Aug 1995 | A |
5447509 | Mills et al. | Sep 1995 | A |
5449370 | Vaitekunas | Sep 1995 | A |
5451220 | Ciervo | Sep 1995 | A |
5451227 | Michaelson | Sep 1995 | A |
5456684 | Schmidt et al. | Oct 1995 | A |
5458598 | Feinberg et al. | Oct 1995 | A |
5462604 | Shibano et al. | Oct 1995 | A |
5465895 | Knodel et al. | Nov 1995 | A |
5471988 | Fujio et al. | Dec 1995 | A |
5472443 | Cordis et al. | Dec 1995 | A |
5476479 | Green et al. | Dec 1995 | A |
5478003 | Green et al. | Dec 1995 | A |
5480409 | Riza | Jan 1996 | A |
5483501 | Park et al. | Jan 1996 | A |
5484436 | Eggers et al. | Jan 1996 | A |
5486162 | Brumbach | Jan 1996 | A |
5486189 | Mudry et al. | Jan 1996 | A |
5490860 | Middle et al. | Feb 1996 | A |
5496317 | Goble et al. | Mar 1996 | A |
5496411 | Candy | Mar 1996 | A |
5499992 | Meade et al. | Mar 1996 | A |
5500216 | Julian et al. | Mar 1996 | A |
5501654 | Failla et al. | Mar 1996 | A |
5504650 | Katsui et al. | Apr 1996 | A |
5505693 | Mackool | Apr 1996 | A |
5507738 | Ciervo | Apr 1996 | A |
5509922 | Aranyi et al. | Apr 1996 | A |
5511556 | DeSantis | Apr 1996 | A |
5520704 | Castro et al. | May 1996 | A |
5522832 | Kugo et al. | Jun 1996 | A |
5522839 | Pilling | Jun 1996 | A |
5527273 | Manna et al. | Jun 1996 | A |
5527331 | Kresch et al. | Jun 1996 | A |
5531744 | Nardella et al. | Jul 1996 | A |
5540681 | Strul et al. | Jul 1996 | A |
5540693 | Fisher | Jul 1996 | A |
5542916 | Hirsch et al. | Aug 1996 | A |
5553675 | Pitzen et al. | Sep 1996 | A |
5558671 | Yates | Sep 1996 | A |
5562609 | Brumbach | Oct 1996 | A |
5562610 | Brumbach | Oct 1996 | A |
5562659 | Morris | Oct 1996 | A |
5562703 | Desai | Oct 1996 | A |
5563179 | Stone et al. | Oct 1996 | A |
5569164 | Lurz | Oct 1996 | A |
5571121 | Heifetz | Nov 1996 | A |
5573424 | Poppe | Nov 1996 | A |
5573534 | Stone | Nov 1996 | A |
5575799 | Bolanos et al. | Nov 1996 | A |
5577654 | Bishop | Nov 1996 | A |
5582618 | Chin et al. | Dec 1996 | A |
5584830 | Ladd et al. | Dec 1996 | A |
5591187 | Dekel | Jan 1997 | A |
5593414 | Shipp et al. | Jan 1997 | A |
5599350 | Schulze et al. | Feb 1997 | A |
5601601 | Tai et al. | Feb 1997 | A |
5603773 | Campbell | Feb 1997 | A |
5607436 | Pratt et al. | Mar 1997 | A |
5607450 | Zvenyatsky et al. | Mar 1997 | A |
5609573 | Sandock | Mar 1997 | A |
5611813 | Lichtman | Mar 1997 | A |
5618304 | Hart et al. | Apr 1997 | A |
5618307 | Donlon et al. | Apr 1997 | A |
5618492 | Auten et al. | Apr 1997 | A |
5620447 | Smith et al. | Apr 1997 | A |
5624452 | Yates | Apr 1997 | A |
5626578 | Tihon | May 1997 | A |
5626587 | Bishop et al. | May 1997 | A |
5626595 | Sklar et al. | May 1997 | A |
5628760 | Knoepfler | May 1997 | A |
5630420 | Vaitekunas | May 1997 | A |
5632432 | Schulze et al. | May 1997 | A |
5632717 | Yoon | May 1997 | A |
5640741 | Yano | Jun 1997 | A |
D381077 | Hunt | Jul 1997 | S |
5643301 | Mollenauer | Jul 1997 | A |
5647851 | Pokras | Jul 1997 | A |
5647871 | Levine et al. | Jul 1997 | A |
5649937 | Bito et al. | Jul 1997 | A |
5649955 | Hashimoto et al. | Jul 1997 | A |
5651780 | Jackson et al. | Jul 1997 | A |
5653713 | Michelson | Aug 1997 | A |
5658281 | Heard | Aug 1997 | A |
5662662 | Bishop et al. | Sep 1997 | A |
5662667 | Knodel | Sep 1997 | A |
5665085 | Nardella | Sep 1997 | A |
5665100 | Yoon | Sep 1997 | A |
5669922 | Hood | Sep 1997 | A |
5674219 | Monson et al. | Oct 1997 | A |
5674220 | Fox et al. | Oct 1997 | A |
5674235 | Parisi | Oct 1997 | A |
5678568 | Uchikubo et al. | Oct 1997 | A |
5688270 | Yates et al. | Nov 1997 | A |
5690269 | Bolanos et al. | Nov 1997 | A |
5693051 | Schulze et al. | Dec 1997 | A |
5694936 | Fujimoto et al. | Dec 1997 | A |
5695510 | Hood | Dec 1997 | A |
5700261 | Brinkerhoff | Dec 1997 | A |
5704534 | Huitema et al. | Jan 1998 | A |
5704791 | Gillio | Jan 1998 | A |
5709680 | Yates et al. | Jan 1998 | A |
5711472 | Bryan | Jan 1998 | A |
5713896 | Nardella | Feb 1998 | A |
5715817 | Stevens-Wright et al. | Feb 1998 | A |
5716366 | Yates | Feb 1998 | A |
5717306 | Shipp | Feb 1998 | A |
5720742 | Zacharias | Feb 1998 | A |
5720744 | Eggleston et al. | Feb 1998 | A |
5722980 | Schulz et al. | Mar 1998 | A |
5728130 | Ishikawa et al. | Mar 1998 | A |
5730752 | Alden et al. | Mar 1998 | A |
5733074 | Stock et al. | Mar 1998 | A |
5735848 | Yates et al. | Apr 1998 | A |
5735875 | Bonutti et al. | Apr 1998 | A |
5741226 | Strukel et al. | Apr 1998 | A |
5743906 | Parins et al. | Apr 1998 | A |
5752973 | Kieturakis | May 1998 | A |
5755717 | Yates et al. | May 1998 | A |
5762255 | Chrisman et al. | Jun 1998 | A |
5766164 | Mueller et al. | Jun 1998 | A |
5772659 | Becker et al. | Jun 1998 | A |
5776130 | Buysse et al. | Jul 1998 | A |
5776155 | Beaupre et al. | Jul 1998 | A |
5779130 | Alesi et al. | Jul 1998 | A |
5779701 | McBrayer et al. | Jul 1998 | A |
5782834 | Lucey et al. | Jul 1998 | A |
5792135 | Madhani et al. | Aug 1998 | A |
5792138 | Shipp | Aug 1998 | A |
5792165 | Klieman et al. | Aug 1998 | A |
5796188 | Bays | Aug 1998 | A |
5797941 | Schulze et al. | Aug 1998 | A |
5797959 | Castro et al. | Aug 1998 | A |
5800432 | Swanson | Sep 1998 | A |
5800448 | Banko | Sep 1998 | A |
5800449 | Wales | Sep 1998 | A |
5805140 | Rosenberg et al. | Sep 1998 | A |
5807310 | Hood | Sep 1998 | A |
5807393 | Williamson, IV et al. | Sep 1998 | A |
5808396 | Boukhny | Sep 1998 | A |
5810811 | Yates et al. | Sep 1998 | A |
5810828 | Lightman et al. | Sep 1998 | A |
5810859 | DiMatteo et al. | Sep 1998 | A |
5810869 | Kaplan et al. | Sep 1998 | A |
5817033 | DeSantis et al. | Oct 1998 | A |
5817084 | Jensen | Oct 1998 | A |
5817093 | Williamson, IV et al. | Oct 1998 | A |
5817119 | Klieman et al. | Oct 1998 | A |
5823197 | Edwards | Oct 1998 | A |
5827323 | Klieman et al. | Oct 1998 | A |
5828160 | Sugishita | Oct 1998 | A |
5833696 | Whitfield et al. | Nov 1998 | A |
5836897 | Sakurai et al. | Nov 1998 | A |
5836909 | Cosmescu | Nov 1998 | A |
5836943 | Miller, III | Nov 1998 | A |
5836957 | Schulz et al. | Nov 1998 | A |
5836990 | Li | Nov 1998 | A |
5843109 | Mehta et al. | Dec 1998 | A |
5851212 | Zirps et al. | Dec 1998 | A |
5853290 | Winston | Dec 1998 | A |
5853412 | Mayenberger | Dec 1998 | A |
5858018 | Shipp et al. | Jan 1999 | A |
5865361 | Milliman et al. | Feb 1999 | A |
5873873 | Smith et al. | Feb 1999 | A |
5873882 | Straub et al. | Feb 1999 | A |
5876401 | Schulze et al. | Mar 1999 | A |
5878193 | Wang et al. | Mar 1999 | A |
5879363 | Urich | Mar 1999 | A |
5879364 | Bromfield et al. | Mar 1999 | A |
5880668 | Hall | Mar 1999 | A |
5883615 | Fago et al. | Mar 1999 | A |
5891142 | Eggers et al. | Apr 1999 | A |
5893835 | Witt et al. | Apr 1999 | A |
5893880 | Egan et al. | Apr 1999 | A |
5895412 | Tucker | Apr 1999 | A |
5897523 | Wright et al. | Apr 1999 | A |
5897569 | Kellogg et al. | Apr 1999 | A |
5903607 | Tailliet | May 1999 | A |
5904681 | West, Jr. | May 1999 | A |
5906625 | Bito et al. | May 1999 | A |
5906627 | Spaulding | May 1999 | A |
5906628 | Miyawaki et al. | May 1999 | A |
5910129 | Koblish et al. | Jun 1999 | A |
5910150 | Saadat | Jun 1999 | A |
5911699 | Anis et al. | Jun 1999 | A |
5916229 | Evans | Jun 1999 | A |
5921956 | Grinberg et al. | Jul 1999 | A |
5929846 | Rosenberg et al. | Jul 1999 | A |
5935143 | Hood | Aug 1999 | A |
5935144 | Estabrook | Aug 1999 | A |
5938633 | Beaupre | Aug 1999 | A |
5941887 | Steen et al. | Aug 1999 | A |
5944718 | Austin et al. | Aug 1999 | A |
5944737 | Tsonton et al. | Aug 1999 | A |
5947984 | Whipple | Sep 1999 | A |
5954736 | Bishop et al. | Sep 1999 | A |
5954746 | Holthaus et al. | Sep 1999 | A |
5957882 | Nita et al. | Sep 1999 | A |
5957943 | Vaitekunas | Sep 1999 | A |
5968007 | Simon et al. | Oct 1999 | A |
5968060 | Kellogg | Oct 1999 | A |
5971949 | Levin et al. | Oct 1999 | A |
5974342 | Petrofsky | Oct 1999 | A |
D416089 | Barton et al. | Nov 1999 | S |
5980510 | Tsonton et al. | Nov 1999 | A |
5980546 | Hood | Nov 1999 | A |
5984938 | Yoon | Nov 1999 | A |
5989274 | Davison et al. | Nov 1999 | A |
5989275 | Estabrook et al. | Nov 1999 | A |
5993465 | Shipp et al. | Nov 1999 | A |
5993972 | Reich et al. | Nov 1999 | A |
5994855 | Lundell et al. | Nov 1999 | A |
6001120 | Levin | Dec 1999 | A |
6003517 | Sheffield et al. | Dec 1999 | A |
6004335 | Vaitekunas et al. | Dec 1999 | A |
6007552 | Fogarty et al. | Dec 1999 | A |
6013052 | Durman et al. | Jan 2000 | A |
6024741 | Williamson, IV et al. | Feb 2000 | A |
6024744 | Kese et al. | Feb 2000 | A |
6024750 | Mastri et al. | Feb 2000 | A |
6027515 | Cimino | Feb 2000 | A |
6031526 | Shipp | Feb 2000 | A |
6033375 | Brumbach | Mar 2000 | A |
6033399 | Gines | Mar 2000 | A |
6036667 | Manna et al. | Mar 2000 | A |
6036707 | Spaulding | Mar 2000 | A |
6039734 | Goble | Mar 2000 | A |
6048224 | Kay | Apr 2000 | A |
6050943 | Slayton et al. | Apr 2000 | A |
6050996 | Schmaltz et al. | Apr 2000 | A |
6051010 | DiMatteo et al. | Apr 2000 | A |
6053906 | Honda et al. | Apr 2000 | A |
6056735 | Okada et al. | May 2000 | A |
6063050 | Manna et al. | May 2000 | A |
6063098 | Houser et al. | May 2000 | A |
6066132 | Chen et al. | May 2000 | A |
6066151 | Miyawaki et al. | May 2000 | A |
6068627 | Orszulak et al. | May 2000 | A |
6068629 | Haissaguerre et al. | May 2000 | A |
6068647 | Witt et al. | May 2000 | A |
6074389 | Levine et al. | Jun 2000 | A |
6077285 | Boukhny | Jun 2000 | A |
6083191 | Rose | Jul 2000 | A |
6086544 | Hibner | Jul 2000 | A |
6086584 | Miller | Jul 2000 | A |
6090120 | Wright et al. | Jul 2000 | A |
6091995 | Ingle et al. | Jul 2000 | A |
6096033 | Tu et al. | Aug 2000 | A |
6099483 | Palmer et al. | Aug 2000 | A |
6099542 | Cohn et al. | Aug 2000 | A |
6099550 | Yoon | Aug 2000 | A |
6109500 | Alli et al. | Aug 2000 | A |
6110127 | Suzuki | Aug 2000 | A |
6113594 | Savage | Sep 2000 | A |
6113598 | Baker | Sep 2000 | A |
6117152 | Huitema | Sep 2000 | A |
6120519 | Weber et al. | Sep 2000 | A |
H1904 | Yates et al. | Oct 2000 | H |
6126629 | Perkins | Oct 2000 | A |
6129735 | Okada et al. | Oct 2000 | A |
6129740 | Michelson | Oct 2000 | A |
6132368 | Cooper | Oct 2000 | A |
6132427 | Jones et al. | Oct 2000 | A |
6132448 | Perez et al. | Oct 2000 | A |
6139320 | Hahn | Oct 2000 | A |
6139561 | Shibata et al. | Oct 2000 | A |
6142615 | Qiu et al. | Nov 2000 | A |
6142994 | Swanson et al. | Nov 2000 | A |
6144402 | Norsworthy et al. | Nov 2000 | A |
6147560 | Erhage et al. | Nov 2000 | A |
6152902 | Christian et al. | Nov 2000 | A |
6152923 | Ryan | Nov 2000 | A |
6154198 | Rosenberg | Nov 2000 | A |
6156029 | Mueller | Dec 2000 | A |
6159160 | Hsei et al. | Dec 2000 | A |
6159175 | Strukel et al. | Dec 2000 | A |
6162194 | Shipp | Dec 2000 | A |
6162208 | Hipps | Dec 2000 | A |
6165150 | Banko | Dec 2000 | A |
6165186 | Fogarty et al. | Dec 2000 | A |
6165191 | Shibata et al. | Dec 2000 | A |
6174309 | Wrublewski et al. | Jan 2001 | B1 |
6174310 | Kirwan, Jr. | Jan 2001 | B1 |
6176857 | Ashley | Jan 2001 | B1 |
6179853 | Sachse et al. | Jan 2001 | B1 |
6183426 | Akisada et al. | Feb 2001 | B1 |
6187003 | Buysse et al. | Feb 2001 | B1 |
6190386 | Rydell | Feb 2001 | B1 |
6193709 | Miyawaki et al. | Feb 2001 | B1 |
6204592 | Hur | Mar 2001 | B1 |
6205855 | Pfeiffer | Mar 2001 | B1 |
6206844 | Reichel et al. | Mar 2001 | B1 |
6206876 | Levine et al. | Mar 2001 | B1 |
6206877 | Kese et al. | Mar 2001 | B1 |
6210337 | Dunham et al. | Apr 2001 | B1 |
6210402 | Olsen et al. | Apr 2001 | B1 |
6210403 | Klicek | Apr 2001 | B1 |
6214023 | Whipple et al. | Apr 2001 | B1 |
6217591 | Egan et al. | Apr 2001 | B1 |
6228080 | Gines | May 2001 | B1 |
6228104 | Fogarty et al. | May 2001 | B1 |
6231565 | Tovey et al. | May 2001 | B1 |
6233476 | Strommer et al. | May 2001 | B1 |
6238366 | Savage et al. | May 2001 | B1 |
6241724 | Fleischman et al. | Jun 2001 | B1 |
6245065 | Panescu et al. | Jun 2001 | B1 |
6251110 | Wampler | Jun 2001 | B1 |
6252110 | Uemura et al. | Jun 2001 | B1 |
D444365 | Bass et al. | Jul 2001 | S |
D445092 | Lee | Jul 2001 | S |
D445764 | Lee | Jul 2001 | S |
6254623 | Haibel, Jr. et al. | Jul 2001 | B1 |
6257241 | Wampler | Jul 2001 | B1 |
6258034 | Hanafy | Jul 2001 | B1 |
6259230 | Chou | Jul 2001 | B1 |
6267761 | Ryan | Jul 2001 | B1 |
6270471 | Hechel et al. | Aug 2001 | B1 |
6270831 | Kumar et al. | Aug 2001 | B2 |
6273852 | Lehe et al. | Aug 2001 | B1 |
6273902 | Fogarty et al. | Aug 2001 | B1 |
6274963 | Estabrook et al. | Aug 2001 | B1 |
6277115 | Saadat | Aug 2001 | B1 |
6277117 | Tetzlaff et al. | Aug 2001 | B1 |
6278218 | Madan et al. | Aug 2001 | B1 |
6280407 | Manna et al. | Aug 2001 | B1 |
6283981 | Beaupre | Sep 2001 | B1 |
6287344 | Wampler et al. | Sep 2001 | B1 |
6290575 | Shipp | Sep 2001 | B1 |
6292700 | Morrison et al. | Sep 2001 | B1 |
6293954 | Fogarty et al. | Sep 2001 | B1 |
6299591 | Banko | Oct 2001 | B1 |
6299621 | Fogarty et al. | Oct 2001 | B1 |
6306131 | Hareyama et al. | Oct 2001 | B1 |
6306157 | Shchervinsky | Oct 2001 | B1 |
6309400 | Beaupre | Oct 2001 | B2 |
6311783 | Harpell | Nov 2001 | B1 |
6312445 | Fogarty et al. | Nov 2001 | B1 |
6319221 | Savage et al. | Nov 2001 | B1 |
6325795 | Lindemann et al. | Dec 2001 | B1 |
6325799 | Goble | Dec 2001 | B1 |
6325811 | Messerly | Dec 2001 | B1 |
6328751 | Beaupre | Dec 2001 | B1 |
6332891 | Himes | Dec 2001 | B1 |
6333488 | Lawrence et al. | Dec 2001 | B1 |
6338657 | Harper et al. | Jan 2002 | B1 |
6340352 | Okada et al. | Jan 2002 | B1 |
6340878 | Oglesbee | Jan 2002 | B1 |
6350269 | Shipp et al. | Feb 2002 | B1 |
6352532 | Kramer et al. | Mar 2002 | B1 |
6358264 | Banko | Mar 2002 | B2 |
6364888 | Niemeyer et al. | Apr 2002 | B1 |
6379320 | Lafon et al. | Apr 2002 | B1 |
D457958 | Dycus et al. | May 2002 | S |
6383194 | Pothula | May 2002 | B1 |
6384690 | Wilhelmsson et al. | May 2002 | B1 |
6387094 | Eitenmuller | May 2002 | B1 |
6387109 | Davison et al. | May 2002 | B1 |
6387112 | Fogarty et al. | May 2002 | B1 |
6388657 | Natoli | May 2002 | B1 |
6391026 | Hung et al. | May 2002 | B1 |
6391042 | Cimino | May 2002 | B1 |
6398779 | Buysse et al. | Jun 2002 | B1 |
6402743 | Orszulak et al. | Jun 2002 | B1 |
6402748 | Schoenman et al. | Jun 2002 | B1 |
6405733 | Fogarty et al. | Jun 2002 | B1 |
6409722 | Hoey et al. | Jun 2002 | B1 |
6409743 | Fenton, Jr. | Jun 2002 | B1 |
H2037 | Yates et al. | Jul 2002 | H |
6416469 | Phung et al. | Jul 2002 | B1 |
6416486 | Wampler | Jul 2002 | B1 |
6416525 | Shibata | Jul 2002 | B1 |
6419675 | Gallo, Sr. | Jul 2002 | B1 |
6423073 | Bowman | Jul 2002 | B2 |
6423082 | Houser et al. | Jul 2002 | B1 |
6425906 | Young et al. | Jul 2002 | B1 |
6425907 | Shibata et al. | Jul 2002 | B1 |
6428538 | Blewett et al. | Aug 2002 | B1 |
6428539 | Baxter et al. | Aug 2002 | B1 |
6430446 | Knowlton | Aug 2002 | B1 |
6432118 | Messerly | Aug 2002 | B1 |
6436114 | Novak et al. | Aug 2002 | B1 |
6436115 | Beaupre | Aug 2002 | B1 |
6440062 | Ouchi | Aug 2002 | B1 |
6443968 | Holthaus et al. | Sep 2002 | B1 |
6443969 | Novak et al. | Sep 2002 | B1 |
6449006 | Shipp | Sep 2002 | B1 |
6454781 | Witt et al. | Sep 2002 | B1 |
6454782 | Schwemberger | Sep 2002 | B1 |
6458128 | Schulze | Oct 2002 | B1 |
6458130 | Frazier et al. | Oct 2002 | B1 |
6458142 | Faller et al. | Oct 2002 | B1 |
6461363 | Gadberry et al. | Oct 2002 | B1 |
6464689 | Qin et al. | Oct 2002 | B1 |
6464702 | Schulze et al. | Oct 2002 | B2 |
6468286 | Mastri et al. | Oct 2002 | B2 |
6475211 | Chess et al. | Nov 2002 | B2 |
6475215 | Tanrisever | Nov 2002 | B1 |
6480796 | Wiener | Nov 2002 | B2 |
6485490 | Wampler et al. | Nov 2002 | B2 |
6491690 | Goble et al. | Dec 2002 | B1 |
6491701 | Tierney et al. | Dec 2002 | B2 |
6491708 | Madan et al. | Dec 2002 | B2 |
6497715 | Satou | Dec 2002 | B2 |
6498421 | Oh et al. | Dec 2002 | B1 |
6500112 | Khouri | Dec 2002 | B1 |
6500176 | Truckai et al. | Dec 2002 | B1 |
6500188 | Harper et al. | Dec 2002 | B2 |
6500312 | Wedekamp | Dec 2002 | B2 |
6503248 | Levine | Jan 2003 | B1 |
6506208 | Hunt et al. | Jan 2003 | B2 |
6511478 | Burnside et al. | Jan 2003 | B1 |
6511480 | Tetzlaff et al. | Jan 2003 | B1 |
6511493 | Moutafis et al. | Jan 2003 | B1 |
6514252 | Nezhat et al. | Feb 2003 | B2 |
6514267 | Jewett | Feb 2003 | B2 |
6517565 | Whitman et al. | Feb 2003 | B1 |
6524251 | Rabiner et al. | Feb 2003 | B2 |
6524316 | Nicholson et al. | Feb 2003 | B1 |
6526976 | Baran | Mar 2003 | B1 |
6527736 | Attinger et al. | Mar 2003 | B1 |
6531846 | Smith | Mar 2003 | B1 |
6533784 | Truckai et al. | Mar 2003 | B2 |
6537272 | Christopherson et al. | Mar 2003 | B2 |
6537291 | Friedman et al. | Mar 2003 | B2 |
6543452 | Lavigne | Apr 2003 | B1 |
6543456 | Freeman | Apr 2003 | B1 |
6544260 | Markel et al. | Apr 2003 | B1 |
6551309 | LePivert | Apr 2003 | B1 |
6554829 | Schulze et al. | Apr 2003 | B2 |
6558376 | Bishop | May 2003 | B2 |
6561983 | Cronin et al. | May 2003 | B2 |
6562035 | Levin | May 2003 | B1 |
6562037 | Paton et al. | May 2003 | B2 |
6562059 | Edwards et al. | May 2003 | B2 |
6565558 | Lindenmeier et al. | May 2003 | B1 |
6569109 | Sakurai et al. | May 2003 | B2 |
6569178 | Miyawaki et al. | May 2003 | B1 |
6572563 | Ouchi | Jun 2003 | B2 |
6572632 | Zisterer et al. | Jun 2003 | B2 |
6572639 | Ingle et al. | Jun 2003 | B1 |
6575929 | Sussman et al. | Jun 2003 | B2 |
6575969 | Rittman, III et al. | Jun 2003 | B1 |
6582427 | Goble et al. | Jun 2003 | B1 |
6582451 | Marucci et al. | Jun 2003 | B1 |
6584360 | Francischelli et al. | Jun 2003 | B2 |
D477408 | Bromley | Jul 2003 | S |
6585735 | Frazier et al. | Jul 2003 | B1 |
6588277 | Giordano et al. | Jul 2003 | B2 |
6589200 | Schwemberger et al. | Jul 2003 | B1 |
6589239 | Khandkar et al. | Jul 2003 | B2 |
6599288 | Maguire et al. | Jul 2003 | B2 |
6602229 | Coss | Aug 2003 | B2 |
6602252 | Mollenauer | Aug 2003 | B2 |
6607540 | Shipp | Aug 2003 | B1 |
6610059 | West, Jr. | Aug 2003 | B1 |
6610060 | Mulier et al. | Aug 2003 | B2 |
6616450 | Mossle et al. | Sep 2003 | B2 |
6619529 | Green et al. | Sep 2003 | B2 |
6620161 | Schulze et al. | Sep 2003 | B2 |
6622731 | Daniel et al. | Sep 2003 | B2 |
6623444 | Babaev | Sep 2003 | B2 |
6623482 | Pendekanti et al. | Sep 2003 | B2 |
6623500 | Cook et al. | Sep 2003 | B1 |
6623501 | Heller et al. | Sep 2003 | B2 |
6626848 | Neuenfeldt | Sep 2003 | B2 |
6626926 | Friedman et al. | Sep 2003 | B2 |
6629974 | Penny et al. | Oct 2003 | B2 |
6633234 | Wiener et al. | Oct 2003 | B2 |
6635057 | Harano et al. | Oct 2003 | B2 |
6644532 | Green et al. | Nov 2003 | B2 |
6648839 | Manna et al. | Nov 2003 | B2 |
6648883 | Francischelli et al. | Nov 2003 | B2 |
6651669 | Burnside | Nov 2003 | B1 |
6652513 | Panescu et al. | Nov 2003 | B2 |
6652539 | Shipp et al. | Nov 2003 | B2 |
6652545 | Shipp et al. | Nov 2003 | B2 |
6656124 | Flesch et al. | Dec 2003 | B2 |
6656132 | Ouchi | Dec 2003 | B1 |
6656177 | Truckai et al. | Dec 2003 | B2 |
6656198 | Tsonton et al. | Dec 2003 | B2 |
6660017 | Beaupre | Dec 2003 | B2 |
6662127 | Wiener et al. | Dec 2003 | B2 |
6663941 | Brown et al. | Dec 2003 | B2 |
6666860 | Takahashi | Dec 2003 | B1 |
6666875 | Sakurai et al. | Dec 2003 | B1 |
6669690 | Okada et al. | Dec 2003 | B1 |
6669696 | Bacher et al. | Dec 2003 | B2 |
6669710 | Moutafis et al. | Dec 2003 | B2 |
6673248 | Chowdhury | Jan 2004 | B2 |
6676660 | Wampler et al. | Jan 2004 | B2 |
6678621 | Wiener et al. | Jan 2004 | B2 |
6679875 | Honda et al. | Jan 2004 | B2 |
6679882 | Kornerup | Jan 2004 | B1 |
6679899 | Wiener et al. | Jan 2004 | B2 |
6682501 | Nelson et al. | Jan 2004 | B1 |
6682544 | Mastri et al. | Jan 2004 | B2 |
6685701 | Orszulak et al. | Feb 2004 | B2 |
6685703 | Pearson et al. | Feb 2004 | B2 |
6689086 | Nita et al. | Feb 2004 | B1 |
6689145 | Lee et al. | Feb 2004 | B2 |
6689146 | Himes | Feb 2004 | B1 |
6690960 | Chen et al. | Feb 2004 | B2 |
6695782 | Ranucci et al. | Feb 2004 | B2 |
6695840 | Schulze | Feb 2004 | B2 |
6699214 | Gellman | Mar 2004 | B2 |
6702761 | Damadian et al. | Mar 2004 | B1 |
6702821 | Bonutti | Mar 2004 | B2 |
6712805 | Weimann | Mar 2004 | B2 |
6716215 | David et al. | Apr 2004 | B1 |
6719692 | Kleffner et al. | Apr 2004 | B2 |
6719765 | Bonutti | Apr 2004 | B2 |
6719766 | Buelna et al. | Apr 2004 | B1 |
6719776 | Baxter et al. | Apr 2004 | B2 |
6722552 | Fenton, Jr. | Apr 2004 | B2 |
6723091 | Goble et al. | Apr 2004 | B2 |
D490059 | Conway et al. | May 2004 | S |
6731047 | Kauf et al. | May 2004 | B2 |
6733498 | Paton et al. | May 2004 | B2 |
6733506 | McDevitt et al. | May 2004 | B1 |
6736813 | Yamauchi et al. | May 2004 | B2 |
6739872 | Turri | May 2004 | B1 |
6740079 | Eggers et al. | May 2004 | B1 |
D491666 | Kimmell et al. | Jun 2004 | S |
6743245 | Lobdell | Jun 2004 | B2 |
6746284 | Spink, Jr. | Jun 2004 | B1 |
6746443 | Morley et al. | Jun 2004 | B1 |
6752154 | Fogarty et al. | Jun 2004 | B2 |
6752815 | Beaupre | Jun 2004 | B2 |
6755825 | Shoenman et al. | Jun 2004 | B2 |
6761698 | Shibata et al. | Jul 2004 | B2 |
6762535 | Take et al. | Jul 2004 | B2 |
6766202 | Underwood et al. | Jul 2004 | B2 |
6770072 | Truckai et al. | Aug 2004 | B1 |
6773409 | Truckai et al. | Aug 2004 | B2 |
6773434 | Ciarrocca | Aug 2004 | B2 |
6773435 | Schulze et al. | Aug 2004 | B2 |
6773443 | Truwit et al. | Aug 2004 | B2 |
6773444 | Messerly | Aug 2004 | B2 |
6775575 | Bommannan et al. | Aug 2004 | B2 |
6778023 | Christensen | Aug 2004 | B2 |
6783524 | Anderson et al. | Aug 2004 | B2 |
6786382 | Hoffman | Sep 2004 | B1 |
6786383 | Stegelmann | Sep 2004 | B2 |
6789939 | Schrodinger et al. | Sep 2004 | B2 |
6790173 | Saadat et al. | Sep 2004 | B2 |
6790216 | Ishikawa | Sep 2004 | B1 |
6794027 | Araki et al. | Sep 2004 | B1 |
6796981 | Wham et al. | Sep 2004 | B2 |
D496997 | Dycus et al. | Oct 2004 | S |
6800085 | Selmon et al. | Oct 2004 | B2 |
6802843 | Truckai et al. | Oct 2004 | B2 |
6808525 | Latterell et al. | Oct 2004 | B2 |
6809508 | Donofrio | Oct 2004 | B2 |
6810281 | Brock et al. | Oct 2004 | B2 |
6811842 | Ehrnsperger et al. | Nov 2004 | B1 |
6814731 | Swanson | Nov 2004 | B2 |
6821273 | Mollenauer | Nov 2004 | B2 |
6827712 | Tovey et al. | Dec 2004 | B2 |
6828712 | Battaglin et al. | Dec 2004 | B2 |
6832988 | Sproul | Dec 2004 | B2 |
6835082 | Gonnering | Dec 2004 | B2 |
6835199 | McGuckin, Jr. et al. | Dec 2004 | B2 |
6840938 | Morley et al. | Jan 2005 | B1 |
6849073 | Hoey et al. | Feb 2005 | B2 |
6860878 | Brock | Mar 2005 | B2 |
6860880 | Treat et al. | Mar 2005 | B2 |
6863676 | Lee et al. | Mar 2005 | B2 |
6869439 | White et al. | Mar 2005 | B2 |
6875220 | Du et al. | Apr 2005 | B2 |
6877647 | Green et al. | Apr 2005 | B2 |
6882439 | Ishijima | Apr 2005 | B2 |
6887209 | Kadziauskas et al. | May 2005 | B2 |
6887221 | Baillargeon et al. | May 2005 | B1 |
6887252 | Okada et al. | May 2005 | B1 |
6893435 | Goble | May 2005 | B2 |
6899685 | Kermode et al. | May 2005 | B2 |
6905497 | Truckai et al. | Jun 2005 | B2 |
6908463 | Treat et al. | Jun 2005 | B2 |
6908466 | Bonutti et al. | Jun 2005 | B1 |
6908472 | Wiener et al. | Jun 2005 | B2 |
6913579 | Truckai et al. | Jul 2005 | B2 |
6915623 | Dey et al. | Jul 2005 | B2 |
6923804 | Eggers et al. | Aug 2005 | B2 |
6926712 | Phan | Aug 2005 | B2 |
6926716 | Baker et al. | Aug 2005 | B2 |
6926717 | Garito et al. | Aug 2005 | B1 |
6929602 | Hirakui et al. | Aug 2005 | B2 |
6929622 | Chian | Aug 2005 | B2 |
6929632 | Nita et al. | Aug 2005 | B2 |
6929644 | Truckai et al. | Aug 2005 | B2 |
6932876 | Statnikov | Aug 2005 | B1 |
6933656 | Matsushita et al. | Aug 2005 | B2 |
D509589 | Wells | Sep 2005 | S |
6942660 | Pantera et al. | Sep 2005 | B2 |
6942676 | Buelna | Sep 2005 | B2 |
6942677 | Nita et al. | Sep 2005 | B2 |
6945981 | Donofrio et al. | Sep 2005 | B2 |
6946779 | Birgel | Sep 2005 | B2 |
6948503 | Refior et al. | Sep 2005 | B2 |
6953461 | McClurken et al. | Oct 2005 | B2 |
6958070 | Witt et al. | Oct 2005 | B2 |
D511145 | Donofrio et al. | Nov 2005 | S |
6974450 | Weber et al. | Dec 2005 | B2 |
6976844 | Hickok et al. | Dec 2005 | B2 |
6976969 | Messerly | Dec 2005 | B2 |
6977495 | Donofrio | Dec 2005 | B2 |
6979332 | Adams | Dec 2005 | B2 |
6981628 | Wales | Jan 2006 | B2 |
6984220 | Wuchinich | Jan 2006 | B2 |
6988295 | Tillim | Jan 2006 | B2 |
6989017 | Howell et al. | Jan 2006 | B2 |
6994708 | Manzo | Feb 2006 | B2 |
6994709 | Iida | Feb 2006 | B2 |
7000818 | Shelton, IV et al. | Feb 2006 | B2 |
7001335 | Adachi et al. | Feb 2006 | B2 |
7001382 | Gallo, Sr. | Feb 2006 | B2 |
7002283 | Li et al. | Feb 2006 | B2 |
7004951 | Gibbens, III | Feb 2006 | B2 |
7011657 | Truckai et al. | Mar 2006 | B2 |
7014638 | Michelson | Mar 2006 | B2 |
7018354 | Tazi | Mar 2006 | B2 |
7018389 | Camerlengo | Mar 2006 | B2 |
7033357 | Baxter et al. | Apr 2006 | B2 |
7037306 | Podany et al. | May 2006 | B2 |
7041083 | Chu et al. | May 2006 | B2 |
7041088 | Nawrocki et al. | May 2006 | B2 |
7041102 | Truckai et al. | May 2006 | B2 |
7044949 | Orszulak et al. | May 2006 | B2 |
7052494 | Goble et al. | May 2006 | B2 |
7052496 | Yamauchi | May 2006 | B2 |
7055731 | Shelton, IV et al. | Jun 2006 | B2 |
7063699 | Hess et al. | Jun 2006 | B2 |
7066893 | Hibner et al. | Jun 2006 | B2 |
7066895 | Podany | Jun 2006 | B2 |
7066936 | Ryan | Jun 2006 | B2 |
7070597 | Truckai et al. | Jul 2006 | B2 |
7074218 | Washington et al. | Jul 2006 | B2 |
7074219 | Levine et al. | Jul 2006 | B2 |
7077039 | Gass et al. | Jul 2006 | B2 |
7077845 | Hacker et al. | Jul 2006 | B2 |
7077853 | Kramer et al. | Jul 2006 | B2 |
7083075 | Swayze et al. | Aug 2006 | B2 |
7083618 | Couture et al. | Aug 2006 | B2 |
7083619 | Truckai et al. | Aug 2006 | B2 |
7087054 | Truckai et al. | Aug 2006 | B2 |
7090672 | Underwood et al. | Aug 2006 | B2 |
7094235 | Francischelli | Aug 2006 | B2 |
7101371 | Dycus et al. | Sep 2006 | B2 |
7101372 | Dycus et al. | Sep 2006 | B2 |
7101373 | Dycus et al. | Sep 2006 | B2 |
7101378 | Salameh et al. | Sep 2006 | B2 |
7104834 | Robinson et al. | Sep 2006 | B2 |
7108695 | Witt et al. | Sep 2006 | B2 |
7111769 | Wales et al. | Sep 2006 | B2 |
7112201 | Truckai et al. | Sep 2006 | B2 |
D531311 | Guerra et al. | Oct 2006 | S |
7117034 | Kronberg | Oct 2006 | B2 |
7118564 | Ritchie et al. | Oct 2006 | B2 |
7118570 | Tetzlaff et al. | Oct 2006 | B2 |
7119516 | Denning | Oct 2006 | B2 |
7124932 | Isaacson et al. | Oct 2006 | B2 |
7125409 | Truckai et al. | Oct 2006 | B2 |
7128720 | Podany | Oct 2006 | B2 |
7131860 | Sartor et al. | Nov 2006 | B2 |
7131970 | Moses et al. | Nov 2006 | B2 |
7131983 | Murakami | Nov 2006 | B2 |
7135018 | Ryan et al. | Nov 2006 | B2 |
7135029 | Makin et al. | Nov 2006 | B2 |
7135030 | Schwemberger et al. | Nov 2006 | B2 |
7137980 | Buysse et al. | Nov 2006 | B2 |
7143925 | Shelton, IV et al. | Dec 2006 | B2 |
7144403 | Booth | Dec 2006 | B2 |
7147138 | Shelton, IV | Dec 2006 | B2 |
7153315 | Miller | Dec 2006 | B2 |
D536093 | Nakajima et al. | Jan 2007 | S |
7156189 | Bar-Cohen et al. | Jan 2007 | B1 |
7156201 | Peshkovskiy et al. | Jan 2007 | B2 |
7156846 | Dycus et al. | Jan 2007 | B2 |
7156853 | Ratsu | Jan 2007 | B2 |
7157058 | Marhasin et al. | Jan 2007 | B2 |
7159750 | Racenet et al. | Jan 2007 | B2 |
7160259 | Tardy et al. | Jan 2007 | B2 |
7160296 | Pearson et al. | Jan 2007 | B2 |
7160298 | Lawes et al. | Jan 2007 | B2 |
7160299 | Baily | Jan 2007 | B2 |
7163548 | Stulen et al. | Jan 2007 | B2 |
7169144 | Hoey et al. | Jan 2007 | B2 |
7169146 | Truckai et al. | Jan 2007 | B2 |
7169156 | Hart | Jan 2007 | B2 |
7179254 | Pendekanti et al. | Feb 2007 | B2 |
7179271 | Friedman et al. | Feb 2007 | B2 |
7182762 | Bortkiewicz | Feb 2007 | B2 |
7186253 | Truckai et al. | Mar 2007 | B2 |
7189233 | Truckai et al. | Mar 2007 | B2 |
7195631 | Dumbauld | Mar 2007 | B2 |
D541418 | Schechter et al. | Apr 2007 | S |
7198635 | Danek et al. | Apr 2007 | B2 |
7204820 | Akahoshi | Apr 2007 | B2 |
7207471 | Heinrich et al. | Apr 2007 | B2 |
7207997 | Shipp et al. | Apr 2007 | B2 |
7208005 | Frecker et al. | Apr 2007 | B2 |
7210881 | Greenberg | May 2007 | B2 |
7211079 | Treat | May 2007 | B2 |
7217128 | Atkin et al. | May 2007 | B2 |
7217269 | El-Galley et al. | May 2007 | B2 |
7220951 | Truckai et al. | May 2007 | B2 |
7223229 | Inman et al. | May 2007 | B2 |
7225964 | Mastri et al. | Jun 2007 | B2 |
7226448 | Bertolero et al. | Jun 2007 | B2 |
7229455 | Sakurai et al. | Jun 2007 | B2 |
7232440 | Dumbauld et al. | Jun 2007 | B2 |
7235071 | Gonnering | Jun 2007 | B2 |
7235073 | Levine et al. | Jun 2007 | B2 |
7241294 | Reschke | Jul 2007 | B2 |
7244262 | Wiener et al. | Jul 2007 | B2 |
7251531 | Mosher et al. | Jul 2007 | B2 |
7252667 | Moses et al. | Aug 2007 | B2 |
7258688 | Shah et al. | Aug 2007 | B1 |
7264618 | Murakami et al. | Sep 2007 | B2 |
7267677 | Johnson et al. | Sep 2007 | B2 |
7267685 | Butaric et al. | Sep 2007 | B2 |
7269873 | Brewer et al. | Sep 2007 | B2 |
7273483 | Wiener et al. | Sep 2007 | B2 |
D552241 | Bromley et al. | Oct 2007 | S |
7282048 | Goble et al. | Oct 2007 | B2 |
7282836 | Kwon et al. | Oct 2007 | B2 |
7285895 | Beaupre | Oct 2007 | B2 |
7287682 | Ezzat et al. | Oct 2007 | B1 |
7300431 | Dubrovsky | Nov 2007 | B2 |
7300435 | Wham et al. | Nov 2007 | B2 |
7300446 | Beaupre | Nov 2007 | B2 |
7300450 | Vleugels et al. | Nov 2007 | B2 |
7303531 | Lee et al. | Dec 2007 | B2 |
7303557 | Wham et al. | Dec 2007 | B2 |
7306597 | Manzo | Dec 2007 | B2 |
7307313 | Ohyanagi et al. | Dec 2007 | B2 |
7309849 | Truckai et al. | Dec 2007 | B2 |
7311706 | Schoenman et al. | Dec 2007 | B2 |
7311709 | Truckai et al. | Dec 2007 | B2 |
7317955 | McGreevy | Jan 2008 | B2 |
7318831 | Alvarez et al. | Jan 2008 | B2 |
7318832 | Young et al. | Jan 2008 | B2 |
7326236 | Andreas et al. | Feb 2008 | B2 |
7329257 | Kanehira et al. | Feb 2008 | B2 |
7331410 | Yong et al. | Feb 2008 | B2 |
7335165 | Truwit et al. | Feb 2008 | B2 |
7335997 | Wiener | Feb 2008 | B2 |
7337010 | Howard et al. | Feb 2008 | B2 |
7338463 | Vigil | Mar 2008 | B2 |
7353068 | Tanaka et al. | Apr 2008 | B2 |
7354440 | Truckal et al. | Apr 2008 | B2 |
7357287 | Shelton, IV et al. | Apr 2008 | B2 |
7361172 | Cimino | Apr 2008 | B2 |
7364577 | Wham et al. | Apr 2008 | B2 |
7367976 | Lawes et al. | May 2008 | B2 |
7371227 | Zeiner | May 2008 | B2 |
RE40388 | Gines | Jun 2008 | E |
7380695 | Doll et al. | Jun 2008 | B2 |
7380696 | Shelton, IV et al. | Jun 2008 | B2 |
7381209 | Truckal et al. | Jun 2008 | B2 |
7384420 | Dycus et al. | Jun 2008 | B2 |
7390317 | Taylor et al. | Jun 2008 | B2 |
7396356 | Mollenauer | Jul 2008 | B2 |
7403224 | Fuller et al. | Jul 2008 | B2 |
7404508 | Smith et al. | Jul 2008 | B2 |
7407077 | Ortiz et al. | Aug 2008 | B2 |
7408288 | Hara | Aug 2008 | B2 |
7413123 | Ortenzi | Aug 2008 | B2 |
7416101 | Shelton, IV et al. | Aug 2008 | B2 |
7416437 | Sartor et al. | Aug 2008 | B2 |
D576725 | Shumer et al. | Sep 2008 | S |
7419490 | Falkenstein et al. | Sep 2008 | B2 |
7422139 | Shelton, IV et al. | Sep 2008 | B2 |
7422463 | Kuo | Sep 2008 | B2 |
D578643 | Shumer et al. | Oct 2008 | S |
D578644 | Shumer et al. | Oct 2008 | S |
D578645 | Shumer et al. | Oct 2008 | S |
7431694 | Stefanchik et al. | Oct 2008 | B2 |
7431704 | Babaev | Oct 2008 | B2 |
7435582 | Zimmermann et al. | Oct 2008 | B2 |
7441684 | Shelton, IV et al. | Oct 2008 | B2 |
7442168 | Novak et al. | Oct 2008 | B2 |
7442193 | Shields et al. | Oct 2008 | B2 |
7445621 | Dumbauld et al. | Nov 2008 | B2 |
7449004 | Yamada et al. | Nov 2008 | B2 |
7451904 | Shelton, IV | Nov 2008 | B2 |
7455208 | Wales et al. | Nov 2008 | B2 |
7455641 | Yamada et al. | Nov 2008 | B2 |
7462181 | Kraft et al. | Dec 2008 | B2 |
7464846 | Shelton, IV et al. | Dec 2008 | B2 |
7472815 | Shelton, IV et al. | Jan 2009 | B2 |
7473253 | Dycus et al. | Jan 2009 | B2 |
7473263 | Johnston et al. | Jan 2009 | B2 |
7479148 | Beaupre | Jan 2009 | B2 |
7479160 | Branch et al. | Jan 2009 | B2 |
7481775 | Weikel, Jr. et al. | Jan 2009 | B2 |
7488285 | Honda et al. | Feb 2009 | B2 |
7488319 | Yates | Feb 2009 | B2 |
7491201 | Shields et al. | Feb 2009 | B2 |
7491202 | Odom et al. | Feb 2009 | B2 |
7494468 | Rabiner et al. | Feb 2009 | B2 |
7494501 | Ahlberg et al. | Feb 2009 | B2 |
7498080 | Tung et al. | Mar 2009 | B2 |
7502234 | Goliszek et al. | Mar 2009 | B2 |
7503893 | Kucklick | Mar 2009 | B2 |
7503895 | Rabiner et al. | Mar 2009 | B2 |
7506790 | Shelton, IV | Mar 2009 | B2 |
7506791 | Omaits et al. | Mar 2009 | B2 |
7510107 | Timm et al. | Mar 2009 | B2 |
7510556 | Nguyen et al. | Mar 2009 | B2 |
7513025 | Fischer | Apr 2009 | B2 |
7517349 | Truckai et al. | Apr 2009 | B2 |
7520865 | Radley Young et al. | Apr 2009 | B2 |
7524320 | Tierney et al. | Apr 2009 | B2 |
7530986 | Beaupre et al. | May 2009 | B2 |
7533830 | Rose | May 2009 | B1 |
7534243 | Chin et al. | May 2009 | B1 |
D594983 | Price et al. | Jun 2009 | S |
7540871 | Gonnering | Jun 2009 | B2 |
7540872 | Schechter et al. | Jun 2009 | B2 |
7543730 | Marczyk | Jun 2009 | B1 |
7544200 | Houser | Jun 2009 | B2 |
7549564 | Boudreaux | Jun 2009 | B2 |
7550216 | Ofer et al. | Jun 2009 | B2 |
7553309 | Buysse et al. | Jun 2009 | B2 |
7559450 | Wales et al. | Jul 2009 | B2 |
7559452 | Wales et al. | Jul 2009 | B2 |
7563259 | Takahashi | Jul 2009 | B2 |
7563269 | Hashiguchi | Jul 2009 | B2 |
7567012 | Namikawa | Jul 2009 | B2 |
7568603 | Shelton, IV et al. | Aug 2009 | B2 |
7569057 | Liu et al. | Aug 2009 | B2 |
7572266 | Young et al. | Aug 2009 | B2 |
7572268 | Babaev | Aug 2009 | B2 |
7578166 | Ethridge et al. | Aug 2009 | B2 |
7578820 | Moore et al. | Aug 2009 | B2 |
7582084 | Swanson et al. | Sep 2009 | B2 |
7582086 | Privitera et al. | Sep 2009 | B2 |
7582095 | Shipp et al. | Sep 2009 | B2 |
7585181 | Olsen | Sep 2009 | B2 |
7586289 | Andruk et al. | Sep 2009 | B2 |
7587536 | McLeod | Sep 2009 | B2 |
7588176 | Timm et al. | Sep 2009 | B2 |
7588177 | Racenet | Sep 2009 | B2 |
7594925 | Danek et al. | Sep 2009 | B2 |
7597693 | Garrison | Oct 2009 | B2 |
7601119 | Shahinian | Oct 2009 | B2 |
7604150 | Boudreaux | Oct 2009 | B2 |
7607557 | Shelton, IV et al. | Oct 2009 | B2 |
7608054 | Soring et al. | Oct 2009 | B2 |
7617961 | Viola | Nov 2009 | B2 |
7621930 | Houser | Nov 2009 | B2 |
7625370 | Hart et al. | Dec 2009 | B2 |
7627936 | Bromfield | Dec 2009 | B2 |
7628791 | Garrison et al. | Dec 2009 | B2 |
7628792 | Guerra | Dec 2009 | B2 |
7632267 | Dahla | Dec 2009 | B2 |
7632269 | Truckai et al. | Dec 2009 | B2 |
7637410 | Marczyk | Dec 2009 | B2 |
7641653 | Betta et al. | Jan 2010 | B2 |
7641671 | Crainich | Jan 2010 | B2 |
7644848 | Swayze et al. | Jan 2010 | B2 |
7645245 | Sekino et al. | Jan 2010 | B2 |
7645277 | McClurken et al. | Jan 2010 | B2 |
7645278 | Ichihashi et al. | Jan 2010 | B2 |
7648499 | Orszulak et al. | Jan 2010 | B2 |
7654431 | Hueil et al. | Feb 2010 | B2 |
7658311 | Boudreaux | Feb 2010 | B2 |
7659833 | Warner et al. | Feb 2010 | B2 |
7662151 | Crompton, Jr. et al. | Feb 2010 | B2 |
7665647 | Shelton, IV et al. | Feb 2010 | B2 |
7666206 | Taniguchi et al. | Feb 2010 | B2 |
7670334 | Hueil et al. | Mar 2010 | B2 |
7670338 | Albrecht et al. | Mar 2010 | B2 |
7674263 | Ryan | Mar 2010 | B2 |
7678069 | Baker et al. | Mar 2010 | B1 |
7678125 | Shipp | Mar 2010 | B2 |
7682366 | Sakurai et al. | Mar 2010 | B2 |
7686763 | Vaezy et al. | Mar 2010 | B2 |
7686770 | Cohen | Mar 2010 | B2 |
7686826 | Lee et al. | Mar 2010 | B2 |
7688028 | Phillips et al. | Mar 2010 | B2 |
7691095 | Bednarek et al. | Apr 2010 | B2 |
7691098 | Wallace et al. | Apr 2010 | B2 |
7696670 | Sakamoto | Apr 2010 | B2 |
7699846 | Ryan | Apr 2010 | B2 |
7703459 | Saadat et al. | Apr 2010 | B2 |
7703653 | Shah et al. | Apr 2010 | B2 |
7708735 | Chapman et al. | May 2010 | B2 |
7708751 | Hughes et al. | May 2010 | B2 |
7708758 | Lee et al. | May 2010 | B2 |
7713202 | Boukhny et al. | May 2010 | B2 |
7713267 | Pozzato | May 2010 | B2 |
7714481 | Sakai | May 2010 | B2 |
7717312 | Beetel | May 2010 | B2 |
7717914 | Kimura | May 2010 | B2 |
7717915 | Miyazawa | May 2010 | B2 |
7721935 | Racenet et al. | May 2010 | B2 |
7722527 | Bouchier et al. | May 2010 | B2 |
7722607 | Dumbauld et al. | May 2010 | B2 |
D618797 | Price et al. | Jun 2010 | S |
7726537 | Olson et al. | Jun 2010 | B2 |
7727177 | Bayat | Jun 2010 | B2 |
7734476 | Wildman et al. | Jun 2010 | B2 |
7738969 | Bleich | Jun 2010 | B2 |
7740594 | Hibner | Jun 2010 | B2 |
7749240 | Takahashi et al. | Jul 2010 | B2 |
7749273 | Cauthen, III et al. | Jul 2010 | B2 |
7751115 | Song | Jul 2010 | B2 |
7753904 | Shelton, IV et al. | Jul 2010 | B2 |
7753908 | Swanson | Jul 2010 | B2 |
7762445 | Heinrich et al. | Jul 2010 | B2 |
7762979 | Wuchinich | Jul 2010 | B2 |
D621503 | Otten et al. | Aug 2010 | S |
7766210 | Shelton, IV et al. | Aug 2010 | B2 |
7766693 | Sartor et al. | Aug 2010 | B2 |
7766910 | Hixson et al. | Aug 2010 | B2 |
7770774 | Mastri et al. | Aug 2010 | B2 |
7770775 | Shelton, IV et al. | Aug 2010 | B2 |
7771425 | Dycus et al. | Aug 2010 | B2 |
7771444 | Patel et al. | Aug 2010 | B2 |
7775972 | Brock et al. | Aug 2010 | B2 |
7776036 | Schechter et al. | Aug 2010 | B2 |
7776037 | Odom | Aug 2010 | B2 |
7778733 | Nowlin et al. | Aug 2010 | B2 |
7780054 | Wales | Aug 2010 | B2 |
7780593 | Ueno et al. | Aug 2010 | B2 |
7780651 | Madhani et al. | Aug 2010 | B2 |
7780659 | Okada et al. | Aug 2010 | B2 |
7780663 | Yates et al. | Aug 2010 | B2 |
7784662 | Wales et al. | Aug 2010 | B2 |
7784663 | Shelton, IV | Aug 2010 | B2 |
7789883 | Takashino et al. | Sep 2010 | B2 |
7793814 | Racenet et al. | Sep 2010 | B2 |
7796969 | Kelly et al. | Sep 2010 | B2 |
7798386 | Schall et al. | Sep 2010 | B2 |
7799020 | Shores et al. | Sep 2010 | B2 |
7799045 | Masuda | Sep 2010 | B2 |
7803152 | Honda et al. | Sep 2010 | B2 |
7803156 | Eder et al. | Sep 2010 | B2 |
7803168 | Gifford et al. | Sep 2010 | B2 |
7806891 | Nowlin et al. | Oct 2010 | B2 |
7810693 | Broehl et al. | Oct 2010 | B2 |
7811283 | Moses et al. | Oct 2010 | B2 |
7815641 | Dodde et al. | Oct 2010 | B2 |
7815658 | Murakami | Oct 2010 | B2 |
7819298 | Hall et al. | Oct 2010 | B2 |
7819299 | Shelton, IV et al. | Oct 2010 | B2 |
7819819 | Quick et al. | Oct 2010 | B2 |
7819872 | Johnson et al. | Oct 2010 | B2 |
7821143 | Wiener | Oct 2010 | B2 |
D627066 | Romero | Nov 2010 | S |
7824401 | Manzo et al. | Nov 2010 | B2 |
7828808 | Hinman et al. | Nov 2010 | B2 |
7832408 | Shelton, IV et al. | Nov 2010 | B2 |
7832611 | Boyden et al. | Nov 2010 | B2 |
7832612 | Baxter, III et al. | Nov 2010 | B2 |
7834484 | Sartor | Nov 2010 | B2 |
7834521 | Habu et al. | Nov 2010 | B2 |
7837699 | Yamada et al. | Nov 2010 | B2 |
7845537 | Shelton, IV et al. | Dec 2010 | B2 |
7846155 | Houser et al. | Dec 2010 | B2 |
7846159 | Morrison et al. | Dec 2010 | B2 |
7846160 | Payne et al. | Dec 2010 | B2 |
7846161 | Dumbauld et al. | Dec 2010 | B2 |
7854735 | Houser et al. | Dec 2010 | B2 |
D631155 | Peine et al. | Jan 2011 | S |
7861906 | Doll et al. | Jan 2011 | B2 |
7862560 | Marion | Jan 2011 | B2 |
7867228 | Nobis et al. | Jan 2011 | B2 |
7871392 | Sartor | Jan 2011 | B2 |
7871423 | Livneh | Jan 2011 | B2 |
7876030 | Taki et al. | Jan 2011 | B2 |
D631965 | Price et al. | Feb 2011 | S |
7878991 | Babaev | Feb 2011 | B2 |
7879033 | Sartor et al. | Feb 2011 | B2 |
7879035 | Garrison et al. | Feb 2011 | B2 |
7879070 | Ortiz et al. | Feb 2011 | B2 |
7883465 | Donofrio et al. | Feb 2011 | B2 |
7883475 | Dupont et al. | Feb 2011 | B2 |
7892606 | Thies et al. | Feb 2011 | B2 |
7896875 | Heim et al. | Mar 2011 | B2 |
7897792 | Iikura et al. | Mar 2011 | B2 |
7901400 | Wham et al. | Mar 2011 | B2 |
7901423 | Stulen et al. | Mar 2011 | B2 |
7905881 | Masuda et al. | Mar 2011 | B2 |
7909220 | Viola | Mar 2011 | B2 |
7909824 | Masuda et al. | Mar 2011 | B2 |
7918848 | Lau et al. | Apr 2011 | B2 |
7919184 | Mohapatra et al. | Apr 2011 | B2 |
7922061 | Shelton, IV et al. | Apr 2011 | B2 |
7922651 | Yamada et al. | Apr 2011 | B2 |
7922716 | Malecki et al. | Apr 2011 | B2 |
7931611 | Novak et al. | Apr 2011 | B2 |
7931649 | Couture et al. | Apr 2011 | B2 |
D637288 | Houghton | May 2011 | S |
D638540 | Ijiri et al. | May 2011 | S |
7935114 | Takashino et al. | May 2011 | B2 |
7936203 | Zimlich | May 2011 | B2 |
7951095 | Makin et al. | May 2011 | B2 |
7951165 | Golden et al. | May 2011 | B2 |
7955331 | Truckai et al. | Jun 2011 | B2 |
7959050 | Smith et al. | Jun 2011 | B2 |
7959626 | Hong et al. | Jun 2011 | B2 |
7963963 | Francischelli et al. | Jun 2011 | B2 |
7967602 | Lindquist | Jun 2011 | B2 |
7972329 | Refior et al. | Jul 2011 | B2 |
7976544 | McClurken et al. | Jul 2011 | B2 |
7980443 | Scheib et al. | Jul 2011 | B2 |
7981050 | Ritchart et al. | Jul 2011 | B2 |
7981113 | Truckai et al. | Jul 2011 | B2 |
7997278 | Utley et al. | Aug 2011 | B2 |
7998157 | Culp et al. | Aug 2011 | B2 |
8002732 | Visconti | Aug 2011 | B2 |
8006358 | Cooke et al. | Aug 2011 | B2 |
8016843 | Escaf | Sep 2011 | B2 |
8020743 | Shelton, IV | Sep 2011 | B2 |
8025630 | Murakami et al. | Sep 2011 | B2 |
8028885 | Smith et al. | Oct 2011 | B2 |
8033173 | Ehlert et al. | Oct 2011 | B2 |
8038693 | Allen | Oct 2011 | B2 |
8048011 | Okabe | Nov 2011 | B2 |
8048070 | O'Brien et al. | Nov 2011 | B2 |
8052672 | Laufer et al. | Nov 2011 | B2 |
8056720 | Hawkes | Nov 2011 | B2 |
8057467 | Faller et al. | Nov 2011 | B2 |
8057468 | Esky | Nov 2011 | B2 |
8057498 | Robertson | Nov 2011 | B2 |
8058771 | Giordano et al. | Nov 2011 | B2 |
8061014 | Smith et al. | Nov 2011 | B2 |
8066167 | Measamer et al. | Nov 2011 | B2 |
8070036 | Knodel | Dec 2011 | B1 |
8070711 | Bassinger et al. | Dec 2011 | B2 |
8070762 | Escudero et al. | Dec 2011 | B2 |
8075555 | Truckai et al. | Dec 2011 | B2 |
8075558 | Truckai et al. | Dec 2011 | B2 |
8089197 | Rinner et al. | Jan 2012 | B2 |
8092475 | Cotter et al. | Jan 2012 | B2 |
8097012 | Kagarise | Jan 2012 | B2 |
8100894 | Mucko et al. | Jan 2012 | B2 |
8105230 | Honda et al. | Jan 2012 | B2 |
8105323 | Buysse et al. | Jan 2012 | B2 |
8105324 | Palanker et al. | Jan 2012 | B2 |
8114104 | Young et al. | Feb 2012 | B2 |
8128624 | Couture et al. | Mar 2012 | B2 |
8133218 | Daw et al. | Mar 2012 | B2 |
8136712 | Zingman | Mar 2012 | B2 |
8137263 | Marescaux et al. | Mar 2012 | B2 |
8141762 | Bedi et al. | Mar 2012 | B2 |
8142421 | Cooper et al. | Mar 2012 | B2 |
8142461 | Houser et al. | Mar 2012 | B2 |
8147488 | Masuda | Apr 2012 | B2 |
8147508 | Madan et al. | Apr 2012 | B2 |
8152801 | Goldberg et al. | Apr 2012 | B2 |
8152825 | Madan et al. | Apr 2012 | B2 |
8157145 | Shelton, IV et al. | Apr 2012 | B2 |
8161977 | Shelton, IV et al. | Apr 2012 | B2 |
8162966 | Connor et al. | Apr 2012 | B2 |
8172846 | Brunnett et al. | May 2012 | B2 |
8172870 | Shipp | May 2012 | B2 |
8177800 | Spitz et al. | May 2012 | B2 |
8182501 | Houser et al. | May 2012 | B2 |
8182502 | Stulen et al. | May 2012 | B2 |
8186560 | Hess et al. | May 2012 | B2 |
8186877 | Klimovitch et al. | May 2012 | B2 |
8187267 | Pappone et al. | May 2012 | B2 |
D661801 | Price et al. | Jun 2012 | S |
D661802 | Price et al. | Jun 2012 | S |
D661803 | Price et al. | Jun 2012 | S |
D661804 | Price et al. | Jun 2012 | S |
8197472 | Lau et al. | Jun 2012 | B2 |
8197479 | Olson et al. | Jun 2012 | B2 |
8197502 | Smith et al. | Jun 2012 | B2 |
8207651 | Gilbert | Jun 2012 | B2 |
8210411 | Yates et al. | Jul 2012 | B2 |
8221306 | Okada et al. | Jul 2012 | B2 |
8221415 | Francischelli | Jul 2012 | B2 |
8226665 | Cohen | Jul 2012 | B2 |
8226675 | Houser et al. | Jul 2012 | B2 |
8231607 | Takuma | Jul 2012 | B2 |
8235917 | Joseph et al. | Aug 2012 | B2 |
8236018 | Yoshimine et al. | Aug 2012 | B2 |
8236019 | Houser | Aug 2012 | B2 |
8236020 | Smith et al. | Aug 2012 | B2 |
8241235 | Kahler et al. | Aug 2012 | B2 |
8241271 | Millman et al. | Aug 2012 | B2 |
8241282 | Unger et al. | Aug 2012 | B2 |
8241283 | Guerra et al. | Aug 2012 | B2 |
8241284 | Dycus et al. | Aug 2012 | B2 |
8241312 | Messerly | Aug 2012 | B2 |
8246575 | Viola | Aug 2012 | B2 |
8246615 | Behnke | Aug 2012 | B2 |
8246618 | Bucciaglia et al. | Aug 2012 | B2 |
8246642 | Houser et al. | Aug 2012 | B2 |
8251994 | McKenna et al. | Aug 2012 | B2 |
8252012 | Stulen | Aug 2012 | B2 |
8253303 | Giordano et al. | Aug 2012 | B2 |
8257377 | Wiener et al. | Sep 2012 | B2 |
8257387 | Cunningham | Sep 2012 | B2 |
8262563 | Bakos et al. | Sep 2012 | B2 |
8267300 | Boudreaux | Sep 2012 | B2 |
8273087 | Kimura et al. | Sep 2012 | B2 |
D669992 | Schafer et al. | Oct 2012 | S |
D669993 | Merchant et al. | Oct 2012 | S |
8277446 | Heard | Oct 2012 | B2 |
8277447 | Garrison et al. | Oct 2012 | B2 |
8277471 | Wiener et al. | Oct 2012 | B2 |
8282581 | Zhao et al. | Oct 2012 | B2 |
8282669 | Gerber et al. | Oct 2012 | B2 |
8286846 | Smith et al. | Oct 2012 | B2 |
8287485 | Kimura et al. | Oct 2012 | B2 |
8287528 | Wham et al. | Oct 2012 | B2 |
8287532 | Carroll et al. | Oct 2012 | B2 |
8292886 | Kerr et al. | Oct 2012 | B2 |
8292888 | Whitman | Oct 2012 | B2 |
8298223 | Wham et al. | Oct 2012 | B2 |
8298225 | Gilbert | Oct 2012 | B2 |
8298232 | Unger | Oct 2012 | B2 |
8298233 | Mueller | Oct 2012 | B2 |
8303576 | Brock | Nov 2012 | B2 |
8303580 | Wham et al. | Nov 2012 | B2 |
8303583 | Hosier et al. | Nov 2012 | B2 |
8303613 | Crandall et al. | Nov 2012 | B2 |
8306629 | Mioduski et al. | Nov 2012 | B2 |
8308040 | Huang et al. | Nov 2012 | B2 |
8319400 | Houser et al. | Nov 2012 | B2 |
8323302 | Robertson et al. | Dec 2012 | B2 |
8323310 | Kingsley | Dec 2012 | B2 |
8328061 | Kasvikis | Dec 2012 | B2 |
8328761 | Widenhouse et al. | Dec 2012 | B2 |
8328802 | Deville et al. | Dec 2012 | B2 |
8328833 | Cuny | Dec 2012 | B2 |
8328834 | Isaacs et al. | Dec 2012 | B2 |
8333778 | Smith et al. | Dec 2012 | B2 |
8333779 | Smith et al. | Dec 2012 | B2 |
8334468 | Palmer et al. | Dec 2012 | B2 |
8334635 | Voegele et al. | Dec 2012 | B2 |
8337407 | Quistgaard et al. | Dec 2012 | B2 |
8338726 | Palmer et al. | Dec 2012 | B2 |
8343146 | Godara et al. | Jan 2013 | B2 |
8344596 | Nield et al. | Jan 2013 | B2 |
8348880 | Messerly et al. | Jan 2013 | B2 |
8348967 | Stulen | Jan 2013 | B2 |
8353297 | Dacquay et al. | Jan 2013 | B2 |
8357103 | Mark et al. | Jan 2013 | B2 |
8357158 | McKenna et al. | Jan 2013 | B2 |
8366727 | Witt et al. | Feb 2013 | B2 |
8372064 | Douglass et al. | Feb 2013 | B2 |
8372099 | Deville et al. | Feb 2013 | B2 |
8372101 | Smith et al. | Feb 2013 | B2 |
8372102 | Stulen et al. | Feb 2013 | B2 |
8374670 | Selkee | Feb 2013 | B2 |
8377044 | Coe et al. | Feb 2013 | B2 |
8377059 | Deville et al. | Feb 2013 | B2 |
8377085 | Smith et al. | Feb 2013 | B2 |
8382748 | Geisei | Feb 2013 | B2 |
8382775 | Bender et al. | Feb 2013 | B1 |
8382782 | Robertson et al. | Feb 2013 | B2 |
8382792 | Chojin | Feb 2013 | B2 |
8388646 | Chojin | Mar 2013 | B2 |
8388647 | Nau, Jr. et al. | Mar 2013 | B2 |
8394096 | Moses et al. | Mar 2013 | B2 |
8394115 | Houser et al. | Mar 2013 | B2 |
8397971 | Yates et al. | Mar 2013 | B2 |
8403926 | Nobis et al. | Mar 2013 | B2 |
8403945 | Whitfield et al. | Mar 2013 | B2 |
8403948 | Deville et al. | Mar 2013 | B2 |
8403949 | Palmer et al. | Mar 2013 | B2 |
8403950 | Palmer et al. | Mar 2013 | B2 |
8409234 | Stabler et al. | Apr 2013 | B2 |
8414577 | Boudreaux et al. | Apr 2013 | B2 |
8418073 | Mohr et al. | Apr 2013 | B2 |
8418349 | Smith et al. | Apr 2013 | B2 |
8419757 | Smith et al. | Apr 2013 | B2 |
8419758 | Smith et al. | Apr 2013 | B2 |
8419759 | Dietz | Apr 2013 | B2 |
8423182 | Robinson et al. | Apr 2013 | B2 |
8425161 | Nagaya et al. | Apr 2013 | B2 |
8425410 | Murray et al. | Apr 2013 | B2 |
8425545 | Smith et al. | Apr 2013 | B2 |
8430811 | Hess et al. | Apr 2013 | B2 |
8430876 | Kappus et al. | Apr 2013 | B2 |
8430897 | Novak et al. | Apr 2013 | B2 |
8430898 | Wiener et al. | Apr 2013 | B2 |
8435257 | Smith et al. | May 2013 | B2 |
8435258 | Young et al. | May 2013 | B2 |
8439912 | Cunningham et al. | May 2013 | B2 |
8439939 | Deville et al. | May 2013 | B2 |
8444637 | Podmore et al. | May 2013 | B2 |
8444662 | Palmer et al. | May 2013 | B2 |
8444663 | Houser et al. | May 2013 | B2 |
8444664 | Balanev et al. | May 2013 | B2 |
8453906 | Huang et al. | Jun 2013 | B2 |
8454599 | Inagaki et al. | Jun 2013 | B2 |
8454639 | Du et al. | Jun 2013 | B2 |
8460288 | Tamai et al. | Jun 2013 | B2 |
8460292 | Truckai et al. | Jun 2013 | B2 |
8460326 | Houser et al. | Jun 2013 | B2 |
8461744 | Wiener et al. | Jun 2013 | B2 |
8469981 | Robertson et al. | Jun 2013 | B2 |
8479969 | Shelton, IV | Jul 2013 | B2 |
8480703 | Nicholas et al. | Jul 2013 | B2 |
8484833 | Cunningham et al. | Jul 2013 | B2 |
8485413 | Scheib et al. | Jul 2013 | B2 |
8485970 | Widenhouse et al. | Jul 2013 | B2 |
8486057 | Behnke, II | Jul 2013 | B2 |
8486096 | Robertson et al. | Jul 2013 | B2 |
8491578 | Manwaring et al. | Jul 2013 | B2 |
8491625 | Horner | Jul 2013 | B2 |
8496682 | Guerra et al. | Jul 2013 | B2 |
D687549 | Johnson et al. | Aug 2013 | S |
8506555 | Ruiz Morales | Aug 2013 | B2 |
8509318 | Tailliet | Aug 2013 | B2 |
8512336 | Couture | Aug 2013 | B2 |
8512359 | Whitman et al. | Aug 2013 | B2 |
8512364 | Kowalski et al. | Aug 2013 | B2 |
8512365 | Wiener et al. | Aug 2013 | B2 |
8518067 | Masuda et al. | Aug 2013 | B2 |
8523889 | Stulen et al. | Sep 2013 | B2 |
8528563 | Gruber | Sep 2013 | B2 |
8529437 | Taylor et al. | Sep 2013 | B2 |
8529565 | Masuda et al. | Sep 2013 | B2 |
8531064 | Robertson et al. | Sep 2013 | B2 |
8535311 | Schall | Sep 2013 | B2 |
8535340 | Allen | Sep 2013 | B2 |
8535341 | Allen | Sep 2013 | B2 |
8540128 | Shelton, IV et al. | Sep 2013 | B2 |
8546996 | Messerly et al. | Oct 2013 | B2 |
8546999 | Houser et al. | Oct 2013 | B2 |
8551077 | Main et al. | Oct 2013 | B2 |
8551086 | Kimura et al. | Oct 2013 | B2 |
8562592 | Conlon et al. | Oct 2013 | B2 |
8562598 | Falkenstein et al. | Oct 2013 | B2 |
8562604 | Nishimura | Oct 2013 | B2 |
8568390 | Mueller | Oct 2013 | B2 |
8568400 | Gilbert | Oct 2013 | B2 |
8568412 | Brandt et al. | Oct 2013 | B2 |
8569997 | Lee | Oct 2013 | B2 |
8573461 | Shelton, IV et al. | Nov 2013 | B2 |
8573465 | Shelton, IV | Nov 2013 | B2 |
8574231 | Boudreaux et al. | Nov 2013 | B2 |
8574253 | Gruber et al. | Nov 2013 | B2 |
8579176 | Smith et al. | Nov 2013 | B2 |
8579897 | Vakharia et al. | Nov 2013 | B2 |
8579928 | Robertson et al. | Nov 2013 | B2 |
8579937 | Gresham | Nov 2013 | B2 |
8591459 | Clymer et al. | Nov 2013 | B2 |
8591506 | Wham et al. | Nov 2013 | B2 |
8591536 | Robertson | Nov 2013 | B2 |
D695407 | Price et al. | Dec 2013 | S |
D696631 | Price et al. | Dec 2013 | S |
8597193 | Grunwald et al. | Dec 2013 | B2 |
8602031 | Reis et al. | Dec 2013 | B2 |
8602288 | Shelton, IV et al. | Dec 2013 | B2 |
8608745 | Guzman et al. | Dec 2013 | B2 |
8610334 | Bromfield | Dec 2013 | B2 |
8613383 | Beckman et al. | Dec 2013 | B2 |
8616431 | Timm et al. | Dec 2013 | B2 |
8622274 | Yates et al. | Jan 2014 | B2 |
8623011 | Spivey | Jan 2014 | B2 |
8623016 | Fischer | Jan 2014 | B2 |
8623027 | Price et al. | Jan 2014 | B2 |
8623044 | Timm et al. | Jan 2014 | B2 |
8628529 | Aldridge et al. | Jan 2014 | B2 |
8628534 | Jones et al. | Jan 2014 | B2 |
8632461 | Glossop | Jan 2014 | B2 |
8636736 | Yates et al. | Jan 2014 | B2 |
8638428 | Brown | Jan 2014 | B2 |
8640788 | Dachs, II et al. | Feb 2014 | B2 |
8641663 | Kirschenman et al. | Feb 2014 | B2 |
8647350 | Mohan et al. | Feb 2014 | B2 |
8650728 | Wan et al. | Feb 2014 | B2 |
8651230 | Peshkovsky et al. | Feb 2014 | B2 |
8652120 | Giordano et al. | Feb 2014 | B2 |
8652132 | Tsuchiya et al. | Feb 2014 | B2 |
8652155 | Houser et al. | Feb 2014 | B2 |
8659208 | Rose et al. | Feb 2014 | B1 |
8663220 | Wiener et al. | Mar 2014 | B2 |
8663222 | Anderson et al. | Mar 2014 | B2 |
8663262 | Smith et al. | Mar 2014 | B2 |
8668691 | Heard | Mar 2014 | B2 |
8668710 | Slipszenko et al. | Mar 2014 | B2 |
8684253 | Giordano et al. | Apr 2014 | B2 |
8685016 | Wham et al. | Apr 2014 | B2 |
8685020 | Weizman et al. | Apr 2014 | B2 |
8690582 | Rohrbach et al. | Apr 2014 | B2 |
8691268 | Weimann | Apr 2014 | B2 |
8695866 | Leimbach et al. | Apr 2014 | B2 |
8696366 | Chen et al. | Apr 2014 | B2 |
8696665 | Hunt et al. | Apr 2014 | B2 |
8702609 | Hadjicostis | Apr 2014 | B2 |
8702704 | Shelton, IV et al. | Apr 2014 | B2 |
8704425 | Giordano et al. | Apr 2014 | B2 |
8708213 | Shelton, IV et al. | Apr 2014 | B2 |
8709031 | Stulen | Apr 2014 | B2 |
8709035 | Johnson et al. | Apr 2014 | B2 |
8715270 | Weitzner et al. | May 2014 | B2 |
8715277 | Weizman | May 2014 | B2 |
8715306 | Faller et al. | May 2014 | B2 |
8721640 | Taylor et al. | May 2014 | B2 |
8721657 | Kondoh et al. | May 2014 | B2 |
8734443 | Hixson et al. | May 2014 | B2 |
8734476 | Rhee et al. | May 2014 | B2 |
8747238 | Shelton, IV et al. | Jun 2014 | B2 |
8747351 | Schultz | Jun 2014 | B2 |
8747404 | Boudreaux et al. | Jun 2014 | B2 |
8749116 | Messerly et al. | Jun 2014 | B2 |
8752264 | Ackley et al. | Jun 2014 | B2 |
8752749 | Moore et al. | Jun 2014 | B2 |
8753338 | Widenhouse et al. | Jun 2014 | B2 |
8754570 | Voegele et al. | Jun 2014 | B2 |
8758342 | Bales et al. | Jun 2014 | B2 |
8758352 | Cooper et al. | Jun 2014 | B2 |
8764735 | Coe et al. | Jul 2014 | B2 |
8764747 | Cummings et al. | Jul 2014 | B2 |
8767970 | Eppolito | Jul 2014 | B2 |
8770459 | Racenet et al. | Jul 2014 | B2 |
8771269 | Sherman et al. | Jul 2014 | B2 |
8771270 | Burbank | Jul 2014 | B2 |
8773001 | Wiener et al. | Jul 2014 | B2 |
8777944 | Frankhouser et al. | Jul 2014 | B2 |
8779648 | Giordano et al. | Jul 2014 | B2 |
8783541 | Shelton, IV et al. | Jul 2014 | B2 |
8784415 | Malackowski et al. | Jul 2014 | B2 |
8784418 | Romero | Jul 2014 | B2 |
8790342 | Stulen et al. | Jul 2014 | B2 |
8795276 | Dietz et al. | Aug 2014 | B2 |
8795327 | Dietz et al. | Aug 2014 | B2 |
8800838 | Shelton, IV | Aug 2014 | B2 |
8801710 | Ullrich et al. | Aug 2014 | B2 |
8801752 | Fortier et al. | Aug 2014 | B2 |
8808319 | Houser et al. | Aug 2014 | B2 |
8814856 | Elmouelhi et al. | Aug 2014 | B2 |
8814870 | Paraschiv et al. | Aug 2014 | B2 |
8820605 | Shelton, IV | Sep 2014 | B2 |
8821388 | Naito et al. | Sep 2014 | B2 |
8827992 | Koss et al. | Sep 2014 | B2 |
8827995 | Schaller et al. | Sep 2014 | B2 |
8834466 | Cummings et al. | Sep 2014 | B2 |
8834518 | Faller et al. | Sep 2014 | B2 |
8844789 | Shelton, IV et al. | Sep 2014 | B2 |
8845537 | Tanaka et al. | Sep 2014 | B2 |
8845630 | Mehta et al. | Sep 2014 | B2 |
8848808 | Dress | Sep 2014 | B2 |
8851354 | Swensgard et al. | Oct 2014 | B2 |
8852184 | Kucklick | Oct 2014 | B2 |
8858547 | Brogna | Oct 2014 | B2 |
8862955 | Cesari | Oct 2014 | B2 |
8864709 | Akagane et al. | Oct 2014 | B2 |
8864749 | Okada | Oct 2014 | B2 |
8864757 | Klimovitch et al. | Oct 2014 | B2 |
8864761 | Johnson et al. | Oct 2014 | B2 |
8870865 | Frankhouser et al. | Oct 2014 | B2 |
8870867 | Walberg et al. | Oct 2014 | B2 |
8882766 | Couture et al. | Nov 2014 | B2 |
8882791 | Stulen | Nov 2014 | B2 |
8882792 | Dietz et al. | Nov 2014 | B2 |
8888776 | Dietz et al. | Nov 2014 | B2 |
8888783 | Young | Nov 2014 | B2 |
8888809 | Davison et al. | Nov 2014 | B2 |
8899462 | Kostrzewski et al. | Dec 2014 | B2 |
8900259 | Houser et al. | Dec 2014 | B2 |
8906016 | Boudreaux et al. | Dec 2014 | B2 |
8906017 | Rioux et al. | Dec 2014 | B2 |
8911438 | Swoyer et al. | Dec 2014 | B2 |
8911460 | Neurohr et al. | Dec 2014 | B2 |
8920412 | Fritz et al. | Dec 2014 | B2 |
8920414 | Stone et al. | Dec 2014 | B2 |
8920421 | Rupp | Dec 2014 | B2 |
8926607 | Norvell et al. | Jan 2015 | B2 |
8926608 | Bacher et al. | Jan 2015 | B2 |
8931682 | Timm et al. | Jan 2015 | B2 |
8936614 | Allen, IV | Jan 2015 | B2 |
8939974 | Boudreaux et al. | Jan 2015 | B2 |
8951248 | Messerly et al. | Feb 2015 | B2 |
8951272 | Robertson et al. | Feb 2015 | B2 |
8956349 | Aldridge et al. | Feb 2015 | B2 |
8961515 | Twomey et al. | Feb 2015 | B2 |
8961547 | Dietz et al. | Feb 2015 | B2 |
8968283 | Kharin | Mar 2015 | B2 |
8968294 | Maass et al. | Mar 2015 | B2 |
8968355 | Malkowski et al. | Mar 2015 | B2 |
8974447 | Kimball et al. | Mar 2015 | B2 |
8974477 | Yamada | Mar 2015 | B2 |
8974479 | Ross et al. | Mar 2015 | B2 |
8979843 | Timm et al. | Mar 2015 | B2 |
8979844 | White et al. | Mar 2015 | B2 |
8979890 | Boudreaux | Mar 2015 | B2 |
8986287 | Park et al. | Mar 2015 | B2 |
8986302 | Aldridge et al. | Mar 2015 | B2 |
8989855 | Murphy et al. | Mar 2015 | B2 |
8989903 | Weir et al. | Mar 2015 | B2 |
8991678 | Wellman et al. | Mar 2015 | B2 |
8992422 | Spivey et al. | Mar 2015 | B2 |
8992526 | Brodbeck et al. | Mar 2015 | B2 |
9005199 | Beckman et al. | Apr 2015 | B2 |
9011437 | Woodruff et al. | Apr 2015 | B2 |
9011471 | Timm et al. | Apr 2015 | B2 |
9017326 | DiNardo et al. | Apr 2015 | B2 |
9017355 | Smith et al. | Apr 2015 | B2 |
9017372 | Artale et al. | Apr 2015 | B2 |
9023071 | Miller et al. | May 2015 | B2 |
9023072 | Young et al. | May 2015 | B2 |
9028397 | Naito | May 2015 | B2 |
9028476 | Bonn | May 2015 | B2 |
9028494 | Shelton, IV et al. | May 2015 | B2 |
9028519 | Yates et al. | May 2015 | B2 |
9031667 | Williams | May 2015 | B2 |
9033973 | Krapohl et al. | May 2015 | B2 |
9035741 | Hamel et al. | May 2015 | B2 |
9039690 | Kersten et al. | May 2015 | B2 |
9039695 | Giordano et al. | May 2015 | B2 |
9039705 | Takashino | May 2015 | B2 |
9043018 | Mohr | May 2015 | B2 |
9044227 | Shelton, IV et al. | Jun 2015 | B2 |
9044243 | Johnson et al. | Jun 2015 | B2 |
9044245 | Condie et al. | Jun 2015 | B2 |
9044256 | Cadeddu et al. | Jun 2015 | B2 |
9044261 | Houser | Jun 2015 | B2 |
9050093 | Aldridge et al. | Jun 2015 | B2 |
9050098 | Deville et al. | Jun 2015 | B2 |
9050124 | Houser | Jun 2015 | B2 |
9055961 | Manzo et al. | Jun 2015 | B2 |
9059547 | McLawhorn | Jun 2015 | B2 |
9060770 | Shelton, IV et al. | Jun 2015 | B2 |
9060775 | Wiener et al. | Jun 2015 | B2 |
9060776 | Yates et al. | Jun 2015 | B2 |
9063049 | Beach et al. | Jun 2015 | B2 |
9066723 | Beller et al. | Jun 2015 | B2 |
9066747 | Robertson | Jun 2015 | B2 |
9072535 | Shelton, IV et al. | Jul 2015 | B2 |
9072536 | Shelton, IV et al. | Jul 2015 | B2 |
9072539 | Messerly et al. | Jul 2015 | B2 |
9084624 | Larkin et al. | Jul 2015 | B2 |
9084878 | Kawaguchi et al. | Jul 2015 | B2 |
9089327 | Worrell et al. | Jul 2015 | B2 |
9089360 | Messerly et al. | Jul 2015 | B2 |
9095362 | Dachs, II et al. | Aug 2015 | B2 |
9095367 | Olson et al. | Aug 2015 | B2 |
9101385 | Shelton, IV et al. | Aug 2015 | B2 |
9107684 | Ma | Aug 2015 | B2 |
9107689 | Robertson et al. | Aug 2015 | B2 |
9107690 | Bales, Jr. et al. | Aug 2015 | B2 |
9113900 | Buysse et al. | Aug 2015 | B2 |
9113940 | Twomey | Aug 2015 | B2 |
9114245 | Dietz et al. | Aug 2015 | B2 |
9119657 | Shelton, IV et al. | Sep 2015 | B2 |
9119957 | Gantz et al. | Sep 2015 | B2 |
9125662 | Shelton, IV | Sep 2015 | B2 |
9125667 | Stone et al. | Sep 2015 | B2 |
9125722 | Schwartz | Sep 2015 | B2 |
9147965 | Lee | Sep 2015 | B2 |
9149324 | Huang et al. | Oct 2015 | B2 |
9149325 | Worrell et al. | Oct 2015 | B2 |
9161803 | Yates et al. | Oct 2015 | B2 |
9168054 | Turner et al. | Oct 2015 | B2 |
9168055 | Houser et al. | Oct 2015 | B2 |
9168085 | Juzkiw et al. | Oct 2015 | B2 |
9168089 | Buysse et al. | Oct 2015 | B2 |
9168090 | Strobl et al. | Oct 2015 | B2 |
9173656 | Schurr et al. | Nov 2015 | B2 |
9179912 | Yates et al. | Nov 2015 | B2 |
9186199 | Strauss et al. | Nov 2015 | B2 |
9186204 | Nishimura et al. | Nov 2015 | B2 |
9192380 | Racenet et al. | Nov 2015 | B2 |
9192431 | Woodruff et al. | Nov 2015 | B2 |
9198714 | Worrell et al. | Dec 2015 | B2 |
9198715 | Livneh | Dec 2015 | B2 |
9204879 | Shelton, IV | Dec 2015 | B2 |
9204891 | Weitzman | Dec 2015 | B2 |
9204918 | Germain et al. | Dec 2015 | B2 |
9204923 | Manzo et al. | Dec 2015 | B2 |
9216050 | Condie et al. | Dec 2015 | B2 |
9216062 | Duque et al. | Dec 2015 | B2 |
9220483 | Frankhouser et al. | Dec 2015 | B2 |
9220527 | Houser et al. | Dec 2015 | B2 |
9220559 | Worrell et al. | Dec 2015 | B2 |
9226750 | Weir et al. | Jan 2016 | B2 |
9226751 | Shelton, IV et al. | Jan 2016 | B2 |
9226766 | Aldridge et al. | Jan 2016 | B2 |
9226767 | Stulen et al. | Jan 2016 | B2 |
9232979 | Parihar et al. | Jan 2016 | B2 |
9237891 | Shelton, IV | Jan 2016 | B2 |
9237921 | Messerly et al. | Jan 2016 | B2 |
9237923 | Worrell et al. | Jan 2016 | B2 |
9241060 | Fujisaki | Jan 2016 | B1 |
9241692 | Gunday et al. | Jan 2016 | B2 |
9241728 | Price et al. | Jan 2016 | B2 |
9241730 | Babaev | Jan 2016 | B2 |
9241731 | Boudreaux et al. | Jan 2016 | B2 |
9241768 | Sandhu et al. | Jan 2016 | B2 |
9247953 | Palmer et al. | Feb 2016 | B2 |
9254165 | Aronow et al. | Feb 2016 | B2 |
9254171 | Trees et al. | Feb 2016 | B2 |
9259234 | Robertson et al. | Feb 2016 | B2 |
9259265 | Harris et al. | Feb 2016 | B2 |
9265567 | Orban, III et al. | Feb 2016 | B2 |
9265926 | Strobl et al. | Feb 2016 | B2 |
9265973 | Akagane | Feb 2016 | B2 |
9277962 | Koss et al. | Mar 2016 | B2 |
9282974 | Shelton, IV | Mar 2016 | B2 |
9283027 | Monson et al. | Mar 2016 | B2 |
9283045 | Rhee et al. | Mar 2016 | B2 |
9289256 | Shelton, IV et al. | Mar 2016 | B2 |
9295514 | Shelton, IV et al. | Mar 2016 | B2 |
9301759 | Spivey et al. | Apr 2016 | B2 |
9301772 | Kimball et al. | Apr 2016 | B2 |
9307388 | Liang et al. | Apr 2016 | B2 |
9307986 | Hall et al. | Apr 2016 | B2 |
9308009 | Madan et al. | Apr 2016 | B2 |
9308014 | Fischer | Apr 2016 | B2 |
9314292 | Trees et al. | Apr 2016 | B2 |
9314301 | Ben-Haim et al. | Apr 2016 | B2 |
9326754 | Polster | May 2016 | B2 |
9326787 | Sanai et al. | May 2016 | B2 |
9326788 | Batross et al. | May 2016 | B2 |
9333025 | Monson et al. | May 2016 | B2 |
9339289 | Robertson | May 2016 | B2 |
9339323 | Eder et al. | May 2016 | B2 |
9339326 | McCullagh et al. | May 2016 | B2 |
9345534 | Artale et al. | May 2016 | B2 |
9345900 | Wu et al. | May 2016 | B2 |
9351642 | Nadkarni et al. | May 2016 | B2 |
9351754 | Vakharia et al. | May 2016 | B2 |
9352173 | Yamada et al. | May 2016 | B2 |
9358065 | Ladtkow et al. | Jun 2016 | B2 |
9358407 | Akagane | Jun 2016 | B2 |
9364230 | Shelton, IV et al. | Jun 2016 | B2 |
9370400 | Parihar | Jun 2016 | B2 |
9370611 | Ross et al. | Jun 2016 | B2 |
9375230 | Ross et al. | Jun 2016 | B2 |
9375232 | Hunt et al. | Jun 2016 | B2 |
9375267 | Kerr et al. | Jun 2016 | B2 |
9381058 | Houser et al. | Jul 2016 | B2 |
9386983 | Swensgard et al. | Jul 2016 | B2 |
9393037 | Olson et al. | Jul 2016 | B2 |
D763442 | Price et al. | Aug 2016 | S |
9402680 | Ginnebaugh et al. | Aug 2016 | B2 |
9402682 | Worrell et al. | Aug 2016 | B2 |
9408606 | Shelton, IV | Aug 2016 | B2 |
9408622 | Stulen et al. | Aug 2016 | B2 |
9408660 | Strobl et al. | Aug 2016 | B2 |
9414853 | Stulen et al. | Aug 2016 | B2 |
9414880 | Monson et al. | Aug 2016 | B2 |
9421060 | Monson et al. | Aug 2016 | B2 |
9427249 | Robertson et al. | Aug 2016 | B2 |
9439668 | Timm et al. | Sep 2016 | B2 |
9439669 | Wiener et al. | Sep 2016 | B2 |
9439671 | Akagane | Sep 2016 | B2 |
9445784 | O'Keeffe | Sep 2016 | B2 |
9445832 | Wiener et al. | Sep 2016 | B2 |
9445833 | Akagane | Sep 2016 | B2 |
9451967 | Jordan et al. | Sep 2016 | B2 |
9456863 | Moua | Oct 2016 | B2 |
9456864 | Witt et al. | Oct 2016 | B2 |
9468498 | Sigmon, Jr. | Oct 2016 | B2 |
9474542 | Slipszenko et al. | Oct 2016 | B2 |
9486235 | Harrington et al. | Nov 2016 | B2 |
9486236 | Price et al. | Nov 2016 | B2 |
9492187 | Ravikumar et al. | Nov 2016 | B2 |
9492224 | Boudreaux et al. | Nov 2016 | B2 |
9498245 | Voegele et al. | Nov 2016 | B2 |
9504483 | Houser et al. | Nov 2016 | B2 |
9504524 | Behnke, II | Nov 2016 | B2 |
9504855 | Messerly et al. | Nov 2016 | B2 |
9510850 | Robertson et al. | Dec 2016 | B2 |
9510906 | Boudreaux et al. | Dec 2016 | B2 |
9522029 | Yates et al. | Dec 2016 | B2 |
9526564 | Rusin | Dec 2016 | B2 |
9526565 | Strobl | Dec 2016 | B2 |
9545253 | Worrell et al. | Jan 2017 | B2 |
9545497 | Wenderow et al. | Jan 2017 | B2 |
9554846 | Boudreaux | Jan 2017 | B2 |
9554854 | Yates et al. | Jan 2017 | B2 |
9561038 | Shelton, IV et al. | Feb 2017 | B2 |
9574644 | Parihar | Feb 2017 | B2 |
9592072 | Akagane | Mar 2017 | B2 |
9597143 | Madan et al. | Mar 2017 | B2 |
9610091 | Johnson et al. | Apr 2017 | B2 |
9610114 | Baxter, III et al. | Apr 2017 | B2 |
9615877 | Tyrrell et al. | Apr 2017 | B2 |
9622729 | Dewaele et al. | Apr 2017 | B2 |
9623237 | Turner et al. | Apr 2017 | B2 |
9636135 | Stulen | May 2017 | B2 |
9638770 | Dietz et al. | May 2017 | B2 |
9642644 | Houser et al. | May 2017 | B2 |
9642669 | Takashino et al. | May 2017 | B2 |
9643052 | Tchao et al. | May 2017 | B2 |
9649111 | Shelton, IV et al. | May 2017 | B2 |
9649126 | Robertson et al. | May 2017 | B2 |
9662131 | Omori et al. | May 2017 | B2 |
9668806 | Unger et al. | Jun 2017 | B2 |
9671860 | Ogawa et al. | Jun 2017 | B2 |
9675374 | Stulen et al. | Jun 2017 | B2 |
9687290 | Keller | Jun 2017 | B2 |
9700339 | Nield | Jul 2017 | B2 |
9700343 | Messerly et al. | Jul 2017 | B2 |
9707004 | Houser et al. | Jul 2017 | B2 |
9707027 | Ruddenklau et al. | Jul 2017 | B2 |
9707030 | Davison et al. | Jul 2017 | B2 |
9713507 | Stulen et al. | Jul 2017 | B2 |
9724118 | Schulte et al. | Aug 2017 | B2 |
9724152 | Horiie et al. | Aug 2017 | B2 |
9737326 | Worrell et al. | Aug 2017 | B2 |
9737355 | Yates et al. | Aug 2017 | B2 |
9737358 | Beckman et al. | Aug 2017 | B2 |
9737735 | Dietz et al. | Aug 2017 | B2 |
9743947 | Price et al. | Aug 2017 | B2 |
9757142 | Shimizu | Sep 2017 | B2 |
9757186 | Boudreaux et al. | Sep 2017 | B2 |
9764164 | Wiener et al. | Sep 2017 | B2 |
9782214 | Houser et al. | Oct 2017 | B2 |
9788851 | Dannaher et al. | Oct 2017 | B2 |
9795405 | Price et al. | Oct 2017 | B2 |
9795436 | Yates et al. | Oct 2017 | B2 |
9795808 | Messerly et al. | Oct 2017 | B2 |
9801648 | Houser et al. | Oct 2017 | B2 |
9801675 | Sanai et al. | Oct 2017 | B2 |
9808308 | Faller et al. | Nov 2017 | B2 |
9814514 | Shelton, IV et al. | Nov 2017 | B2 |
9820768 | Gee et al. | Nov 2017 | B2 |
9820771 | Norton et al. | Nov 2017 | B2 |
9820806 | Lee et al. | Nov 2017 | B2 |
9826976 | Parihar et al. | Nov 2017 | B2 |
9839443 | Brockman et al. | Dec 2017 | B2 |
9839796 | Sawada | Dec 2017 | B2 |
9848901 | Robertson et al. | Dec 2017 | B2 |
9848902 | Price et al. | Dec 2017 | B2 |
9848937 | Trees et al. | Dec 2017 | B2 |
9861428 | Trees et al. | Jan 2018 | B2 |
9872725 | Worrell et al. | Jan 2018 | B2 |
9877720 | Worrell et al. | Jan 2018 | B2 |
9877776 | Boudreaux | Jan 2018 | B2 |
9883884 | Neurohr et al. | Feb 2018 | B2 |
9888958 | Evans et al. | Feb 2018 | B2 |
9901339 | Farascioni | Feb 2018 | B2 |
9901359 | Faller et al. | Feb 2018 | B2 |
9907563 | Germain et al. | Mar 2018 | B2 |
9913655 | Scheib et al. | Mar 2018 | B2 |
9913656 | Stulen | Mar 2018 | B2 |
9913680 | Voegele et al. | Mar 2018 | B2 |
9918736 | Van Tol et al. | Mar 2018 | B2 |
9925003 | Parihar et al. | Mar 2018 | B2 |
9943325 | Faller et al. | Apr 2018 | B2 |
9949785 | Price et al. | Apr 2018 | B2 |
9949788 | Boudreaux | Apr 2018 | B2 |
9962182 | Dietz et al. | May 2018 | B2 |
9987033 | Neurohr et al. | Jun 2018 | B2 |
10010339 | Witt et al. | Jul 2018 | B2 |
10010341 | Houser et al. | Jul 2018 | B2 |
10016207 | Suzuki et al. | Jul 2018 | B2 |
10022142 | Aranyi et al. | Jul 2018 | B2 |
10022567 | Messerly et al. | Jul 2018 | B2 |
10022568 | Messerly et al. | Jul 2018 | B2 |
10028765 | Hibner et al. | Jul 2018 | B2 |
10028786 | Mucilli et al. | Jul 2018 | B2 |
10034684 | Weisenburgh, II et al. | Jul 2018 | B2 |
10034685 | Boudreaux et al. | Jul 2018 | B2 |
10034704 | Asher et al. | Jul 2018 | B2 |
10039588 | Harper et al. | Aug 2018 | B2 |
10045794 | Witt et al. | Aug 2018 | B2 |
10045819 | Jensen et al. | Aug 2018 | B2 |
10070916 | Artale | Sep 2018 | B2 |
10085762 | Timm et al. | Oct 2018 | B2 |
10092310 | Boudreaux et al. | Oct 2018 | B2 |
10092344 | Mohr et al. | Oct 2018 | B2 |
10092348 | Boudreaux | Oct 2018 | B2 |
10092350 | Rothweiler et al. | Oct 2018 | B2 |
10111699 | Boudreaux | Oct 2018 | B2 |
10117667 | Robertson et al. | Nov 2018 | B2 |
10117702 | Danziger et al. | Nov 2018 | B2 |
10130410 | Strobl et al. | Nov 2018 | B2 |
10154852 | Conlon et al. | Dec 2018 | B2 |
10159524 | Yates et al. | Dec 2018 | B2 |
10166060 | Johnson et al. | Jan 2019 | B2 |
10172669 | Felder et al. | Jan 2019 | B2 |
10179022 | Yates et al. | Jan 2019 | B2 |
10182837 | Isola et al. | Jan 2019 | B2 |
10188385 | Kerr et al. | Jan 2019 | B2 |
10194972 | Yates et al. | Feb 2019 | B2 |
10194973 | Wiener et al. | Feb 2019 | B2 |
10194976 | Boudreaux | Feb 2019 | B2 |
10194977 | Yang | Feb 2019 | B2 |
10201365 | Boudreaux et al. | Feb 2019 | B2 |
10201382 | Wiener et al. | Feb 2019 | B2 |
10226273 | Messerly et al. | Mar 2019 | B2 |
10231747 | Stulen et al. | Mar 2019 | B2 |
10245064 | Rhee et al. | Apr 2019 | B2 |
10245065 | Witt et al. | Apr 2019 | B2 |
10245095 | Boudreaux | Apr 2019 | B2 |
10251664 | Shelton, IV et al. | Apr 2019 | B2 |
10263171 | Wiener et al. | Apr 2019 | B2 |
10265094 | Witt et al. | Apr 2019 | B2 |
10265117 | Wiener et al. | Apr 2019 | B2 |
10265118 | Gerhardt | Apr 2019 | B2 |
D847990 | Kimball | May 2019 | S |
10278721 | Dietz et al. | May 2019 | B2 |
10285723 | Conlon et al. | May 2019 | B2 |
10285724 | Faller et al. | May 2019 | B2 |
10299810 | Robertson et al. | May 2019 | B2 |
10299821 | Shelton, IV et al. | May 2019 | B2 |
10314638 | Gee et al. | Jun 2019 | B2 |
10321950 | Yates et al. | Jun 2019 | B2 |
10335182 | Stulen et al. | Jul 2019 | B2 |
10335614 | Messerly et al. | Jul 2019 | B2 |
10342602 | Strobl et al. | Jul 2019 | B2 |
10357303 | Conlon et al. | Jul 2019 | B2 |
10363058 | Roberson et al. | Jul 2019 | B2 |
10368892 | Stulen et al. | Aug 2019 | B2 |
10368894 | Madan et al. | Aug 2019 | B2 |
10368957 | Denzinger et al. | Aug 2019 | B2 |
10398466 | Stulen et al. | Sep 2019 | B2 |
10398497 | Batross et al. | Sep 2019 | B2 |
10413352 | Thomas et al. | Sep 2019 | B2 |
10420579 | Wiener et al. | Sep 2019 | B2 |
10420580 | Messerly et al. | Sep 2019 | B2 |
10420607 | Woloszko et al. | Sep 2019 | B2 |
10426507 | Wiener et al. | Oct 2019 | B2 |
10426978 | Akagane | Oct 2019 | B2 |
10433865 | Witt et al. | Oct 2019 | B2 |
10433866 | Witt et al. | Oct 2019 | B2 |
10433900 | Harris et al. | Oct 2019 | B2 |
10441308 | Robertson | Oct 2019 | B2 |
10441310 | Olson et al. | Oct 2019 | B2 |
10441345 | Aldridge et al. | Oct 2019 | B2 |
10463421 | Boudreaux et al. | Nov 2019 | B2 |
10463887 | Witt et al. | Nov 2019 | B2 |
10470788 | Sinelnikov | Nov 2019 | B2 |
10512795 | Voegele et al. | Dec 2019 | B2 |
10517627 | Timm et al. | Dec 2019 | B2 |
10524854 | Woodruff et al. | Jan 2020 | B2 |
10531910 | Houser et al. | Jan 2020 | B2 |
10537351 | Shelton, IV et al. | Jan 2020 | B2 |
10537352 | Faller et al. | Jan 2020 | B2 |
10537667 | Anim | Jan 2020 | B2 |
10543008 | Vakharia et al. | Jan 2020 | B2 |
10555750 | Conlon et al. | Feb 2020 | B2 |
10555769 | Worrell et al. | Feb 2020 | B2 |
10561436 | Asher et al. | Feb 2020 | B2 |
10575892 | Danziger et al. | Mar 2020 | B2 |
10595929 | Boudreaux et al. | Mar 2020 | B2 |
10595930 | Scheib et al. | Mar 2020 | B2 |
10603064 | Zhang | Mar 2020 | B2 |
10610286 | Wiener et al. | Apr 2020 | B2 |
10624665 | Noui et al. | Apr 2020 | B2 |
10624691 | Wiener et al. | Apr 2020 | B2 |
10639092 | Corbett et al. | May 2020 | B2 |
10677764 | Ross et al. | Jun 2020 | B2 |
10687884 | Wiener et al. | Jun 2020 | B2 |
10709469 | Shelton, IV et al. | Jul 2020 | B2 |
10709906 | Nield | Jul 2020 | B2 |
10716615 | Shelton, IV et al. | Jul 2020 | B2 |
10722261 | Houser et al. | Jul 2020 | B2 |
10729458 | Stoddard et al. | Aug 2020 | B2 |
10736649 | Messerly et al. | Aug 2020 | B2 |
10736685 | Wiener et al. | Aug 2020 | B2 |
10751108 | Yates et al. | Aug 2020 | B2 |
10758294 | Jones | Sep 2020 | B2 |
10779845 | Timm et al. | Sep 2020 | B2 |
10779847 | Messerly et al. | Sep 2020 | B2 |
10779848 | Houser | Sep 2020 | B2 |
10779849 | Shelton, IV et al. | Sep 2020 | B2 |
10779879 | Yates et al. | Sep 2020 | B2 |
10820920 | Scoggins et al. | Nov 2020 | B2 |
10820938 | Fischer et al. | Nov 2020 | B2 |
10828056 | Messerly et al. | Nov 2020 | B2 |
10828057 | Neurohr et al. | Nov 2020 | B2 |
10828058 | Shelton, IV et al. | Nov 2020 | B2 |
10828059 | Price et al. | Nov 2020 | B2 |
11033292 | Green et al. | Jun 2021 | B2 |
D924400 | Kimball | Jul 2021 | S |
20010011176 | Boukhny | Aug 2001 | A1 |
20010025173 | Ritchie et al. | Sep 2001 | A1 |
20010025183 | Shahidi | Sep 2001 | A1 |
20010025184 | Messerly | Sep 2001 | A1 |
20010031950 | Ryan | Oct 2001 | A1 |
20010032002 | McClurken et al. | Oct 2001 | A1 |
20010039419 | Francischelli et al. | Nov 2001 | A1 |
20020002377 | Cimino | Jan 2002 | A1 |
20020002378 | Messerly | Jan 2002 | A1 |
20020016603 | Wells | Feb 2002 | A1 |
20020019649 | Sikora et al. | Feb 2002 | A1 |
20020022836 | Goble et al. | Feb 2002 | A1 |
20020029055 | Bonutti | Mar 2002 | A1 |
20020049551 | Friedman et al. | Apr 2002 | A1 |
20020052595 | Witt et al. | May 2002 | A1 |
20020052617 | Anis et al. | May 2002 | A1 |
20020077550 | Rabiner et al. | Jun 2002 | A1 |
20020099373 | Schulze et al. | Jul 2002 | A1 |
20020107446 | Rabiner et al. | Aug 2002 | A1 |
20020107517 | Witt et al. | Aug 2002 | A1 |
20020120266 | Truckai et al. | Aug 2002 | A1 |
20020156466 | Sakurai et al. | Oct 2002 | A1 |
20020156493 | Houser et al. | Oct 2002 | A1 |
20020165577 | Witt et al. | Nov 2002 | A1 |
20030014053 | Nguyen et al. | Jan 2003 | A1 |
20030014087 | Fang et al. | Jan 2003 | A1 |
20030036705 | Hare et al. | Feb 2003 | A1 |
20030040758 | Wang et al. | Feb 2003 | A1 |
20030050572 | Brautigam et al. | Mar 2003 | A1 |
20030055443 | Spotnitz | Mar 2003 | A1 |
20030093113 | Fogarty et al. | May 2003 | A1 |
20030109875 | Tetzlaff et al. | Jun 2003 | A1 |
20030114851 | Truckai et al. | Jun 2003 | A1 |
20030114874 | Craig et al. | Jun 2003 | A1 |
20030120306 | Burbank et al. | Jun 2003 | A1 |
20030130675 | Kasahara et al. | Jul 2003 | A1 |
20030130693 | Levin et al. | Jul 2003 | A1 |
20030139741 | Goble et al. | Jul 2003 | A1 |
20030144652 | Baker et al. | Jul 2003 | A1 |
20030144680 | Kellogg et al. | Jul 2003 | A1 |
20030158548 | Phan et al. | Aug 2003 | A1 |
20030160698 | Andreasson et al. | Aug 2003 | A1 |
20030171747 | Kanehira et al. | Sep 2003 | A1 |
20030199794 | Sakurai et al. | Oct 2003 | A1 |
20030204199 | Novak et al. | Oct 2003 | A1 |
20030212332 | Fenton et al. | Nov 2003 | A1 |
20030212363 | Shipp | Nov 2003 | A1 |
20030212392 | Fenton et al. | Nov 2003 | A1 |
20030212422 | Fenton et al. | Nov 2003 | A1 |
20030225332 | Okada et al. | Dec 2003 | A1 |
20030229344 | Dycus et al. | Dec 2003 | A1 |
20040030254 | Babaev | Feb 2004 | A1 |
20040030330 | Brassell et al. | Feb 2004 | A1 |
20040039242 | Tolkoff et al. | Feb 2004 | A1 |
20040047485 | Sherrit et al. | Mar 2004 | A1 |
20040054364 | Aranyi et al. | Mar 2004 | A1 |
20040064151 | Mollenauer | Apr 2004 | A1 |
20040087943 | Dycus et al. | May 2004 | A1 |
20040092921 | Kadziauskas et al. | May 2004 | A1 |
20040092992 | Adams et al. | May 2004 | A1 |
20040097911 | Murakami et al. | May 2004 | A1 |
20040097912 | Gonnering | May 2004 | A1 |
20040097919 | Wellman et al. | May 2004 | A1 |
20040097996 | Rabiner et al. | May 2004 | A1 |
20040116952 | Sakurai et al. | Jun 2004 | A1 |
20040121159 | Cloud et al. | Jun 2004 | A1 |
20040122423 | Dycus et al. | Jun 2004 | A1 |
20040132383 | Langford et al. | Jul 2004 | A1 |
20040138621 | Jahns et al. | Jul 2004 | A1 |
20040147934 | Kiester | Jul 2004 | A1 |
20040147945 | Fritzsch | Jul 2004 | A1 |
20040147946 | Mastri et al. | Jul 2004 | A1 |
20040167508 | Wham et al. | Aug 2004 | A1 |
20040176686 | Hare et al. | Sep 2004 | A1 |
20040176751 | Weitzner et al. | Sep 2004 | A1 |
20040193150 | Sharkey et al. | Sep 2004 | A1 |
20040199193 | Hayashi et al. | Oct 2004 | A1 |
20040199194 | Witt et al. | Oct 2004 | A1 |
20040204728 | Haefner | Oct 2004 | A1 |
20040215132 | Yoon | Oct 2004 | A1 |
20040243147 | Lipow | Dec 2004 | A1 |
20040249374 | Tetzlaff et al. | Dec 2004 | A1 |
20040260273 | Wan | Dec 2004 | A1 |
20040260300 | Gorensek et al. | Dec 2004 | A1 |
20040267298 | Cimino | Dec 2004 | A1 |
20050015125 | Mioduski et al. | Jan 2005 | A1 |
20050020967 | Ono | Jan 2005 | A1 |
20050021018 | Anderson et al. | Jan 2005 | A1 |
20050021065 | Yamada et al. | Jan 2005 | A1 |
20050021078 | Vleugels et al. | Jan 2005 | A1 |
20050033278 | McClurken et al. | Feb 2005 | A1 |
20050033337 | Muir et al. | Feb 2005 | A1 |
20050070800 | Takahashi | Mar 2005 | A1 |
20050085728 | Fukuda | Apr 2005 | A1 |
20050090817 | Phan | Apr 2005 | A1 |
20050096683 | Ellins et al. | May 2005 | A1 |
20050099824 | Dowling et al. | May 2005 | A1 |
20050131390 | Heinrich et al. | Jun 2005 | A1 |
20050143759 | Kelly | Jun 2005 | A1 |
20050143769 | White et al. | Jun 2005 | A1 |
20050149108 | Cox | Jul 2005 | A1 |
20050165429 | Douglas et al. | Jul 2005 | A1 |
20050171522 | Christopherson | Aug 2005 | A1 |
20050177184 | Easley | Aug 2005 | A1 |
20050182339 | Lee et al. | Aug 2005 | A1 |
20050188743 | Land | Sep 2005 | A1 |
20050192610 | Houser et al. | Sep 2005 | A1 |
20050192611 | Houser | Sep 2005 | A1 |
20050222598 | Ho et al. | Oct 2005 | A1 |
20050228425 | Boukhny et al. | Oct 2005 | A1 |
20050234484 | Houser et al. | Oct 2005 | A1 |
20050249667 | Tuszynski et al. | Nov 2005 | A1 |
20050256405 | Makin et al. | Nov 2005 | A1 |
20050261588 | Makin et al. | Nov 2005 | A1 |
20050267464 | Truckai et al. | Dec 2005 | A1 |
20050273090 | Nieman et al. | Dec 2005 | A1 |
20050288659 | Kimura et al. | Dec 2005 | A1 |
20060030797 | Zhou et al. | Feb 2006 | A1 |
20060030848 | Craig et al. | Feb 2006 | A1 |
20060058825 | Ogura et al. | Mar 2006 | A1 |
20060063130 | Hayman et al. | Mar 2006 | A1 |
20060064086 | Odom | Mar 2006 | A1 |
20060066181 | Bromfield et al. | Mar 2006 | A1 |
20060074442 | Noriega et al. | Apr 2006 | A1 |
20060079874 | Faller et al. | Apr 2006 | A1 |
20060079877 | Houser et al. | Apr 2006 | A1 |
20060079879 | Faller et al. | Apr 2006 | A1 |
20060095046 | Trieu et al. | May 2006 | A1 |
20060159731 | Shoshan | Jul 2006 | A1 |
20060190034 | Nishizawa et al. | Aug 2006 | A1 |
20060206100 | Eskridge et al. | Sep 2006 | A1 |
20060206115 | Schomer et al. | Sep 2006 | A1 |
20060211943 | Beaupre | Sep 2006 | A1 |
20060217729 | Eskridge et al. | Sep 2006 | A1 |
20060224160 | Trieu et al. | Oct 2006 | A1 |
20060241580 | Mittelstein et al. | Oct 2006 | A1 |
20060247558 | Yamada | Nov 2006 | A1 |
20060253050 | Yoshimine et al. | Nov 2006 | A1 |
20060257819 | Johnson | Nov 2006 | A1 |
20060264809 | Hansmann et al. | Nov 2006 | A1 |
20060270916 | Skwarek et al. | Nov 2006 | A1 |
20060271030 | Francis et al. | Nov 2006 | A1 |
20060293656 | Shadduck et al. | Dec 2006 | A1 |
20070016235 | Tanaka et al. | Jan 2007 | A1 |
20070016236 | Beaupre | Jan 2007 | A1 |
20070032704 | Gandini et al. | Feb 2007 | A1 |
20070055228 | Berg et al. | Mar 2007 | A1 |
20070056596 | Fanney et al. | Mar 2007 | A1 |
20070060935 | Schwardt et al. | Mar 2007 | A1 |
20070063618 | Bromfield | Mar 2007 | A1 |
20070073185 | Nakao | Mar 2007 | A1 |
20070073341 | Smith et al. | Mar 2007 | A1 |
20070074584 | Talarico et al. | Apr 2007 | A1 |
20070106317 | Shelton et al. | May 2007 | A1 |
20070118115 | Artale et al. | May 2007 | A1 |
20070130771 | Ehlert et al. | Jun 2007 | A1 |
20070149881 | Rabin | Jun 2007 | A1 |
20070156163 | Davison et al. | Jul 2007 | A1 |
20070166663 | Telles et al. | Jul 2007 | A1 |
20070173803 | Wham et al. | Jul 2007 | A1 |
20070173813 | Odom | Jul 2007 | A1 |
20070173872 | Neuenfeldt | Jul 2007 | A1 |
20070185474 | Nahen | Aug 2007 | A1 |
20070191712 | Messerly et al. | Aug 2007 | A1 |
20070191713 | Eichmann et al. | Aug 2007 | A1 |
20070203483 | Kim et al. | Aug 2007 | A1 |
20070208340 | Ganz et al. | Sep 2007 | A1 |
20070219481 | Babaev | Sep 2007 | A1 |
20070232926 | Stulen et al. | Oct 2007 | A1 |
20070232928 | Wiener et al. | Oct 2007 | A1 |
20070236213 | Paden et al. | Oct 2007 | A1 |
20070239028 | Houser | Oct 2007 | A1 |
20070239101 | Kellogg | Oct 2007 | A1 |
20070249941 | Salehi et al. | Oct 2007 | A1 |
20070260242 | Dycus et al. | Nov 2007 | A1 |
20070265560 | Soltani et al. | Nov 2007 | A1 |
20070265613 | Edelstein et al. | Nov 2007 | A1 |
20070265616 | Couture et al. | Nov 2007 | A1 |
20070275348 | Lemon | Nov 2007 | A1 |
20070276419 | Rosenthal | Nov 2007 | A1 |
20070282333 | Fortson et al. | Dec 2007 | A1 |
20070287933 | Phan et al. | Dec 2007 | A1 |
20070288055 | Lee | Dec 2007 | A1 |
20080013809 | Zhu et al. | Jan 2008 | A1 |
20080015575 | Odom et al. | Jan 2008 | A1 |
20080033465 | Schmitz et al. | Feb 2008 | A1 |
20080039746 | Hissong et al. | Feb 2008 | A1 |
20080051812 | Schmitz et al. | Feb 2008 | A1 |
20080058775 | Darian et al. | Mar 2008 | A1 |
20080058845 | Shimizu et al. | Mar 2008 | A1 |
20080071269 | Hilario et al. | Mar 2008 | A1 |
20080077145 | Boyden et al. | Mar 2008 | A1 |
20080082039 | Babaev | Apr 2008 | A1 |
20080082098 | Tanaka et al. | Apr 2008 | A1 |
20080097281 | Zusman et al. | Apr 2008 | A1 |
20080097501 | Blier | Apr 2008 | A1 |
20080114355 | Whayne et al. | May 2008 | A1 |
20080114364 | Goldin et al. | May 2008 | A1 |
20080125768 | Tahara et al. | May 2008 | A1 |
20080147058 | Horrell et al. | Jun 2008 | A1 |
20080147062 | Truckai et al. | Jun 2008 | A1 |
20080147092 | Rogge et al. | Jun 2008 | A1 |
20080171938 | Masuda et al. | Jul 2008 | A1 |
20080177268 | Daum et al. | Jul 2008 | A1 |
20080188755 | Hart | Aug 2008 | A1 |
20080200940 | Eichmann et al. | Aug 2008 | A1 |
20080208108 | Kimura | Aug 2008 | A1 |
20080208231 | Ota et al. | Aug 2008 | A1 |
20080214967 | Aranyi et al. | Sep 2008 | A1 |
20080234709 | Houser | Sep 2008 | A1 |
20080243162 | Shibata et al. | Oct 2008 | A1 |
20080281200 | Vole et al. | Nov 2008 | A1 |
20080281315 | Gines | Nov 2008 | A1 |
20080287948 | Newton et al. | Nov 2008 | A1 |
20080294051 | Koshigoe et al. | Nov 2008 | A1 |
20080296346 | Shelton, IV et al. | Dec 2008 | A1 |
20080300588 | Groth et al. | Dec 2008 | A1 |
20090012516 | Curtis et al. | Jan 2009 | A1 |
20090023985 | Ewers | Jan 2009 | A1 |
20090043228 | Northrop et al. | Feb 2009 | A1 |
20090048537 | Lydon et al. | Feb 2009 | A1 |
20090048589 | Takashino et al. | Feb 2009 | A1 |
20090054886 | Yachi et al. | Feb 2009 | A1 |
20090054889 | Newton et al. | Feb 2009 | A1 |
20090054894 | Yachi | Feb 2009 | A1 |
20090069830 | Mulvihill et al. | Mar 2009 | A1 |
20090076506 | Baker | Mar 2009 | A1 |
20090082716 | Akahoshi | Mar 2009 | A1 |
20090082766 | Unger et al. | Mar 2009 | A1 |
20090088785 | Masuda | Apr 2009 | A1 |
20090118751 | Wiener et al. | May 2009 | A1 |
20090143678 | Keast et al. | Jun 2009 | A1 |
20090143799 | Smith et al. | Jun 2009 | A1 |
20090143800 | Deville et al. | Jun 2009 | A1 |
20090163807 | Sliwa | Jun 2009 | A1 |
20090182322 | D'Amelio et al. | Jul 2009 | A1 |
20090182331 | D'Amelio et al. | Jul 2009 | A1 |
20090182332 | Long et al. | Jul 2009 | A1 |
20090216157 | Yamada | Aug 2009 | A1 |
20090223033 | Houser | Sep 2009 | A1 |
20090248021 | McKenna | Oct 2009 | A1 |
20090254077 | Craig | Oct 2009 | A1 |
20090254080 | Honda | Oct 2009 | A1 |
20090259149 | Tahara et al. | Oct 2009 | A1 |
20090264909 | Beaupre | Oct 2009 | A1 |
20090270771 | Takahashi | Oct 2009 | A1 |
20090270812 | Litscher et al. | Oct 2009 | A1 |
20090270853 | Yachi et al. | Oct 2009 | A1 |
20090270891 | Beaupre | Oct 2009 | A1 |
20090270899 | Carusillo et al. | Oct 2009 | A1 |
20090287205 | Ingle | Nov 2009 | A1 |
20090299141 | Downey et al. | Dec 2009 | A1 |
20090327715 | Smith et al. | Dec 2009 | A1 |
20100004508 | Naito et al. | Jan 2010 | A1 |
20100022825 | Yoshie | Jan 2010 | A1 |
20100030233 | Whitman et al. | Feb 2010 | A1 |
20100034605 | Huckins et al. | Feb 2010 | A1 |
20100036370 | Mirel et al. | Feb 2010 | A1 |
20100042126 | Houser et al. | Feb 2010 | A1 |
20100049180 | Wells et al. | Feb 2010 | A1 |
20100057118 | Dietz et al. | Mar 2010 | A1 |
20100063525 | Beaupre et al. | Mar 2010 | A1 |
20100063528 | Beaupre | Mar 2010 | A1 |
20100081863 | Hess et al. | Apr 2010 | A1 |
20100081864 | Hess et al. | Apr 2010 | A1 |
20100081883 | Murray et al. | Apr 2010 | A1 |
20100094323 | Isaacs et al. | Apr 2010 | A1 |
20100106173 | Yoshimine | Apr 2010 | A1 |
20100109480 | Forslund et al. | May 2010 | A1 |
20100158307 | Kubota et al. | Jun 2010 | A1 |
20100168741 | Sanai et al. | Jul 2010 | A1 |
20100181966 | Sakakibara | Jul 2010 | A1 |
20100187283 | Crainich et al. | Jul 2010 | A1 |
20100204721 | Young et al. | Aug 2010 | A1 |
20100222714 | Muir et al. | Sep 2010 | A1 |
20100222752 | Collins, Jr. et al. | Sep 2010 | A1 |
20100228191 | Alvarez et al. | Sep 2010 | A1 |
20100234906 | Koh | Sep 2010 | A1 |
20100274160 | Yachi et al. | Oct 2010 | A1 |
20100274278 | Fleenor et al. | Oct 2010 | A1 |
20100280368 | Can et al. | Nov 2010 | A1 |
20100298743 | Nield et al. | Nov 2010 | A1 |
20100312186 | Suchdev et al. | Dec 2010 | A1 |
20100331742 | Masuda | Dec 2010 | A1 |
20100331873 | Dannaher et al. | Dec 2010 | A1 |
20110004233 | Muir et al. | Jan 2011 | A1 |
20110028964 | Edwards | Feb 2011 | A1 |
20110106141 | Nakamura | May 2011 | A1 |
20110125151 | Strauss et al. | May 2011 | A1 |
20110278343 | Knodel et al. | Nov 2011 | A1 |
20110284014 | Cadeddu et al. | Nov 2011 | A1 |
20110290856 | Shelton, IV et al. | Dec 2011 | A1 |
20110291526 | Abramovich et al. | Dec 2011 | A1 |
20110295295 | Shelton, IV et al. | Dec 2011 | A1 |
20110306967 | Payne et al. | Dec 2011 | A1 |
20110313415 | Fernandez et al. | Dec 2011 | A1 |
20120004655 | Kim et al. | Jan 2012 | A1 |
20120016413 | Timm et al. | Jan 2012 | A1 |
20120022519 | Huang et al. | Jan 2012 | A1 |
20120022526 | Aldridge et al. | Jan 2012 | A1 |
20120022583 | Sugalski et al. | Jan 2012 | A1 |
20120041358 | Mann et al. | Feb 2012 | A1 |
20120059289 | Nield et al. | Mar 2012 | A1 |
20120071863 | Lee et al. | Mar 2012 | A1 |
20120078244 | Worrell et al. | Mar 2012 | A1 |
20120078249 | Eichmann et al. | Mar 2012 | A1 |
20120101495 | Young et al. | Apr 2012 | A1 |
20120109186 | Parrott et al. | May 2012 | A1 |
20120116222 | Sawada et al. | May 2012 | A1 |
20120116265 | Houser et al. | May 2012 | A1 |
20120136279 | Tanaka et al. | May 2012 | A1 |
20120143211 | Kishi | Jun 2012 | A1 |
20120172904 | Muir et al. | Jul 2012 | A1 |
20120265241 | Hart et al. | Oct 2012 | A1 |
20120296371 | Kappus et al. | Nov 2012 | A1 |
20120330338 | Messerly | Dec 2012 | A1 |
20130023925 | Mueller | Jan 2013 | A1 |
20130090576 | Stulen et al. | Apr 2013 | A1 |
20130116717 | Balek et al. | May 2013 | A1 |
20130123776 | Monson et al. | May 2013 | A1 |
20130158659 | Bergs et al. | Jun 2013 | A1 |
20130158660 | Bergs et al. | Jun 2013 | A1 |
20130165929 | Muir et al. | Jun 2013 | A1 |
20130231691 | Houser | Sep 2013 | A1 |
20130253256 | Griffith et al. | Sep 2013 | A1 |
20130277410 | Fernandez et al. | Oct 2013 | A1 |
20130296843 | Boudreaux et al. | Nov 2013 | A1 |
20130331873 | Ross et al. | Dec 2013 | A1 |
20140001231 | Shelton, IV et al. | Jan 2014 | A1 |
20140001234 | Shelton, IV et al. | Jan 2014 | A1 |
20140005640 | Shelton, IV et al. | Jan 2014 | A1 |
20140005678 | Shelton, IV et al. | Jan 2014 | A1 |
20140005702 | Timm et al. | Jan 2014 | A1 |
20140005705 | Weir et al. | Jan 2014 | A1 |
20140005718 | Shelton, IV et al. | Jan 2014 | A1 |
20140014544 | Bugnard et al. | Jan 2014 | A1 |
20140081299 | Dietz et al. | Mar 2014 | A1 |
20140121569 | Schafer et al. | May 2014 | A1 |
20140135663 | Funakubo et al. | May 2014 | A1 |
20140135804 | Weisenburgh, II et al. | May 2014 | A1 |
20140194874 | Dietz et al. | Jul 2014 | A1 |
20140194875 | Reschke et al. | Jul 2014 | A1 |
20140207135 | Winter | Jul 2014 | A1 |
20140207163 | Eichmann et al. | Jul 2014 | A1 |
20140323926 | Akagane | Oct 2014 | A1 |
20140371735 | Long | Dec 2014 | A1 |
20150011889 | Lee | Jan 2015 | A1 |
20150080876 | Worrell et al. | Mar 2015 | A1 |
20150083774 | Measamer et al. | Mar 2015 | A1 |
20150112335 | Boudreaux et al. | Apr 2015 | A1 |
20150157356 | Gee | Jun 2015 | A1 |
20150164533 | Felder et al. | Jun 2015 | A1 |
20150164534 | Felder et al. | Jun 2015 | A1 |
20150164535 | Felder et al. | Jun 2015 | A1 |
20150164536 | Czarnecki et al. | Jun 2015 | A1 |
20150164537 | Cagle et al. | Jun 2015 | A1 |
20150164538 | Aldridge et al. | Jun 2015 | A1 |
20150257780 | Houser | Sep 2015 | A1 |
20150272659 | Boudreaux et al. | Oct 2015 | A1 |
20150289854 | Cho et al. | Oct 2015 | A1 |
20160045248 | Unger et al. | Feb 2016 | A1 |
20160051316 | Boudreaux | Feb 2016 | A1 |
20160114355 | Sakai et al. | Apr 2016 | A1 |
20160121143 | Mumaw et al. | May 2016 | A1 |
20160128769 | Rontal et al. | May 2016 | A1 |
20160175029 | Witt et al. | Jun 2016 | A1 |
20160206342 | Robertson et al. | Jul 2016 | A1 |
20160240768 | Fujii et al. | Aug 2016 | A1 |
20160262786 | Madan et al. | Sep 2016 | A1 |
20160270842 | Strobl et al. | Sep 2016 | A1 |
20160270843 | Boudreaux et al. | Sep 2016 | A1 |
20160296251 | Olson et al. | Oct 2016 | A1 |
20160296252 | Olson et al. | Oct 2016 | A1 |
20160296270 | Strobl et al. | Oct 2016 | A1 |
20160367281 | Gee et al. | Dec 2016 | A1 |
20170000541 | Yates et al. | Jan 2017 | A1 |
20170027624 | Wilson et al. | Feb 2017 | A1 |
20170036044 | Ito | Feb 2017 | A1 |
20170086876 | Wiener et al. | Mar 2017 | A1 |
20170086908 | Wiener et al. | Mar 2017 | A1 |
20170086909 | Yates et al. | Mar 2017 | A1 |
20170105757 | Weir et al. | Apr 2017 | A1 |
20170119426 | Akagane | May 2017 | A1 |
20170135751 | Rothweiler et al. | May 2017 | A1 |
20170164972 | Johnson et al. | Jun 2017 | A1 |
20170189095 | Danziger et al. | Jul 2017 | A1 |
20170196586 | Witt et al. | Jul 2017 | A1 |
20170202571 | Shelton, IV et al. | Jul 2017 | A1 |
20170202572 | Shelton, IV et al. | Jul 2017 | A1 |
20170202591 | Shelton, IV et al. | Jul 2017 | A1 |
20170202595 | Shelton, IV | Jul 2017 | A1 |
20170202597 | Shelton, IV et al. | Jul 2017 | A1 |
20170202598 | Shelton, IV et al. | Jul 2017 | A1 |
20170202599 | Shelton, IV et al. | Jul 2017 | A1 |
20170202605 | Shelton, IV et al. | Jul 2017 | A1 |
20170202607 | Shelton, IV et al. | Jul 2017 | A1 |
20170202608 | Shelton, IV et al. | Jul 2017 | A1 |
20170360468 | Eichmann et al. | Dec 2017 | A1 |
20180014845 | Dannaher | Jan 2018 | A1 |
20180014848 | Messerly et al. | Jan 2018 | A1 |
20180049767 | Gee et al. | Feb 2018 | A1 |
20180055529 | Messerly et al. | Mar 2018 | A1 |
20180078268 | Messerly et al. | Mar 2018 | A1 |
20180125523 | Johnson | May 2018 | A1 |
20180177521 | Faller et al. | Jun 2018 | A1 |
20180177545 | Boudreaux et al. | Jun 2018 | A1 |
20180199957 | Robertson et al. | Jul 2018 | A1 |
20180296239 | Houser et al. | Oct 2018 | A1 |
20180310983 | Worrell et al. | Nov 2018 | A1 |
20190090900 | Rhee et al. | Mar 2019 | A1 |
20190239919 | Witt et al. | Aug 2019 | A1 |
20190262029 | Messerly et al. | Aug 2019 | A1 |
20190350615 | Messerly et al. | Nov 2019 | A1 |
20190380733 | Stulen et al. | Dec 2019 | A1 |
20190381339 | Voegele et al. | Dec 2019 | A1 |
20190381340 | Voegele et al. | Dec 2019 | A1 |
20200008857 | Conlon et al. | Jan 2020 | A1 |
20200015798 | Wiener et al. | Jan 2020 | A1 |
20200015838 | Robertson | Jan 2020 | A1 |
20200046401 | Witt et al. | Feb 2020 | A1 |
20200054386 | Houser et al. | Feb 2020 | A1 |
20200054899 | Wiener et al. | Feb 2020 | A1 |
20200085462 | Robertson | Mar 2020 | A1 |
20200085466 | Faller et al. | Mar 2020 | A1 |
20200323551 | Faller et al. | Oct 2020 | A1 |
20210038248 | Houser | Feb 2021 | A1 |
20210121197 | Houser et al. | Apr 2021 | A1 |
20210128191 | Messerly et al. | May 2021 | A1 |
20210145531 | Gee et al. | May 2021 | A1 |
20210236157 | Rhee et al. | Aug 2021 | A1 |
20210315605 | Gee et al. | Oct 2021 | A1 |
Number | Date | Country |
---|---|---|
837241 | Mar 1970 | CA |
2535467 | Apr 1993 | CA |
2214413 | Sep 1996 | CA |
2460047 | Nov 2001 | CN |
1634601 | Jul 2005 | CN |
1775323 | May 2006 | CN |
1922563 | Feb 2007 | CN |
2868227 | Feb 2007 | CN |
202027624 | Nov 2011 | CN |
102335778 | Feb 2012 | CN |
103668171 | Mar 2014 | CN |
103921215 | Jul 2014 | CN |
106077718 | Nov 2016 | CN |
2065681 | Mar 1975 | DE |
3904558 | Aug 1990 | DE |
9210327 | Nov 1992 | DE |
4300307 | Jul 1994 | DE |
4434938 | Feb 1996 | DE |
29623113 | Oct 1997 | DE |
20004812 | Sep 2000 | DE |
20021619 | Mar 2001 | DE |
10042606 | Aug 2001 | DE |
10201569 | Jul 2003 | DE |
0171967 | Feb 1986 | EP |
0336742 | Oct 1989 | EP |
0136855 | Nov 1989 | EP |
0705571 | Apr 1996 | EP |
1543854 | Jun 2005 | EP |
1698289 | Sep 2006 | EP |
1862133 | Dec 2007 | EP |
1972264 | Sep 2008 | EP |
2060238 | May 2009 | EP |
1747761 | Oct 2009 | EP |
2131760 | Dec 2009 | EP |
1214913 | Jul 2010 | EP |
1946708 | Jun 2011 | EP |
1767164 | Jan 2013 | EP |
2578172 | Apr 2013 | EP |
2510891 | Jun 2016 | EP |
2454351 | Nov 1980 | FR |
2964554 | Mar 2012 | FR |
2032221 | Apr 1980 | GB |
2317566 | Apr 1998 | GB |
2318298 | Apr 1998 | GB |
2425480 | Nov 2006 | GB |
S50100891 | Aug 1975 | JP |
S5968513 | May 1984 | JP |
S59141938 | Aug 1984 | JP |
S62221343 | Sep 1987 | JP |
S62227343 | Oct 1987 | JP |
S62292153 | Dec 1987 | JP |
S62292154 | Dec 1987 | JP |
S63109386 | May 1988 | JP |
S63315049 | Dec 1988 | JP |
H01151452 | Jun 1989 | JP |
H01198540 | Aug 1989 | JP |
H0271510 | May 1990 | JP |
H02286149 | Nov 1990 | JP |
H02292193 | Dec 1990 | JP |
H0337061 | Feb 1991 | JP |
H0425707 | Feb 1992 | JP |
H0464351 | Feb 1992 | JP |
H0430508 | Mar 1992 | JP |
H04152942 | May 1992 | JP |
H04161078 | Jun 1992 | JP |
H0595955 | Apr 1993 | JP |
H05115490 | May 1993 | JP |
H0647048 | Feb 1994 | JP |
H0670938 | Mar 1994 | JP |
H06104503 | Apr 1994 | JP |
H07185457 | Jul 1995 | JP |
H07299415 | Nov 1995 | JP |
H0824266 | Jan 1996 | JP |
H08229050 | Sep 1996 | JP |
H08275950 | Oct 1996 | JP |
H08275951 | Oct 1996 | JP |
H08299351 | Nov 1996 | JP |
H08336545 | Dec 1996 | JP |
H09135553 | May 1997 | JP |
H09140722 | Jun 1997 | JP |
H105236 | Jan 1998 | JP |
H105237 | Jan 1998 | JP |
H10295700 | Nov 1998 | JP |
H11128238 | May 1999 | JP |
2000139943 | May 2000 | JP |
2000210296 | Aug 2000 | JP |
2000210299 | Aug 2000 | JP |
2000271145 | Oct 2000 | JP |
2000287987 | Oct 2000 | JP |
2000312682 | Nov 2000 | JP |
2001029353 | Feb 2001 | JP |
2001057985 | Mar 2001 | JP |
2001170066 | Jun 2001 | JP |
2001198137 | Jul 2001 | JP |
2002186901 | Jul 2002 | JP |
2002233533 | Aug 2002 | JP |
2002263579 | Sep 2002 | JP |
2002330977 | Nov 2002 | JP |
2003000612 | Jan 2003 | JP |
2003010201 | Jan 2003 | JP |
2003116870 | Apr 2003 | JP |
2003126104 | May 2003 | JP |
2003126110 | May 2003 | JP |
2003153919 | May 2003 | JP |
2003230567 | Aug 2003 | JP |
2003339730 | Dec 2003 | JP |
2004129871 | Apr 2004 | JP |
2004147701 | May 2004 | JP |
2004209043 | Jul 2004 | JP |
2005027026 | Jan 2005 | JP |
2005074088 | Mar 2005 | JP |
2005094552 | Apr 2005 | JP |
2005253674 | Sep 2005 | JP |
2006217716 | Aug 2006 | JP |
2006288431 | Oct 2006 | JP |
3841627 | Nov 2006 | JP |
D1339835 | Aug 2008 | JP |
2009071439 | Apr 2009 | JP |
2009297352 | Dec 2009 | JP |
2010009686 | Jan 2010 | JP |
2010121865 | Jun 2010 | JP |
2011160586 | Aug 2011 | JP |
2012235658 | Nov 2012 | JP |
2015529140 | Oct 2015 | JP |
2016022136 | Feb 2016 | JP |
100789356 | Dec 2007 | KR |
2154437 | Aug 2000 | RU |
22035 | Mar 2002 | RU |
2201169 | Mar 2003 | RU |
2405603 | Dec 2010 | RU |
850068 | Jul 1981 | SU |
WO-8103272 | Nov 1981 | WO |
WO-9308757 | May 1993 | WO |
WO-9314708 | Aug 1993 | WO |
WO-9421183 | Sep 1994 | WO |
WO-9424949 | Nov 1994 | WO |
WO-9639086 | Dec 1996 | WO |
WO-9800069 | Jan 1998 | WO |
WO-9805437 | Feb 1998 | WO |
WO-9816157 | Apr 1998 | WO |
WO-9920213 | Apr 1999 | WO |
WO-9923960 | May 1999 | WO |
WO-0024322 | May 2000 | WO |
WO-0024330 | May 2000 | WO |
WO-0064358 | Nov 2000 | WO |
WO-0128444 | Apr 2001 | WO |
WO-0132087 | May 2001 | WO |
WO-0167970 | Sep 2001 | WO |
WO-0195810 | Dec 2001 | WO |
WO-02076685 | Oct 2002 | WO |
WO-02080799 | Oct 2002 | WO |
WO-2004037095 | May 2004 | WO |
WO-2004078051 | Sep 2004 | WO |
WO-2004098426 | Nov 2004 | WO |
WO-2005084250 | Sep 2005 | WO |
WO-2007008710 | Jan 2007 | WO |
WO-2008118709 | Oct 2008 | WO |
WO-2008130793 | Oct 2008 | WO |
WO-2008154338 | Dec 2008 | WO |
WO-2010104755 | Sep 2010 | WO |
WO-2011008672 | Jan 2011 | WO |
WO-2011052939 | May 2011 | WO |
WO-2011060031 | May 2011 | WO |
WO-2012044606 | Apr 2012 | WO |
WO-2012066983 | May 2012 | WO |
WO-2013048963 | Apr 2013 | WO |
Entry |
---|
F. A. Duck, “Optical Properties of Tissue Including Ultraviolet and Infrared Radiation,” pp. 43-71 in Physical Properties of Tissue (1990). |
Campbell et al., “Thermal Imaging in Surgery,” p. 19-3, in Medical Infrared Imaging, N. A. Diakides and J. D. Bronzino, Eds. (2008). |
Sullivan, “Optimal Choice for Number of Strands in a Litz-Wire Transformer Winding,” IEEE Transactions on Power Electronics, vol. 14, No. 2, Mar. 1999, pp. 283-291. |
Graff, K.F., “Elastic Wave Propagation in a Curved Sonic Transmission Line,” IEEE Transactions on Sonics and Ultrasonics, SU-17(1), 1-6 (1970). |
Makarov, S. N., Ochmann, M., Desinger, K., “The longitudinal vibration response of a curved fiber used for laser ultrasound surgical therapy,” Journal of the Acoustical Society of America 102, 1191-1199 (1997). |
Morley, L. S. D., “Elastic Waves in a Naturally Curved Rod,” Quarterly Journal of Mechanics and Applied Mathematics, 14: 155-172 (1961). |
Walsh, S. J., White, R. G., “Vibrational Power Transmission in Curved Beams,” Journal of Sound and Vibration, 233(3), 455-488 (2000). |
http://www.apicalinstr.com/generators.htm. |
http://www.dotmed.com/listing/electrosurical-unit/ethicon/ultracision-g110-/1466724. |
http:/www.ethicon.com/gb-en/healthcare-professionals/products/energy-devices/capital//ge . . . . |
http://www.medicalexpo.com/medical-manufacturer/electrosurgical-generator-6951.html. |
http://www.megadyne.com/es_generator.php. |
http://www.valleylab.com/product/es/generators/index.html. |
Covidien 501 (k) Summary Sonicision, dated Feb. 24, 2011 (7 pages). |
AST Products, Inc., “Principles of Video Contact Angle Analysis,” 20 pages, (2006). |
Lim et al., “A Review of Mechanism Used in Laparoscopic Surgical Instruments,” Mechanism and Machine Theory, vol. 38, pp. 1133-1147, (2003). |
Huston et al., “Magnetic and Magnetostrictive Properties of Cube Textured Nickel for Magnetostrictive Transducer Applications,” IEEE Transactions on Magnetics, vol. 9(4), pp. 636-640 (Dec. 1973). |
Technology Overview, printed from www.harmonicscalpel.com, Internet site, website accessed on Jun. 13, 2007, (3 pages). |
Sherrit et al., “Novel Horn Designs for Ultrasonic/Sonic Cleaning Welding, Soldering, Cutting and Drilling,” Proc. SPIE Smart Structures Conference, vol. 4701, Paper No. 34, San Diego, CA, pp. 353-360, Mar. 2002. |
Gooch et al., “Recommended Infection-Control Practices for Dentistry, 1993,” Published: May 28, 1993; [retrieved on Aug. 23, 2008], Retrieved from the internet: URL: http//wonder.cdc.gov/wonder/prevguid/p0000191/p0000191.asp (15 pages). |
Orr et al., “Overview of Bioheat Transfer,” pp. 367-384 in Optical-Thermal Response of Laser-Irradiated Tissue, A. J. Welch and M. J. C. van Gemert, eds., Plenum, New York (1995). |
Incropera et al., Fundamentals of Heat and Mass Transfer, Wiley, New York (1990). (Book—not attached). |
Gerhard, Glen C., “Surgical Electrotechnology: Quo Vadis?,” IEEE Transactions on Biomedical Engineering, vol. BME-31, No. 12, pp. 787-792, Dec. 1984. |
Fowler, K.R., “A Programmable, Arbitrary Waveform Electrosurgical Device,” IEEE Engineering in Medicine and Biology Society 10th Annual International Conference, pp. 1324, 1325 (1988). |
Sullivan, “Cost-Constrained Selection of Strand Diameter and No. in a Litz-Wire Transformer Winding,” IEEE Transactions on Power Electronics, vol. 16, No. 2, Mar. 2001, pp. 281-288. |
Lacourse, J.R.; Vogt, M.C.; Miller, W.T., III; Selikowitz, S.M., “Spectral Analysis Interpretation of Electrosurgical Generator Nerve and Muscle Stimulation,” IEEE Transactions on Biomedical Engineering, vol. 35, No. 7, pp. 505-509, Jul. 1988. |
http://www.4-traders.com/JOHNSON-JQHNSQN-4832/news/Johnson-Johnson-Ethicon-E . . . . |
Weir, C.E., “Rate of shrinkage of tendon collagen—heat, entropy and free energy of activation of the shrinkage of untreated tendon. Effect of acid salt, pickle, and tannage on the activation of tendon collagen.” Journal of the American Leather Chemists Association, 44, pp. 108-140 (1949). |
Henriques. F.C., “Studies in thermal injury V. The predictability and the significance of thermally induced rate processes leading to irreversible epidermal injury.” Archives of Pathology, 434, pp. 489-502 (1947). |
Arnoczky et al., “Thermal Modification of Conective Tissues: Basic Science Considerations and Clinical Implications,” J. Am Acad Orthop Surg, vol. 8, No. 5, pp. 305-313 (Sep./Oct. 2000). |
Chen et al., “Heat-Induced Changes in the Mechanics of a Collagenous Tissue: Isothermal Free Shrinkage,” Transactions of the ASME, vol. 119, pp. 372-378 (Nov. 1997). |
Chen et al., “Heat-Induced Changes in the Mechanics of a Collagenous Tissue: Isothermal, Isotonic Shrinkage,” Transactions of the ASME, vol. 120, pp. 382-388 (Jun. 1998). |
Chen et al., “Phenomenological Evolution Equations for Heat-Induced Shrinkage of a Collagenous Tissue,” IEEE Transactions on Biomedical Engineering, vol. 45, No. 10, pp. 1234-1240 (Oct. 1998). |
Harris et al., “Kinetics of Thermal Damage to a Collagenous Membrane Under Biaxial Isotonic Loading,” IEEE Transactions on Biomedical Engineering, vol. 51, No. 2, pp. 371-379 (Feb. 2004). |
Harris et al., “Altered Mechanical Behavior of Epicardium Due to Isothermal Heating Under Biaxial Isotonic Loads,” Journal of Biomechanical Engineering, vol. 125, pp. 381-388 (Jun. 2003). |
Lee et al., “A multi-sample denaturation temperature tester for collagenous biomaterials,” Med. Eng. Phy., vol. 17, No. 2, pp. 115-121 (Mar. 1995). |
Moran et al., “Thermally Induced Shrinkage of Joint Capsule,” Clinical Orthopaedics and Related Research, No. 281, pp. 248-255 (Dec. 2000). |
Wall et al., “Thermal modification of collagen,” J Shoulder Elbow Surg, No. 8, pp. 339-344 (Jul./Aug. 1999). |
Wells et al., “Altered Mechanical Behavior of Epicardium Under Isothermal Biaxial Loading,” Transactions of the ASME, Journal of Biomedical Engineering, vol. 126, pp. 492-497 (Aug. 2004). |
Gibson, “Magnetic Refrigerator Successfully Tested,” U.S. Department of Energy Research News, accessed online on Aug. 6, 2010 at http://www.eurekalert.org/features/doe/2001-11/dl-mrs062802.php (Nov. 1, 2001). |
Humphrey, J.D., “Continuum Thermomechanics and the Clinical Treatment of Disease and Injury,” Appl. Meeh. Rev., vol. 56, No. 2 pp. 231-260 (Mar. 2003). |
National Semiconductors Temperature Sensor Handbook—http://www.national.com/appinfo/tempsensors/files/temphb.pdf; accessed online: Apr. 1, 2011. |
Chen et al., “Heat-induced changes in the mechanics of a collagenous tissue: pseudoelastic behavior at 37° C,” Journal of Biomechanics, 31, pp. 211-216 (1998). |
Kurt Gieck & Reiner Gieck, Engineering Formulas § Z.7 (7th ed. 1997). |
Hayashi et al., “The Effect of Thermal Heating on the Length and Histologic Properties of the Glenohumeral Joint Capsule,” American Journal of Sports Medicine, vol. 25, Issue 1, 11 pages (Jan. 1997), URL: http://www.mdconsult.com/das/article/body/156183648-2/jorg=journal&source=MI&sp=1 . . . , accessed Aug. 25, 2009. |
Wright, et al., “Time-Temperature Equivalence of Heat-Induced Changes in Cells and Proteins,” Feb. 1998. ASME Journal of Biomechanical Engineering, vol. 120, pp. 22-26. |
Covidien Brochure, [Value Analysis Brief], LigaSure Advance™ Pistol Grip, dated Rev. Apr. 2010 (7 pages). |
Covidien Brochure, LigaSure Impact™ Instrument LF4318, dated Feb. 2013 (3 pages). |
Covidien Brochure, LigaSure Atlas™ Hand Switching Instruments, dated Dec. 2008 (2 pages). |
Covidien Brochure, The LigaSure™ 5 mm Blunt Tip Sealer/Divider Family, dated Apr. 2013 (2 pages). |
https://www.kjmagnetics.com/fieldcalculator.asp, retrieved Jul. 11, 2016, backdated to Nov. 11, 2011 via https://web.archive.org/web/20111116164447/http://www.kjmagnetics.com/fieldcalculator.asp. |
Douglas, S.C. “Introduction to Adaptive Filter”. Digital Signal Processing Handbook. Ed. Vijay K. Madisetti and Douglas B. Williams. Boca Raton: CRC Press LLC, 1999. |
Leonard I. Malis, M.D., “The Value of Irrigation During Bipolar Coagulation,” 1989. |
Covidien Brochure, The LigaSure Precise™ Instrument, dated Mar. 2011 (2 pages). |
Glaser and Subak-Sharpe,Integrated Circuit Engineering, Addison-Wesley Publishing, Reading, MA (1979). (book—not attached). |
Jang, J. et al. “Neuro-fuzzy and Soft Computing.” Prentice Hall, 1997, pp. 13-89, 199-293, 335-393, 453-496, 535-549. |
Erbe Electrosurgery VIO® 200 S, (2012), p. 7, 12 pages, accessed Mar. 31, 2014 at http://www.erbe-med. com/erbe/media/Marketing materialien/85140170 ERBE EN VIO 200 S D027541. |
Sadiq Muhammad et al.: “High-performance planar ultrasonic tool based on d31-mode piezocrystal”, IEEE Transactions on Ultrasonics, Ferroelectricsand Frequency Control, IEEE, US, vol. 62, No. 3, Mar. 30, 2015 (Mar. 30, 2015), pp. 428-438, XP011574640, ISSN: 0885-3010, DOI: 10.1109/TUFFC.2014.006437. |
Mitsui Chemicals Names DuPont™ Vespel® Business as Exclusive U.S., European Distributor of AUTUM® Thermoplastic Polyimide Resin, Feb. 24, 2003; http://www2.dupont.com/Vespel/en_US/news_events/article20030224.html. |
Emam, Tarek A. et al., “How Safe is High-Power Ultrasonic Dissection?,” Annals of Surgery, (2003), pp. 186-191, vol. 237, No. 2, Lippincott Williams & Wilkins, Inc., Philadelphia, PA. |
Fell, Wolfgang, M.D., et al., “Ultrasonic Energy for Cutting, Coagulating, and Dissecting,” (2005), pp. IV, 17, 21, and 23; ISBN 3-13-127521-9 (New York, NY, Thieme, New York). |
McCarus, Steven D. M.D., “Physiologic Mechanism of the Ultrasonically Activated Scalpel,” The Journal of the American Association of Gynecologic Laparoscopists; (Aug. 1996), vol. 3, No. 4., pp. 601-606 and 608. |
Number | Date | Country | |
---|---|---|---|
20190053822 A1 | Feb 2019 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14715281 | May 2015 | US |
Child | 16165264 | US | |
Parent | 14590580 | Jan 2015 | US |
Child | 14715281 | US | |
Parent | 12703866 | Feb 2010 | US |
Child | 14590580 | US |