Embodiments of the present disclosure relate to systems and methods for managing customer data and customer preferences across a plurality of platforms.
Many customers link information (e.g., account types, account balances, payment account information, etc.) maintained by a financial institution to devices (e.g., in a mobile wallet on a smartphone, wearable devices, Internet of Things devices, etc.) and to third-party systems (e.g., financial health monitoring services, merchant e-commerce systems, social media platforms, mobile wallet systems, etc.). The customer may share the information with a plurality of different services. For example, the customer may provide account information to a financial health monitoring service, payment card information to a plurality of different mobile wallet services, payment card information to their favorite retailers, and the like. Once the access is provided, the customer can manage preferences relating to the access at each of the third-party systems (e.g., via a third-party website or smartphone application). However, this process can be cumbersome when the customer has authorized a plurality of third-parties to have access to the information maintained by the financial institution. Moreover, information shared by the customer becomes stored in additional databases, exposing the customer to additional security risks and making the customer's information more likely to become available to unwanted parties (as a result of, for example, the additional databases being hacked or the customer information otherwise being intentionally or unintentionally leaked).
One embodiment relates to a method of managing access to customer information associated with a customer of a financial institution. The method includes receiving, by a financial institution computing system associated with a financial institution, a request to view a set of access permissions from a first user device associated with the user. The method also includes identifying, by the financial institution computing system, the set of access permissions associated with the user, the set of access permissions identifying an entity or device that may request information regarding the user from the financial institution. The method also includes generating an access permission dataset based on the identified set of access permissions. The method also includes transmitting, by the financial institution computing system, the access permission dataset to the user device to facilitate the presentation of a data control interface to the customer via the user device, the data control interface configured to receive user inputs to change the set of data access permissions.
Another embodiment relates to a financial institution computing system associated with a financial institution. The financial institution computing system includes a network interface configured to communicate data over a network and an access control circuit. The access control circuit is configured to receive, by the network interface, a request to view a set of access permissions from a first user device associated with the user. The access control circuit is also configured to identify the set of access permissions associated with the user, the set of access permissions identifying an entity or device that may request information regarding the user from the financial institution. The access control circuit is further configured to generate an access permission dataset based on the identified set of access permissions. The access control circuit is further configured to transmit, by the network interface, the access permission dataset to the user device to facilitate the presentation of a data control interface to the customer via the user device, the data control interface configured to receive user inputs to change the set of data access permissions.
Various embodiments of the disclosure relate to methods, systems, and non-transitory computer readable medium for managing access to customer information of a customer. The customer information may be stored at a service provider computing system of a service provider. A third-party account may be linked with the customer information. The third-party account may be stored at a third party computing system. The third-party account may be linked with the customer information by the service provider computing system and/or by the third-party computing system. The link may define a subset of the customer information that is accessible to the third-party computing system. An instruction to delete customer data stored in a database of the third-party computing system may be received. The instruction to delete may be received from a service provider client application running on a computing device of the customer. The instruction to delete may be received by the service provider computing system. The instruction to delete may be generated in response to a corresponding selection by the customer. The instruction to delete may be generated by the service provider client application. The selection may be made via a graphical user interface presented by the service provider client application. A scrub command may be generated. The scrub command may be generated by the service provider computing system. The scrub command may identify the customer and/or the customer data to be deleted. The scrub command may be generated in response to receiving the instruction to delete. The scrub command may be transmitted to the third party computing system. The scrub command may be transmitted to cause the third-party computing system to delete the customer data that may have been identified by the scrub command. The customer data may be deleted by the third-party computing system from a database thereof.
In various implementations, an API call may be received. The API call may be received from the third-party computing system. The API call may be received by the service provider computing system. The API call may specify a subset of the customer information. The subset of the customer information specified in the API call may be transmitted to the third-party computing system. The customer information may be transmitted in response to receiving the API call from the third-party computing system. Restrictions may be placed on what customer data is accessible to the third-party computing system. Additionally or alternatively, restrictions may be placed on how accessible customer data may be used by the third party computing system. One or more restrictions may be placed by the customer. One or more restrictions may be placed via the service provider client application. Status information indicating whether the link is active or inactive may be transmitted to the computing device of the customer. The status information may be presented via the service provider client application running on the computing device. The scrub command may instruct the third-party computing system to delete the third-party account of the customer from the third-party computing system. The scrub command may instruct the third-party computing system to delete customer data of a specified type from the database of the third-party computing system. The scrub command may instruct the third-party computing system to delete all customer data, or a subset thereof, stored at the third-party computing system.
Various embodiments of the disclosure relate to a computing device, which may be a mobile computing device. The computing device may be associated with a customer of a service provider. The computing device may comprise a processor and memory with instructions which, when executed by the processor, cause the device to perform specific functions. The specific functions, or a subset thereof, may be performed via a service provider client application running on the computing device. The computing device may receive a request to link a third-party account of the customer with customer information stored at a service provider computing system. The third-party account may be stored at a third party computing system. The link may define a subset of the customer information that is accessible to the third-party computing system. The computing device may also present a graphical user interface. The graphical user interface may provide the customer with status information on the link. The graphical user interface may also allow the customer to make a selection to delete customer data stored in a database of the third-party computing system. The computing device may transmit an instruction to delete to the service provider computing system. The instruction to delete may be transmitted in response to the selection. The service provider computing system may generate a scrub command. The scrub command may be generated in response to receiving the instruction to delete. The scrub command may identify the customer and/or the customer data to be deleted. The scrub command may be transmitted to the third party computing system. The scrub command may be transmitted by the service provider computing system. The scrub command may be configured to cause deletion of the specified customer data. The customer data may be deleted by the third-party computing system.
In various implementations, the graphical user interface allows the customer to place restrictions on at least one of (1) what customer data is accessible to the third-party computing system and (2) how accessible customer data may be used by the third party. The graphical user interface may be presented via the service provider client application running on the computing device. The graphical user interface may identify the third-party account that is linked. The scrub command instructs the third-party computing system to delete a third-party account of the customer, to delete customer data of a specified type, and/or delete all customer data stored at the third-party computing system.
Various embodiments of the disclosure relate to a computing device, which may be a mobile computing device. The computing device may be associated with a customer of a service provider. The computing device may comprise a processor and memory with instructions which, when executed by the processor, cause the device to perform specific functions. The computing device may run a service provider client application. The computing device may perform the specific functions, or a subset thereof, via the service provider client application. The computing device may present a first graphical user interface. The first graphical user interface may, at least in part, identify a third-party account that is linked with customer information. The customer information may be stored at a service provider computing system of the service provider. The third-party account may be stored at a third party computing system. The link may define a subset of the customer information that is accessible to the third-party computing system. The computing device may also present a second graphical user interface. The second graphical user interface may include a selectable link which, when selected, transmits a message to the service provider computing system. The message may indicate that the customer wishes to delete customer data stored in a database of the third-party computing system. The service provider computing system may generate a scrub command. The scrub command may be generated in response to receiving the message. The scrub command may identify the customer and/or the customer data to be deleted. The computing device may transmits the scrub command to the third party computing system. The scrub command may be transmitted to cause the third-party computing system to delete the specified customer data.
Various embodiments of the disclosure relate to a computing device comprising a network interface configured to communicate via a telecommunications network. The computing device may also comprise one or more user interfaces for visually presenting graphical elements and for receiving user inputs. The computing device may moreover comprise a processor and a memory having stored thereon instructions which, when executed by the processor, cause the processor to perform specific functions. The computing device may be configured to present an interactive graphical interface via the user interfaces. The graphical interface may identify an entity for which an access permission to user information is controlled. The user information may be stored at a service provider computing system. The computing device may also be configured to present a display icon via the interactive graphical interface. The display icon may be selecting between a first user information and a second user information to be made accessible to the entity. The computing device may moreover be configured to receive, from the user interfaces, a signal. The signal may indicate a user input corresponding with a selection of one of the first user information and the second user information via the display icon. The computing device may additionally be configured to use the network interface to transmit to the service provider computing system an indication of which one of the first user information and the second user information has been selected. The service provider computing system may grant the entity access to the selected user information. Access to the selected user information may be granted following receipt by the service provider computing system of a request from the entity for user information.
In various implementations, the computing device may be configured to present, via the interactive graphical interface, an indication of whether access to user information is permitted or restricted for the entity. The computing device may also be configured to present, via the interactive graphical interface, a second display icon for selecting between at least a first setting to permit access to user information for the entity, and a second setting to restrict access to user information for the entity. The computing device may be a first computing device, and the entity may be a second computing device associated with the user. In certain versions, the second computing device may be a smartphone. In certain versions, the second computing device may be a tablet computer. In certain versions, the second computing device may be a wearable device. In certain versions, the second computing device may be a smart speaker. In certain versions, the second computing device may be a vehicle. The interactive graphical interface may be presented via a first application. The entity may be a second application. The second application may be configured to communicate with the service provider computing system to request access to user information. In certain versions, the first and second applications may both run on the computing device. In certain versions, the second application runs on a second computing device. The entity may be a third-party computing system. The user information may be account data for financial transactions involving the third-party computing system.
Various embodiments of the disclosure relate to a method for controlling access permissions to user devices. The method may comprise presenting, via one or more user interfaces, an interactive graphical interface. The graphical interface may identify an entity for which an access permission to user information may be controlled. The one or more user interfaces may be configured to visually present graphical elements and receive user inputs. The user information may be stored at a service provider computing system. The method may also comprise presenting, via the interactive graphical interface, a display icon. The display icon may be for selecting between a first user information and a second user information to be made accessible to the entity. The method may moreover comprise receiving, from the user interfaces, a signal. The signal may indicate a user input corresponding with a selection of one of the first user information and the second user information via the display icon. The method may additionally comprise using a network interface to transmit to the service provider computing system an indication of which one of the first user information and the second user information has been selected. The service provider computing system may grant the entity access to the selected user information. Access to the selected user information may be granted following receipt by the service provider computing system of a request from the entity for user information.
In various implementations, an indication of whether access to user information is permitted or restricted for the entity may be presented via the interactive graphical interface. A second display icon may be presented via the interactive graphical interface. The second display icon may be for selecting between at least a first setting to permit access to user information for the entity, and a second setting to restrict access to user information for the entity. The computing device may be a first computing device, and the entity may be a second computing device associated with the user. In certain versions, the second computing device may be a smartphone. In certain versions, the second computing device may be a tablet computer. In certain versions, the second computing device may be a smart speaker. In certain versions, the second computing device may be a vehicle. In certain versions, the second computing device may be a wearable device. The interactive graphical interface may be presented via a first application. The entity may be a second application configured to communicate with the service provider computing system to request access to the user information. The entity may be a third-party computing system. The third-party computing system may be associated with a merchant. The user information may be account data for transacting with the third-party computing system. The user information may be account data for making purchases from a merchant.
Various embodiments of the disclosure relate to a non-transitory computer readable medium having machine instructions stored thereon, the instructions being executable by a processor of a computing device to cause the processor to perform specific operations. The operations may comprise presenting an interactive graphical interface via one or more user interfaces. The graphical interface may identify an entity for which an access permission to user information is controlled. The one or more user interfaces may be configured to visually present graphical elements and receive user inputs. The user information may be stored at a service provider computing system. The operations may also comprise presenting a display icon via the interactive graphical interface. The display icon may be for selecting between a first user information and a second user information to be made accessible to the entity. The operations may moreover comprise receiving a signal from the user interfaces. The signal may indicate a user input corresponding with a selection of one of the first user information and the second user information via the display icon. The operations may additionally comprise using a network interface to transmit to the service provider computing system an indication of which one of the first user information and the second user information has been selected. The service provider computing system may grant the entity access to the selected user information.
In various implementations, the operations may comprise presenting, via the interactive graphical interface, an indication of whether access to user information is permitted or restricted for the entity. The operations may also comprise presenting, via the interactive graphical, a second display icon for selecting between at least a first setting to permit access to user information for the entity, and a second setting to restrict access to user information for the entity.
Various embodiments of the disclosure relate to a computing device. The computing device may comprise a network interface configured to communicate via a telecommunications network, one or more user interfaces for visually presenting graphical elements and for receiving user inputs, and a processor and a memory having stored thereon instructions which, when executed by the processor, cause the processor to perform specific functions. The computing device may be configured to present an interactive graphical interface via the user interfaces. The interactive graphical interface may identify an entity for which an access permission to user information is controlled. The user information may be stored at a service provider computing system. The computing device may also be configured to present a display icon via the interactive graphical interface. The display icon may be for selecting the access permission corresponding to the entity. The access permission may be selectable between at least a first setting to permit access to user information, and a second setting to restrict access to user information. The computing device may moreover be configured to receive a signal from the user interfaces. The signal may indicate a user input corresponding with a toggling of the display icon between the first and second settings. The computing device may additionally be configured to use the network interface to transmit to the service provider computing system at least one of an identification of the selected access permission and an indication that the access permission for the entity has changed. The service provider computing system may determine whether to grant the entity with access to the user information according to the access permission.
In various implementations, the computing device may be configured to present, via the interactive graphical interface, an identification of the user information accessible to the entity. The user information may be a first user information. The computing device may be configured to present a second display icon via the interactive graphical interface. The second icon may be for selecting between the first user information and a second user information to be made available to the entity. The computing device may be a first computing device. The entity may be a second computing device associated with the user. In some versions, the second computing device may be a smartphone. In some versions, the second computing device may be a tablet computer. In some versions, the second computing device may be a wearable device. In some versions, the second computing device may be a smart speaker. In some versions, the second computing device may be a vehicle. The interactive graphical interface may be presented via a first application. The entity may be a second application. The second application may be configured to communicate with the service provider computing system to request access to the user information. In some versions, the first and second applications may both run on the computing device. The entity may be a third-party computing system. The third-party computing system may be associated with a merchant. The user information may be account data for making purchases from the merchant.
Various embodiments of the disclosure relate to a method for controlling access permissions to user devices. The method may comprise presenting an interactive graphical interface via one or more user interfaces. The interactive graphical interface may identify an entity for which an access permission to user information is controlled. The one or more user interfaces may be configured to visually present graphical elements and receive user inputs. The user information may be stored at a service provider computing system. The method may also comprise presenting a display icon via the interactive graphical interface. The display icon may be for selecting the access permission corresponding to the entity between at least a first setting to permit access to user information, and a second setting to restrict access to user information. The method may moreover comprise receiving a signal from the user interfaces. The signal may indicate a user input corresponding with a toggling of the display icon between the first and second settings. The method may additionally comprise using a network interface to transmit to the service provider computing system at least one of an identification of the selected access permission and an indication that the access permission for the entity has changed. The network interface may be configured to communicate via a telecommunications network. The service provider computing system may determine whether to grant the entity with access to the user information according to the access permission.
In various implementations, an identification of the user information accessible to the entity may be presented via the interactive graphical interface. The user information may be a first user information. A second display icon may be presented via the interactive graphical interface. The second display icon may be for selecting between the first user information and a second user information to be made available to the entity. The computing device may be a first computing device, and the entity may be a second computing device associated with the user. The second computing device may be a smartphone, a tablet computer, a smart speaker, a vehicle, and/or a wearable device. The interactive graphical interface may be presented via a first application. The entity may be a second application configured to communicate with the service provider computing system to request access to the user information. The first and second applications may both run on the computing device. The entity may be a third-party computing system. The third-party computing system may be associated with a merchant. The user information may be account data. The account data may be for making purchases from the merchant.
Various embodiments of the disclosure relate to a non-transitory computer readable medium having machine instructions stored thereon. The instructions may be executable by a processor of a computing device to cause the processor to perform specific operations. The operations may comprise presenting an interactive graphical interface via one or more user interfaces. The interactive graphical interface may identify an entity for which an access permission to user information is controlled. The one or more user interfaces may be configured to visually present graphical elements and receive user inputs. The user information may be stored at a service provider computing system. The operations may also comprise presenting a display icon via the interactive graphical interface. The display icon may be for selecting the access permission corresponding to the entity. The display icon may allow selection of the access permission between at least a first setting to permit access to user information, and a second setting to restrict access to user information. The operations may moreover comprise receiving, from the user interfaces, a signal indicating a user input corresponding with a toggling of the display icon between the first and second settings. The operations may additionally comprise using a network interface to transmit to the service provider computing system at least one of an identification of the selected access permission and an indication that the access permission for the entity has changed. The network interface may be configured to communicate via a telecommunications network. The service provider computing system may determine whether to grant the entity with access to the user information according to the access permission.
In various implementations, a second display icon may be presented via the interactive graphical interface. The second display icon may be for selecting between a first user information and a second user information to be made accessible to the entity.
Various embodiments of the disclosure relate to a service provider computing system comprising a network interface configured to communicate via a telecommunications network, a processor, and a memory having stored thereon instructions which, when executed by the processor, cause the processor to perform specific functions. The service provider computing system may receive, via the network interface, an access request from a third-party platform. The access request may identify a user and data corresponding to the user. The service provider computing system may also verify that the identified user has granted the third-party platform access to the identified data. In response to verifying that the identified user has granted access, the service provider computing system may use the network interface to transmit the identified data to the third-party platform. The service provider computing may moreover receive, from a user device of the user, an instruction. The instruction may identify the third-party platform and/or indicate what is to be done with the data provided to the third-party platform. The service provider computing system may additionally use the network interface to transmit a command to the third-party platform to cause the third-party platform to, consistent with the instruction from the user device, delete the data received from the service provider computing system and/or restrict how the data from the service provider computing system is used.
In various implementations, the command may be or include an API call to the third-party platform. The API call may identify the user and/or the data to be deleted and/or restricted. The access request may be an API call transmitted by the third-party platform to the service provider computing system. The command may instruct the third-party platform to delete the data from all computer-readable storage media controlled by the third-party platform. The instruction may identify a selection made, via a graphical interface presented by a client application running on the user device, between permitting a use of the data and prohibiting the use of the data. The data may identify a credit or debit card. The use may correspond with use of the credit or debit card in an identified category of financial transactions. The command may instruct the third-party platform to delete a user account of the user.
Various embodiments of the disclosure relate to a method of reclaiming user data. The method may comprise receiving an access request from a third-party platform. The access request may identify a user and/or data corresponding to the user. The method may also comprise verifying that the identified user has granted the third-party platform access to the identified data. The method may moreover comprise transmitting the identified data to the third-party platform in response to verifying that the identified user has granted access. The method may additionally comprise receiving, from a user device of the user, an instruction identifying the third-party platform and/or indicating what is to be done with the data provided to the third-party platform. The method may further comprise transmitting a command to the third-party platform to cause the third-party platform to, consistent with the instruction from the user device, delete the data or restrict how the third-party platform uses the data.
In various implementations, the command may include an API call to the third-party platform. The API call may identify the user and/or the data to be deleted and/or restricted. The command may instruct the third-party platform to delete the data from all computer-readable storage media controlled by the third-party platform. The command may instruct the third-party platform to delete a user account of the user. The third-party platform may be a social media platform. The user account may be a social media account of the user. The third-party platform may be a third-party computing system of a merchant. The data may be account data to be used for a purchase at the merchant. The user device may be a first user device of the user. The third-party platform may be a third-party client application running on at least one of the first user device and a second user device of the user. The instruction may identify a selection made, via a graphical interface presented by a client application running on the user device, between permitting a use of the data and prohibiting the use of the data. The data may include account data usable in financial transactions. The use may correspond with use of the data in an identified category of financial transactions. The account data may be for a credit or debit card. The identified category of financial transactions may be foreign transactions.
Various embodiments of the disclosure relate to a non-transitory computer readable medium having machine instructions stored thereon, the instructions being executable by a processor of a computing device to cause the processor to perform specific operations related to reclaiming user data. The operations may comprise receiving an access request from a third-party platform, the access request identifying a user and data corresponding to the user. The operations may also comprise verifying that the identified user has granted the third-party platform access to the identified data. The operations may moreover comprise, in response to verifying that the identified user has granted access, transmitting the identified data to the third-party platform. The operations may additionally comprise receiving, from a user device of the user, an instruction identifying the third-party platform and indicating what is to be done with the data provided to the third-party platform. The operations may further comprise transmitting a command to the third-party platform to cause the third-party platform to, consistent with the instruction from the user device, delete the data or restrict how the third-party platform uses the data.
Various embodiments relate to a method comprising providing a portal. The portal may include one or more graphical interfaces allowing a user to disable automated payments from selected accounts to selected recipients. The portal may be accessed via a user device. The portal may be configured to accept a first selection to disable a first automated payment in which a first financial account is used to make automated payments to a first recipient. The portal may be configured to accept a second selection of a second automated payment in which a second financial account is used to make automated payments to a second recipient. The first financial account may be held by one (a first) financial institution and the second financial account may be held by another (a second) financial institution. The first and second selections may be accepted via the user device accessing the portal.
In one or more implementations, at least one of the first and second recipients is a third financial account. The third financial account may be held at one of the first and second financial institutions. Alternatively, the third financial account may be held at a third financial institution.
In one or more implementations, the method may comprise disabling one or both of the first and second automated payments.
In one or more implementations, the portal may be implemented by a computing system of the first financial institution. Disabling the first automated payment may comprise declining a subsequent payment request from a first device corresponding to the first recipient.
In one or more implementations, disabling the second automated payment may comprise transmitting an indication to a computing system of the second financial institution that the second automated payment has been disabled.
In one or more implementations, the portal may be implemented by a first computing system of an entity other than the first and second financial institutions. Disabling the first recurring payment may comprise sending a transmission to a second computing system of the first financial institution. The transmission may be sent by the first computing system. The transmission may indicate that the first recurring payment is to be disabled.
In one or more implementations, disabling the second recurring payment may comprise sending a transmission to a third computing system of the second financial institution. The transmission may be sent by the first computing system. The transmission may indicate that the second recurring payment is to be disabled.
In one or more implementations, the transmission to the second computing system may comprise an API call to the second computing system. The API call may be accompanied by a security token authenticating the first computing system. The API call may additionally or alternatively be accompanied by an identification of a user and/or an account number associated with the first financial account.
Various embodiments relate to a method comprising providing a portal with one or more graphical interfaces. The graphical interfaces may allow a user to control automated payments from one or more financial accounts to one or more recipients. The portal may allow the user to control automated payments via a user device. The portal may be configured to accept selection of a financial account used to make automated payments. The portal may be configured to accept selection of a recipient of the automated payments from the selected financial account. The portal may be configured to accept an indication that the automated payments are to be disabled. One or more of the selections and the indication may be accepted via the user device. The method may comprise disabling the automated payments from the financial account to the recipient.
In one or more implementations, the method may be implemented by a computing system of a financial institution at which the financial account is held. The method may comprise declining a subsequent payment request. The subsequent payment request may be received from a computing device corresponding to the recipient of the automated payments.
In one or more implementations, the method may be implemented by a third-party computing system of a third-party that is not a financial institution at which the financial account is held. The method may comprise sending a transmission indicating that the automated payments have been disabled. The transmission may be sent to a financial institution computing system of the financial institution.
In one or more implementations, the portal may be configured to accept selection of a second financial account used to make automated payments. The portal may be configured to accept selection of a second recipient of the automated payments from the second financial account. The portal may be configured to accept an indication that the automated payments from the second financial account to the second recipient are to be disabled. One or more of the selections may be accepted via the user device. The method may comprise disabling the automated payments from the second financial account to the second recipient.
Various embodiments relate to a method of providing a portal accessible to a user device via a network. The portal may be configured to present a list that includes a first selectable icon corresponding to a first financial account. The list may include a second selectable icon corresponding to a second financial account. The list may be presented via a first graphical interface. The first and second financial accounts may be held at different financial institutions. The portal may be configured to accept a first indication that one of the first and second financial accounts has been selected by the user via one of the first and second selectable icons. The first indication may be accepted via the user device. The portal may be configured to present a selectable option to stop one or more subsequent recurring payments from the selected one of the first and second financial accounts. The selectable option may be presented via a second graphical interface. The second graphical interface may be accessed on the user device. The portal may be configured to accept a second indication that the option to stop subsequent recurring payments has been selected by the user via the selectable option. The second indication may be accepted from the user device.
In one or more implementations, the method is not implemented by either of the financial institutions at which the first and second financial accounts are held.
In one or more implementations, the method is implemented by a computing system associated with a financial institution holding one of the first and second financial accounts used for the recurring payments. The method may comprise declining a subsequent recurring payment request. The subsequent recurring payment request may be received from an entity device corresponding to a recipient of the recurring payments to be stopped.
In one or more implementations, the portal may be configured to accept a selection of the other of the first and second financial accounts from which recurring payments are made. The selection may be accepted from the user device. The portal may be configured to accept a second selection to stop subsequent recurring payments from the other of the first and second financial accounts. The second selection may be accepted via the user device.
Various embodiments relate to a method comprising providing a portal with one or more graphical interfaces. The one or more graphical interfaces may allow a user to disable selected financial accounts for identified entities such that payments from the selected financial accounts will be declined for the identified entities. The selected financial accounts may be disabled via a user device. The portal may be configured to present to the user a first graphical interface with a list that includes a first selectable icon corresponding to a first entity, and a second selectable icon corresponding to a second entity. The first graphical interface may identify a financial account used to make recurring payments to the first and second entities. The first graphical interface may be accessible via the user device. The portal may be configured to accept a first indication that one of the first and second entities has been selected by the user via one of the first and second selectable icons. The first indication may be accepted from the user device. The portal may be configured to present to the user a selectable option to stop one or more subsequent recurring payments to the selected one of the first and second entities. The selectable option may presented via a second graphical interface. The second graphical interface may be accessed on the user device. The portal may be configured to accept a second indication that the option to stop subsequent recurring payments has been selected by the user via the selectable option. The second indication may be accepted from the user device. The portal may be configured to decline a recurring payment request. The recurring payment request may be received from an entity device corresponding to the selected one of the first and second entities. The recurring payment request may be received subsequent to acceptance of the second indication.
In one or more implementations, the portal may be configured to present a duration selector. The duration selector may be configured to allow the user to identify a duration during which recurring payment requests from the selected one of the first and second entities will be declined.
In one or more implementations, the duration selector may be configured to allow the user to select a number of months during which recurring payment requests will be declined, after which recurring payment requests will not be declined.
In one or more implementations, the portal may be implemented by a computing system of a financial institution holding the financial account used for the recurring payments. The portal need not be implemented by a computing system of a financial institution holding the financial account used for the recurring payments. The portal may instead be implemented by a computing system of a third-party entity other than the financial institution holding the financial account used for the recurring payments.
In one or more implementations, the portal may be configured to allow the user to define a set of access permissions identifying an entity or device that may request information regarding the user from the computing system.
In one or more implementations, the portal may be implemented by a computing system of a financial institution holding the financial account used for the recurring payments. The method may comprise accepting payment requests from a first entity device of the first entity and from a second entity device of the second entity. The payment requests may be accepted before accepting the second indication via the portal. The method may comprise initiating debits from the financial account for each payment request.
In one or more implementations, the portal may be accessed via a mobile application running on the user device.
In one or more implementations, the portal may be configured to display one or more prior recurring payments to the selected one of the first and second entities. The recurring payments may be displayed after accepting the first indication.
In one or more implementations, the portal may be configured to display a status of the financial account. The status may be displayed after accepting the first indication.
In one or more implementations, the method may comprise accepting an authorization to approve recurring payment requests from devices of the first and second entities. The authorization may be accepted via the user device.
In one or more implementations, the central portal may be configured to allow the user to disable selected financial accounts with respect to identified financial wallet accounts such that payments via the identified financial wallet accounts will be declined for the selected financial accounts.
In one or more implementations, the financial account may be a debit card of the user. The recurring payments may be made using the debit card.
Various embodiments relate to a computing system configured to provide a portal. The portal may be accessible to a user device via a network. The portal may be configured to allow a user to disable selected financial accounts for identified entities such that payments from the selected financial accounts will be declined for the identified entities. The user may be allowed to disable selected financial accounts via the user device accessing the central portal. The portal may be configured to present a list that includes a first selectable icon corresponding to a first entity, and a second selectable icon corresponding to a second entity. The list may be presented via a first graphical interface. The first graphical interface may identify a financial account used to make recurring payments to the first and second entities. The portal may be configured to accept a first indication that one of the first and second entities has been selected by the user via one of the first and second selectable icons. The first indication may be accepted from the user device. The portal may be configured to present a selectable option to stop one or more subsequent recurring payments to the selected one of the first and second entities. The selectable option may be presented via a second graphical interface accessed on the user device. The portal may be configured to accept a second indication that the option to stop subsequent recurring payments has been selected by the user via the selectable option. The second indication may be accepted from the user device. The computing system may be configured to decline a recurring payment request. The recurring payment request may be received from an entity device corresponding to the selected one of the first and second entities. The request may be received subsequent to acceptance of the second indication via the central portal.
In one or more implementations, the portal may be configured to present a duration selector. The duration selector may be configured to allow the user to identify a duration during which recurring payment requests from the selected one of the first and second entities will be declined.
In one or more implementations, the computing system may be associated with a financial institution holding the financial account used for the recurring payments. The central portal may be further configured to allow the user to define a set of access permissions identifying an entity or device that may request information regarding the user from the computing system.
Various embodiments relate to a user device running an application. The application may be configured to access, via a network, a portal implemented by a computing system. The portal may be configured to allow a user to disable selected financial accounts for identified entities such that payments from the selected financial accounts will be declined or approved for the identified entities by the computing system. The application may be configured to present a list that includes a first selectable icon corresponding to a first entity, and a second selectable icon corresponding to a second entity. The list may be presented via a first graphical interface. The first graphical interface may identify a financial account used to make recurring payments to the first and second entities. The application may be configured to accept a first indication that one of the first and second entities has been selected by the user via one of the first and second selectable icons. The first indication may be accepted via one or more user interfaces of the user device. The application may be configured to present a selectable option to stop one or more subsequent recurring payments to the selected one of the first and second entities. The selectable option may be presented via a second graphical interface. The application may be configured to accept a second indication that the option to stop subsequent recurring payments has been selected by the user via the selectable option. The second indication may be accepted via the one or more user interfaces. The application may be configured to transmit the second indication to cause the computing system to decline a recurring payment request. The payment request may be received by the computing system from an entity device corresponding to the selected one of the first and second entities. The payment request may be received subsequent to acceptance of the second indication.
In one or more implementations, the application may be configured to present a duration selector. The duration selector may be configured to allow the user to identify a duration during which recurring payment requests from the selected one of the first and second entities will be declined.
In one or more implementations, the computing system may be associated with a financial institution holding the financial account used for the recurring payments. The portal may be configured to allow the user to define a set of access permissions identifying an entity or device that may request information regarding the user from the computing system.
In one or more implementations, the application may be configured to present a hide-payee selector. The hide-payee selector may be configured to allow the user to select a payee to be excluded from a recurring payments list.
These and other features, together with the organization and manner of operation thereof, will become apparent from the following detailed description when taken in conjunction with the accompanying drawings.
Referring to the figures generally, systems, methods, and apparatuses for providing a customer a central location to manage permissions provided to third-parties and devices to access and use customer information maintained by a financial institution or other service provider are described. The central location serves as a central portal where a customer of the financial institution can manage all access to account information and personal information stored at the financial institution. Accordingly, the customer does not need to log into each individual third-party system or customer device to manage previously provided access to the customer information or to provision new access to the customer information.
Referring to
The customer 102 is an account holder with the financial institution 104. The financial institution 104 includes a financial institution computing system 110. The financial institution computing system 110 maintains information about accounts held with the financial institution 104 and facilitates the movement of funds into and out of the accounts. Additionally, the financial institution computing system 110 facilitates the sharing of and the provision of access to information associated with customer accounts to the customer 102, to customer devices 108, and to third-party systems 106. The financial institution computing system 110 includes a network interface 112. The network interface 112 is structured to facilitate data communication with other computing systems (e.g., the customer devices 108, the third-party systems 106, etc.) via a network 126. The network interface 112 includes hardware and program logic that facilitates connection of the financial institution computing system 110 to the network 126. For example, the network interface 112 may include a wireless network transceiver (e.g., a cellular modem, a Bluetooth transceiver, a WiFi transceiver, etc.) and/or a wired network transceiver (e.g., an Ethernet transceiver). In some arrangements, the network interface 112 includes the hardware and programming logic sufficient to support communication over multiple channels of data communication (e.g., the Internet and an internal financial institution network). Further, in some arrangements, the network interface 112 is structured to encrypt data sent over the network 126 and decrypt received encrypted data.
The financial institution computing system 110 includes a processing circuit 114 having a processor 116 and memory 118. The processor 116 may be implemented as a general-purpose processor, an application specific integrated circuit (ASIC), one or more field programmable gate arrays (FPGAs), a digital signal processor (DSP), a group of processing components, or other suitable electronic processing components. The memory 118 includes one or more memory devices (e.g., RAM, NVRAM, ROM, Flash Memory, hard disk storage, etc.) that store data and/or computer code for facilitating the various processes described herein. Moreover, the memory 118 may be or include tangible, non-transient volatile memory or non-volatile memory.
The financial institution computing system 110 includes an account management circuit 120 and an access control circuit 122. Although shown as separate circuits in
The financial institution computing system 110 includes the accounts database 124. In some arrangements, the accounts database 124 is part of the memory 118. The accounts database 124 is structured to hold, store, categorize, and otherwise serve as a repository for information associated with accounts (e.g., loan accounts, savings accounts, checking accounts, credit accounts, etc.) held by the financial institution 104. For example, the accounts database 124 may store account numbers, account balances, transaction information, account ownership information, and the like. The accounts database 124 is structured to selectively provide access to information relating to accounts at the financial institution 104 (e.g., to the customer 102 via a customer device 108). In some arrangements, the financial institution computing system 110 includes other databases, such as customer document and information databases structured to store non-account related information or other documents associated with the customer 102 for distribution to third-parties at the approval of the customer 102.
Still referring to
The customer 102 is associated with various customer devices 108. The customer devices 108 may include, for example, smartphones, tablet computers, laptop computers, desktop computers, wearables (e.g., smart watches, smart glasses, fitness trackers, etc.), internet of things (“IoT”) devices (e.g., Amazon Echo®, smart appliances, etc.). Each of the customer devices 108 may be provided access to different portions of the information associated with the customer 102 that is stored, generated, maintained, and/or controlled in part by the financial institution 104. For example, a smartphone may be provided access to payment account and billing address information for a mobile wallet running on the smartphone, while an IoT device may be provided access to payment information, account balance information, and transaction information to execute purchases and review transactions. As described in further detail below, the customer 102 can provide a given customer device 108 access to designated information, limit access to information, and revoke access to information through the access control tower provided by the financial institution 104. In some arrangements, the customer devices 108 do not communicate with the financial institution computing system 110 via the network 126. For example, the customer devices 108 can include payment cards (e.g., credit cards, debit cards, smart cards, etc.) that have account information that can be linked by the financial institution computing system 110 to account information and customer preferences stored at the financial institution computing system 110.
The devices of the system 100 communicate via the network 126. The network 126 may include any combination of the Internet and an internal private network (e.g., a private network maintained by the financial institution 104). Through data communication over the network 126, the financial institution computing system 110 can share customer information with the third-party systems 106 and the customer devices 108.
The financial institution computing system 110 includes customer information APIs 128 that define how the financial institution computing system 110 communicates customer information with the third-party systems 106 and the customer devices 108. The APIs facilitate the sharing of and access to the customer information stored at the financial institution computing system 110 based on permissions and preferences provided by the customer 102.
The access control circuit 122 controls access to the customer information by the third-party systems 106 and the customer devices 108 via the APIs 128. In some arrangements, the financial institution computing system 110 provisions requested customer data to a given third-party system 106 or customer device 108 for local storage on the third-party system 106 or the customer device 108. For example, the financial institution computing system 110 can provision payment information, such as payment tokens associated with payment accounts, to a mobile wallet system for local storage at the mobile wallet system. In other arrangements, the financial institution computing system 110 provides access to remotely display, present, or analyze customer information stored at the financial institution computing system 110 while the financial institution computing system 110 retains control over the customer information. For example, the financial institution computing system 110 can provide access to a financial health system to present designated customer account information through a financial health website, such as balances, transaction information, and the like, when the financial health system requests the information, without directly transmitting the data to the financial health system.
Generally, through the information management system 100, the customer 102 can provision access to customer information to third-party systems 106 and to customer devices 108 (e.g., by permitting the third-party system 106 or the customer device 108 to communicate with the financial institution computing system 110 to retrieve the customer information). The customer information is maintained by the financial institution 104 via the financial institution computing system 110. The customer information can include any information associated with the customer 102 that is generated by or maintained by the financial institution 104, including customer account information (e.g., account numbers, billing address, balance information, transaction information, account type information, account statements, etc.), personal information (e.g., date of birth, social security number, tax identifications, addresses, phone numbers, e-mail addresses, aliases, etc.), information provided to the financial institution 104 during the account opening process (e.g., driver's license scans, passport scans, marriage certificates, property deeds, etc.). Additionally, customer information can include any other information provided by the customer 102 to the financial institution 104 for the purposes of controlling access to the provided information. This other information may include data files, personal information, documents, or the like. The customer 102 can provision access to the customer information through the third-party, the customer device 108, or via the FI computing system data control tower. Additionally, the customer 102 can manage all previously provided access permissions via the data control tower to change an access level, set permissions, revoke access, or the like. As described herein, the provision of the customer information can be managed on a payment level (e.g., managing all third-party and device access to customer account identifying information such as account numbers and billing addresses for the purposes of making payments), on an application level (e.g., managing third party and device access to customer information for purposes of incorporating such information into third party applications), and on a device level (e.g., managing the devices that may receive the customer information).
Referring now to
In the example shown, the customer mobile device 200 includes a network interface 202 enabling the customer mobile device 200 to communicate via the network 126, an input/output device (“I/O” device) 204, third party client applications 206, and a financial institution client application 208. I/O device 204 includes hardware and associated logics configured to exchange information with a customer and other devices (e.g., a merchant transaction terminal). An input aspect of the I/O device 204 allows the customer to provide information to the customer mobile device 200, and may include, for example, a mechanical keyboard, a touchscreen, a microphone, a camera, a fingerprint scanner, any customer input device engageable to the customer mobile device 200 via a USB, serial cable, Ethernet cable, and so on. An output aspect of the I/O device 204 allows the customer to receive information from the customer mobile device 200, and may include, for example, a digital display, a speaker, illuminating icons, LEDs, and so on. The I/O device 204 may include systems, components, devices, and apparatuses that serve both input and output functions, allowing the financial institution computing system 110 exchange information with the customer mobile device 200. Such systems, components, devices and apparatuses include, for example, radio frequency transceivers (e.g., RF or NFC-based transceivers) and other short range wireless transceivers (e.g., Bluetooth®, laser-based data transmitters, etc.).
Third party client applications 206 are structured to provide the customer with access to services offered by various third parties (e.g., associated with third party systems 106). Some third party client applications 206 may be hard coded onto the memory of the customer mobile device 200, while other third party client application 206 may be web-based interface applications, where the customer has to log onto or access the web-based interface before usage, and these applications are supported by a separate computing system comprising one or more servers, processors, network interface circuits, or the like (e.g., third party systems 106), that transmit the applications for use to the mobile device.
In some arrangements, the third party client applications 206 are structured to permit management of at least one customer account associated with a third party service. Accordingly, a particular third party client application 206 may be communicably coupled to a third party system 106 via the network 126. Through this communicative coupling, the third party system 106 may provide displays regarding the particular third party service or application. For example, one third party client application 206 may include a calendar application, and the displays provided by third party client application 206 may enable the customer 102 to input information regarding customer events, meetings, appointments (e.g., information regarding the timing and location of customer events). Upon the customer 102 inputting such information regarding the customer events, the customer-input information is stored at a third party system 106, and incorporated into future displays provided to the customer 102 via the third party client application. Through such displays, the customer 102 is able view the previously-input information via a calendar interface. Other third party client applications 206 include, but are not limited to financial health applications (e.g., applications configured to provide the customer 102 with financial advice), and social media applications.
In some embodiments, some of the third party client applications 206 include APIs specifically configured to request information from the financial institution computing system 110. For example, the financial institution 104 may have arrangements with third parties providing third party client applications 206. Under such arrangements, the customer 102 is able to provide particular third party client applications 206 with access to subsets of information pertaining to the customer 102 stored at the financial institution computing system 110 (e.g., in the accounts database 124). Upon the customer 102 providing such permission to a third party client application 206, the customer mobile device 200 may transmit information requests to the financial institution computing system 110 via such APIs, and utilize information received from the financial institution computing system 110 to update the displays rendered viewable by the customer 102 via the third party client application 206.
To illustrate, the customer 102 may provide a calendar application with customer bill payment information stored at the financial institution computing system 110. The calendar application may include a widget specifically configured to enable the customer 102 to insert the bill payment information into the calendar application. This way, the customer 102 is reminded of bill payments in the third party client application 206.
In various arrangements, the particular communications channel through which customer financial information is provided to the third party client application 206 may vary depending on the implementation of the third party client application 206. For example, if the third party client application 206 is web-based, a third party system 106 providing the third party client application 206 to the customer mobile device 200 may receive the customer information maintained at the financial institution computing system 110, and incorporate that information into various displays rendered on the customer mobile device 200 via the third party client application 206
In situations where a third party client application 206 is a native application on the customer mobile device 200, the customer mobile device 200 may formulate and transmit an information request via an API in the third party client application 206 to the financial institution computing system 110. The information request may include an identifier (e.g., encryption key) that is based at least in part on the identity of the third party client application 206, on the type of information that may be shared with the third party client application 206, and/or on the customer devices 108 from which the information request may be transmitted. In some implementations, the information request may be routed via financial institution client application 208. For example, the third party client application 206 may make a request to the financial institution client application 208, which obtains the requested information from the financial institution computing system 110. As such, depending on the application permissions provided by the customer 102 via the methods described herein, the financial institution computing system 110 (and/or the financial institution client application 208) may allow or deny the third party client application 206 access to the requested information.
The financial institution client application 208 is structured to provide displays to the customer mobile device 200 that enable the customer 102 to manage financial accounts. Accordingly, the financial institution client application 208 is communicably coupled to the financial institution computing system 110 (e.g., the account management circuit 120 and the access control circuit 122) and is structured to permit management of the customer financial accounts and transactions. The displays provided by the financial institution client application 208 may be indicative of current account balances, pending transactions, profile information (e.g., contact information), and the like.
Further, in some embodiments, the financial institution client application 208 is structured to present displays pertaining to the access control tower discussed herein. In this regard, via the financial institution client application 208, the customer mobile device 200 is configured to receive various datasets from the financial institution computing system 110 describing the entities (e.g., third party systems 106, customer devices 108, third party applications 206) to which the customer 102 has provided access to customer financial information. The customer mobile device 200, via the financial institution client application 208, is configured to render such datasets into various data control tower interfaces. As described herein, through such interfaces, the customer 102 is able to modify the quantity of information available to these entities, and provide additional entities with access to information at the financial institution computing system 110.
In some embodiments, the customer mobile device 200 is configured (e.g., via the financial institution client application 208) to perform various operations described herein as being performed by the financial institution computing system 110. For example, in one embodiment, financial institution client application 208 includes APIs structured to integrate with various third party client applications 206 on the customer mobile device 200. Through such APIs, customer information received from the financial institution computing system 110 via the financial institution client application 208 may be shared with the third party client applications 206, and utilized by the third party client applications 206.
In some embodiments, the financial institution client application 208 is a separate software application implemented on the customer mobile device 200. The financial institution client application 208 may be downloaded by the customer mobile device 200 prior to its usage, hard coded into the memory of the customer mobile device 200, or be a web-based interface application such that the customer mobile device 200 may provide a web browser to the application, which may be executed remotely from the customer mobile device 200. In the latter instance, the customer 102 may have to log onto or access the web-based interface before usage of the applications. Further, and in this regard, the financial institution client application 208 may be supported by a separate computing system including one or more servers, processors, network interface circuits, etc. that transmit applications for use to the customer mobile device 200.
It should be understood that other customer devices 108 (e.g., customer devices 108 other than a customer mobile device 200) may include applications that are similar to the third party client applications 206 and financial institution client application 208 discussed above. For example, a customer smart appliance may include an application associated with the financial institution 104 that enables the customer 102 to view the access control tower, and manage customer accounts. In another example, a customer smart speaker may include an application through which the customer 102 may modify access permissions to various entities via voice commands.
Referring to
The method 300 begins when a customer 102 is authenticated at 302. The financial institution computing system 110 receives an authentication request from the customer 102 via a computing device associated with the customer (e.g., a smartphone via a mobile banking application, a computing device via a web-based banking portal, etc.). In an alternate arrangement, the request may be received via an ATM (or other computing device allowing a user to perform financial transactions, such as receiving cash, making payments, transferring funds, etc.) associated with the financial institution 104. The authentication request indicates that an individual purporting to be the customer 102 is attempting to access the access control tower to manage access to the customer information associated with the customer 102. The authentication request includes customer authentication information (e.g., customer name, password, biometric, debit card dip in an ATM, PIN, etc.). Based on the customer authentication information, the request is either granted or denied. If the request is denied, step 302 of the method 300 does not occur, and the method 300 ends. The description of the method 300 continues for situations in which the customer 102 is authenticated.
Access to the data control tower portal is provided at 304. After the customer 102 is authenticated, the financial institution computing system 110 provides the customer 102 access to the data control tower portal. The access to the data control tower portal may be facilitated through a computing device associated with the customer (e.g., a smartphone via a mobile banking application, a computing device via a web-based banking portal, etc.). The computing device presents interactive graphical customer interfaces to the customer 102 through which the customer 102 can manage the access controls for the customer information. The data control tower portal may be part of a mobile banking application or a remote banking website associated with the financial institution 104. As noted above, in some arrangements, the access to the customer information can be managed on a payments level (e.g., managing all of the third parties that the customer 102 may engage in a transaction with accounts held by the customer 102 at the financial institution 104), on a device level (e.g., managing which customer devices 108 have access to data stored at the financial institution computing system 110), and on an application level (e.g., managing all third party client applications 206 on a customer mobile device 200 that have access to information stored at the financial institution computing system 110).
Referring to
To populate the merchant listing 412, the financial institution computing system 110 may access the accounts database 124. For example, the access control circuit 122 may retrieve a customer transaction history from the accounts database 124 and identify various merchants at which the customer 102 performed transactions using the selected checking account (or other accounts held by the customer 102 at the financial institution 104). Alternatively, the customer 102 may have previously permitted the financial institution 104 to provide account information to various merchants (e.g., via the add button 426 described below). Alternatively, the financial institution computing system 110 may transmit various requests to third party systems 106 which, in response (e.g., via various APIs provided at the third party systems 106) may transmit indications to the financial institution computing system 110 that the customer 102 has provided information describing the checking account (e.g., an account number) to the third party system 106. For example, the financial institution 104 may have arrangements with various merchants. Under such arrangements, the merchants may agree to notify the financial institution 104 upon the customer providing information associated with the financial institution 104 (e.g., information pertaining to a customer account) to the merchant.
Each entry in the merchant listing 412 may include a display button 414 as well as a status indicator 416. By pressing the display button 414 associated with a particular entry, the customer may provide an input to program logic being executed by the customer mobile device 200 (e.g., program logic that is part of the financial institution client application 208) to update the interface 400 to incorporate a merchant access mechanism for the merchant of the entry. The merchant access mechanism may be incorporated into the interface 400 in a similar manner as the wallet access mechanisms 424 described below. The merchant access mechanism may identify the information pertaining to the checking account (or other account) that was provided to the merchant. In various embodiments, the merchant access mechanism may include a tokenized account number (e.g., a surrogate value for the actual account number of the checking account), an actual account number, a debit card number, and so on.
The status indicators 416 indicate the status of various access permissions that the customer 102 has provided to various merchants. In the example shown in
Alternatively or additionally, the financial institution computing system 110 may update settings associated with the customer 102's account such that any transaction request from that merchant is denied. Thus, by the interface 400, the customer 102 is able to control the access of various third party systems 106 to information.
Still referring to
The wallet access mechanisms 424 may include the information that the customer 102 has permitted the payment service associated with the entry (e.g., wallet 2) of the wallet listing to access by the methods described herein. In the example shown, the wallet access mechanisms 424 present the customer 102 information pertaining to all account information that the customer 102 has permitted the payment service to access. As such, wallet access mechanisms 424 include an account number associated with both a credit account and a debit account (e.g., associated with the checking account). It should be understood that, in alternative arrangements, only wallet access mechanisms associated with the account selected via the dropdown box 410 may be shown. Additionally, different wallet access mechanisms 424 such as tokens, account names, and the like associated with the customer 102's accounts may also be shown. As shown in
The customer interface 400 also includes an add button 426 and a delete button 428. If the customer 102 interacts with the add button 426, the customer 102 can add a new merchant and/or payment service to the merchant listing 412 and/or wallet listing 418. For example, in response to the customer 102 selecting the add button 426, an additional interface is presented to the customer 102. The additional interface may include a drop down menu listing various merchants that the customer 102 may select to provide permission to access the customer information. Additionally, the interface may enable the customer 102 to identify the particular information that may be provided to the identified merchant. Upon the customer selecting a particular merchant to grant permission, the financial institution computing system 110 may update the access permissions stored in association with the account of the customer 102. As a result, upon receipt of a request from the identified merchant (e.g., via a third party system 106 over the network 126), the financial institution computing system 110 may provide the selected information to the merchant.
Referring to
Similar to the interface 400 discussed above, each entry in the application listing 502 may include a display button 504 and a status indicator 506. As indicated by the bolded outline of the display button 504, the customer 102 has selected the display button 504 to cause an application access mechanism 508 to be shown. The application access mechanism 508 may include a description of the customer information to which the customer 102 has provided the application access. In the example shown, the application associated with the selected display button 504 is a calendar application and the access mechanism is the customer's bill payments. By providing the calendar application with access to the customer 102's bill payments, the customer 102 may be reminded of upcoming payments via the calendar application. As such, various events or reminders may be created by the calendar application based on the information provided by the financial institution 104. For example, upon the customer 102 providing the calendar application with access to customer bill payment information (e.g., describing the recipient of the upcoming payment, the due date, and the amount owed), the calendar application may list upcoming payments owed by the customer 102.
The customer 102 may first provide the calendar application with access to customer bill payment information by, for example, hitting the add button 426. Upon the customer 102 hitting the add button 426, the customer 102 may be brought to another interface enabling the customer 102 to identify an application to provide with access to customer financial data.
Referring now to
The features dropdown 604 may include a dropdown list of various forms of information maintained by the financial institution computing system 110. Using the features dropdown, the customer 102 may select the forms of information to share with the application selected via the application dropdown 602. In some arrangements, the forms of information provided by the features dropdown 604 may be dependent on the particular application selected by the customer 102. Accordingly, once the customer 102 selects an application via the application dropdown, the features dropdown 604 may be populated. In the example shown, the customer 102 has selected a calendar application via the application dropdown 602 and selected to provide the calendar application with access to information regarding customer bill payments. After providing the calendar application with such access, the customer 102 may setup the calendar application to use the bill payment information. Such a setup process is described below in relation to
The accounts dropdown 606 lists various accounts held by the customer 102 at the financial institution 104. The customer 102 may select the account to use in conjunction with the selected application and/or feature. In the example shown, the customer 102 has selected a checking account to use in conjunction with a bill payment features integrated with the calendar application. Thus, according to the processes described below, the customer 102 may setup payments via the calendar application using the selected payment account. The cancel button 608 enables the customer 102 to cancel adding an application to the listing 502 of the interface 500. In some embodiments, upon the customer 102 selecting the cancel button 608, the customer 102 is brought back to the interface 500. The submit button 610 enables the customer 102 to provide an input to the program logic being executed to the customer mobile device 200 to share the identified information with the selected application. As such, the selected information may be incorporated into the selected application to facilitate the customer 102's utilization of the selected application.
Referring now to
In the example shown, the interface 700 includes a device listing 702. The device listing may list various customer devices 108 that the customer 102 has registered with the financial institution 104. For example, for each customer device 108, the customer 102 may download and install an application provided by the financial institution 104, or register the customer device 108 via a website provided by the financial institution computing system 110. Upon registration and/or installation, a device identifier may be assigned to each customer device 108 by the financial institution computing system 110 and stored in association with the customer 102 (e.g., in the accounts database 124). Upon the customer 102 accessing the data control tower portal (e.g., at step 304 of the method 300), the financial institution computing system 110 may retrieve the various device identifiers stored in association with the customer 102 and transmit a device dataset to the customer mobile device 200 that is used by, for example, a mobile banking application of the customer mobile device 200 to populate the listing 702.
Various forms of customer devices 108 may populate various entries of the listing 702. Customer devices 108 may include, for example, smart phones, wearable computing devices (e.g., smart watches, smart glasses, and the like), smart speakers, vehicle computing devices, various IoT devices (e.g., thermostats, appliances, televisions, and the like), smart phones, tablets, video game counsels, and the like. Similar to the interfaces 400 and 500, each entry in the listing 702 may include a display button 704 and a status indicator 706. As shown by the bolded outline of the display button 704, the display button 704 of that particular entry has been selected by the customer 102. Selection of the display button 704 causes a device access mechanism 708 to be presented to the customer 102. Device access mechanism 708 may inform the customer 102 as to the type of information that may be accessed via the customer device 108 associated with the entry. In the example shown, the customer 102's smart speaker (e.g., an Amazon Echo®) has been provided with access to the transaction history of the customer maintained at the accounts database 124. In some embodiments, in response to the customer 102 selecting the display button 704, a plurality of potential device access mechanisms 708 may be presented to the customer 102. The device access mechanisms 708 may include all potential information that the customer may provide to the customer device 108 associated with the selected entry. Depending on the implementation, such device access mechanisms may include, amongst other things, customer account balance information, customer bill payment information, a customer transaction history, customer alerts, and customer account identifying information (e.g., account numbers, tokens, etc.).
By hitting the display button 704, the customer 102 may selectively modify the access of various customer devices 108 to various forms of information via manipulation of the status indicators 706. For example, by manipulating a status indicator 706 relating to a particular customer device 108, the customer 102 may provide an input to program logic (e.g., of a mobile banking application) being executed by the processor the customer mobile device 200. The input may cause the customer mobile device 200 to transmit a signal to the financial institution computing system 110 over the network 126 causing the financial institution computing system 110 to update customer account settings. For example, upon receipt of such a signal, the financial institution computing system 110 may update an entry of a customer device dataset maintained at the accounts database 124. The entry may include the device identifier discussed above associated with the selected customer device 108 as well as various access permissions. The entry may be updated such that, if the customer 102 were to attempt to access information from the selected customer device 108, the information would not be provided to the customer device 108 (e.g., the customer 102 may be presented with an “information unavailable” screen, or the like).
While the above examples relate to interfaces presented to the customer 102 via a customer mobile device 200, it should be understood that the customer 102 may perform similar operations with respect to several other types of customer devices 108. For example, the customer 102 may also adjust the third party systems 106 that have access to the customer financial information via a smartwatch, a smart appliance, a computing system in a vehicle of the customer 102, a smart speaker, and any other customer device 108 via applications or websites associated with the financial institution 104 implemented thereon.
Referring again to
The financial institution computing system 110 determines if external action is required to implement the updated access permissions or settings at 308. In some arrangements, the type of access permission or setting being updated requires that the financial institution computing system 110 transmits commands to a customer device 108 or to a third-party system 106 to implement the updated access permissions or settings. For example, if the updated access permission or setting relates to revoking or provisioning a payment token stored on a customer device 108, the financial institution computing system 110 may need to send a command to either (1) deactivate or remove the payment token from the customer device 108 or the third-party systems 106 affiliated with the mobile wallet (e.g., a third-party mobile wallet server, a payment network server that manages a token vault associated with the payment token, etc.) or (2) activate or provision the token to the mobile wallet via the customer device 108 and/or the third-party systems 106. In other arrangements, the type of access permission or setting being updated can be performed at the financial institution computing system 110 without additional commands sent to a customer device 108 or a third-party system 106. For example, if the updated access permission or setting relates to revoking a third-party's access to account balance information, the financial institution computing system 110 can perform an internal update at the financial institution computing system 110 adjusting the API permissions associated with the third-party without the need to send a command to the third-party system 106 associated with the affected third-party.
If external action is required, commands are transmitted to the appropriate recipient at 310. The financial institution computing system 110 transmits the update commands to the appropriate third-party systems 106 and/or customer devices 108. If no external action is required, the updated access permissions or settings are implemented at 312. The financial institution computing system 110 updates internal account access permissions or settings in the accounts database 124. Additionally, in some arrangements, the update to the account access permissions or settings requires both external and internal action. In such arrangements, both steps 310 and 312 are performed. Based on the updated settings and permissions, the financial institution computing system 110 facilitates the sharing (or denial of requests to access) customer information to the external systems (e.g., customer devices 108 and third-party systems 106).
In an example implementation, the customer 102 may utilize the data control portal to update payment information stored at various third party systems 106. For example, if the customer 102 gets a new account at the financial institution 104 or loses a credit card, the customer 102 may wish to update the payment information stored at the various third party systems 106. In some embodiments, upon the customer 102 updating account information stored in the accounts database 124, the financial institution computing system 110 (e.g., via the access control circuit 122) is configured to provide the updated information to the various third parties, applications, and devices to which the customer has provided access via the data control portal. For example, upon the customer changing an account number, the financial institution computing system 110 may transmit an information packet including the updated account information and a customer identifier to the third party system 106 associated with a particular merchant. Such customer identifiers may be established between the financial institution 104 and third party upon the customer providing the third party with access to information stored at the financial institution computing system 110. Thus, based on the customer identifier, the third party system 106 may identify a customer account at the third party (e.g., a shopping account) and update the customer's financial information associated with the account. Such a process may be repeated for any third party systems 106 having access to customer financial information. As such, the customer need not update account information stored at individual third party systems 106, as this can be accomplished via a single visit to the data control tower.
Referring now to
In an example, upon the customer 102 selecting the financial events button 806, the third party client application 206 configures the customer mobile device 200 to request customer bill payment information (e.g., via the customer mobile device 200 or via a combination of the customer mobile device 200 and a third party system 106) from the financial institution computing system 110. In response, the financial institution computing system 100 verifies that the access permissions stored in association with the customer 102 permit the requested information to be provided to the third party client application 206. If so, the requested customer financial data is provided to a computing system (e.g., the customer mobile device 200 or a third party system 106) associated with the third party client application 206.
Third party client application interface 800 further includes a financial information window 808 that includes the customer financial information received from the financial institution computing system 110. In the example shown, the financial information window 808 lists an upcoming bill payment 810. As such, through the systems and methods disclosed herein, the customer 102 is able to request and view financial data from various vantage points.
Upon the customer 102 selecting the upcoming bill payment 810, the displays presented via the third party client application 206 may be updated. Referring to
Interface 900 also includes a payment window 908. For example, the third party client application 206 rendering the interface 900 on the customer mobile device 200 may include a payments widget configured to generate transaction requests using customer account information received from the financial institution computing system 110 in accordance with various systems and methods disclosed herein. As discussed above in relation to
Referring now to
The entity listing 1010 lists each entity (e.g., applications and merchants) that the customer has provided any sort of access to the customer information stored at the financial institution computing system 110. The entity listing 1010 includes a plurality of selectable entries 1012. Each entry may list the number of accounts that have been connected to the associated entity. Upon the customer selecting a particular entity, a different interface may be presented to the customer 102 enabling the customer 102 to update that entity's access permissions. The device listing 1014 lists each customer device 108 having access to customer information. Similar to the entity listing 1010, the device listing 1014 includes entries 1016 associated with particular customer devices 108. While the entity listing 1010 and the device listing 1014 are shown as been separate from one another, it should be understood that, in one embodiment, the entity listing 1006 and device listing 1110 are combined into a single listing.
In various embodiments, the data control tower interface 1000 may take alternative forms. For example, in some embodiments, the generic access toggle 1002 enables the customer to view/scroll through various categories of accesses to customer information. For example, a first category box may generally include a listing of the customer's accounts or cards associated with the financial institution 104. Via this category box, the customer may select any of the cards to view various forms of information regarding the selected card (e.g., balance, general off and on status, transaction listing, etc.). An example of such an interface presented to the customer when the customer selects a card is described with respect to
In some embodiments, an additional category of accesses to customer information may include aggregators that access the customer's information at the financial institution 104 on behalf of the customer to perform functions on behalf of the customer. By selecting a particular aggregator on the data control tower interface 1000, the customer may provide inputs to disable the aggregator's access to customer information. For example, the financial institution computing system 110 may update access permissions associated with the customer information APIs 128 to deny information requests coming from third party systems 106 known to be associated with the aggregator. As such, the customer has control over the locations to which private information is disseminated. Other aggregators may utilize customer account information (e.g., account numbers) obtained from the financial institution 104 to make payments on behalf of the customer. For these types of aggregators, the data control tower interface 1000 enables the customer to quickly turn off payments made by these aggregators.
In some instances, aggregators that customers permit to access their information may provide the information to third parties (i.e., “sub-aggregators.”). Such data transfers between aggregators and sub-aggregators limit the customers' ability to control locations at which their data is stored. Beneficially, the systems and methods described herein enable customers to prevent such transfers. This is accomplished through the financial institution 104 monitoring relationships between aggregators and various sub-aggregators. For example, as part of an information sharing arrangement between an aggregator and the financial institution 104 (e.g., to establish a customer information API 128), the financial institution may require the aggregator to recurrently provide an updated listing of sub-aggregators with which they share information. Additionally, the financial institution 104 may require the aggregator to update their sharing of customer information with the sub-aggregators in response to the customer providing an input to do so via the data control tower portal described herein. Using the information provided by the aggregators under such an arrangement, the financial institution 104 may maintain a directory mapping aggregators to sub-aggregators.
In some embodiments, the directory is used to populate the data control tower interface 1000. For example, upon the customer providing an input to view an aggregator's access permissions, the customer mobile device 200 may query the directory for a listing of sub-aggregators associated with that aggregator (i.e., a listing of sub-aggregators that the selected aggregator shares information with). The listing of sub-aggregators may appear on the data control tower interface 1000 in conjunction with a set of toggle switches enabling the customer to turn off that sub-aggregator's access to the customer's information. Upon the customer turning off a sub-aggregator's access, the customer mobile device 200 (e.g., either directly or via the financial institution computing system 110) may issue a command to a third party system 106 associated with the selected aggregator to update data access permissions such that the customer information is no longer shared with the indicated sub-aggregator. Thus, the data control tower portal described herein provides the customer with very complete control of the locations at which their information is accessed.
In various embodiments, a customer may choose to restrict sharing of information in general or in relation to particular third parties, accounts, devices, applications, and/or types of information. The customer may limit sharing of information by selecting, for example, a “restrict sharing” icon in a data control tower user interface. In certain implementations, the customer may wish to prohibit a recipient of the customer's information (e.g., the third party, device, and/or application) from giving another third party, device, and/or application access to all of the information, or a subset of the information (e.g., more sensitive information, such as financial account information). In some versions, a level of sharing may be set on a spectrum ranging from “no sharing” to “all sharing allowed” using, for example, a slider that may be moved by swiping in one direction to reduce the level of sharing allowed, and an in opposing direction to increase the level of sharing allowed. In some implementations, example intermediary levels of sharing may correspond with, for example, permission to share non-personal information only, permission to share non-financial information only, permission to share anonymized information only, permission to share with particular recipients or for particular purposes, etc. In certain implementations, setting a level or type of sharing that is permitted may allow the customer to set privacy settings with a third party to control what is allowed to happen with the customer's information. In some implementations, a limitation on information sharing may limit the services or functionalities that can be provided by, for example, a third party computing system, an application, or a device. For example, restricting the sharing of financial information by a wallet application may turn off one or more accounts (e.g., debit and credit cards) listed under the functionality of the wallet application (see, e.g., 424 in
Referring now to
As shown, the interface 1100 includes a first account listing 1102 and a second account listing 1106. The first and second account listings 1102 and 1106 including listings 1104 and 1108 of various entities (e.g., applications, customer devices 108, third party systems 106) that the customer has provided information regarding the associated account to. As such, the customer 102 may quickly view various locations that currently have access to information associated with a particular account.
Referring now to
The account access toggle switch 1206 is configured to receive a customer input to permit/revoke the depicted merchant's access to information associated with the selected account. In the example shown, the customer 102 is providing the third party system 106 associated with the merchant with access to the account information. In response to the customer 102 switching the account access toggle switch 1206 to an opposing position, the customer mobile device 200 may transmit a command to the financial institution computing system 110 causing the financial institution computing system 110 to update the customer 102's access permissions to prevent the merchant from having access to the associated account information. In some embodiments, the account access toggle switch 1206 is configured to receive a customer input to temporarily inactivate the selected account.
In various embodiments, account information may be saved by a third party for use in future transactions. For example, a customer may make a purchase at a merchant using a particular account (e.g., a credit or debit card), and the merchant may save the account information so that the next time the customer makes a purchase from the merchant, the customer does not have to re-enter the account information. The customer may permit multiple online merchants to save information corresponding to several accounts for future use. The customer may subsequently change his or her mind and wish that the saved account information be deleted. This may be accomplished, in some implementations, via a user interface allowing the customer to select or toggle, for example, a “delete saved account information” option with respect to one or more entities, without having to make separate, cumbersome requests with each entity. Deleting saved account information need not necessarily, in certain implementations, restrict the entity from accessing the account information for use for a transaction in the future (without saving the account information after the transaction has completed). Rather, deleting the saved information removes the information from the entity's databases. Such removal decreases the risk that, if the entity's computing systems are hacked or the information in the databases is otherwise leaked or made public, the customer's information would be compromised. The ability to conveniently choose to delete saved information from one or more third-party databases via a control tower application, while still potentially making the information available to the third party on an as-needed basis in the future, is less cumbersome, saving time and computing resources, and enhances the security of sensitive customer information by better controlling its availability and retention.
Referring now to
The payments toggle switch 1314 is configured to receive a customer input to enable or disable payments via the application associated with the selected application. Thus, using the toggle switches 1304, 1306, 1310, and 1312, the customer may permit the application to access information associated with the depicted accounts. Using the payments toggle switch 1314, the customer generally enables payments to be made via the selected application. In other words, the payments toggle switch 1314 is configured to update a set of transaction rules maintained at the financial institution computing system 110 (e.g., via the account management circuit 120). As a result, if the customer disables payments via a particular application, any transaction requests received from the customer mobile device 200 via that application will be denied. As, such, the data control portal enables the customer 102 to manage particular entities' access to information as well as the manner in which that information may be used.
Referring to
The method 1400 begins when fraudulent activity is detected at 1402. In some arrangements, the financial institution computing system 110 determines there is fraudulent activity associated with the customer 102 based on analyzing customer information access patterns, transaction patterns, and the like. The fraudulent activity may relate to compromised financial information (e.g., a compromised payment token associated with fraudulent purchases, a compromised account number, a compromised payment device, etc.) or misappropriation of other customer information (e.g., fraudulent access to customer information stored at the financial institution computing system 110, fraudulent downloads of data or document stored at the financial institution computing system 110, or the like). In some arrangements, the fraudulent activity can be reported by the customer 102 (e.g., via a customer device 108) if the customer 102 becomes aware of potential fraudulent activity associated with the customer information managed by the financial institution computing system 110. Similarly, in some arrangements, the fraudulent activity can be reported by the third-party associated with the fraud. For example, if a merchant becomes aware that the merchant's e-commerce system has been hacked by fraudsters, and that the customer information stored on or able to be accessed by the e-commerce system is at risk, the merchant can transmit a message to the financial institution computing system 110 indicating the fraud. In still further arrangements, the financial institution computing system 110 can identify potentially fraudulent activity from other sources, such as news agencies that report on data breaches associated with the third-party systems 106.
In an example, the financial institution computing system 110 detects an unusual pattern of activity in association with a third party client application 206. For example, customer information may be requested via a third party client application 206 at a more frequent than usual rate. In another example, the financial institution computing system 110 (e.g., via the account management circuit 120) detects an unusual pattern of activity based on customer transaction data. For example, if the account management circuit 120 receives a transaction request from a particular customer device 108 to request payment to a particular merchant, the account management circuit 120 may compare the amount of the transaction to transactions previously engaged in by the customer 102 (e.g., stored in the accounts database 124) and, if the amount differs from previous transactions engaged in by the customer 102, or if customer 102 has never engaged in a transaction at the particular merchant, detect an unusual pattern of activity.
After fraudulent activity is detected at 1402, access privileges are removed at 1404. The financial institution computing system 110 removes access privileges to the customer information in at least one of a plurality different ways. In some arrangements the financial institution computing system 110 revokes access privileges to the customer information stored at the financial institution computing system 110 (e.g., customer information stored in the accounts database 124). In other arrangements or additionally, the financial institution computing system 110 can pull customer information from the third-party system 106 or at the customer device 108 associated with the detected fraudulent activity. For example, if a payment token is associated with the fraudulent activity, the financial institution computing system 110 can prevent a third-party mobile wallet from accessing the payment token via the customer information APIs 128 and/or pull the payment token from the third-party mobile wallet computing system if the payment token was previously transmitted to the third-party mobile wallet computing system.
An alert is sent to the customer 102 at 1406. The financial institution computing system 110 transmits an alert to a customer device 108 associated with the customer 102. The alert may be any of a text message, an automated telephone call, an e-mail, an in-application push notification, or a combination thereof. The alert indicates that potential fraudulent activity was detected with respect to the customer information. In some arrangements, the alert identifies a specific third-party system 106 associated with the potential fraudulent activity. For example, the alert may indicate that a specific third-party system 106 is attempting to access a piece of customer information that is out of the norm of access patterns associated with the third-party system 106. In some arrangements, the alert is customer-interactive such that the customer 102 can reply to the alert (e.g., by interacting with a hyperlink, by interacting with embedded buttons, by replying, etc.) to indicate that the potential fraudulent activity was unauthorized or authorized.
Referring now to
In the example shown, the alert interface 1500 includes a description 1502 of actions taken by the financial institution computing system 110 (e.g., via the access control circuit 122) and the reason that such actions were taken. For example, the financial institution computing system 110 (e.g., via the access control circuit 122) may update the access privileges associated with a particular third party client application 206 on the customer mobile device 200, and the description 1502 may indicate as much to the customer 102. Additionally, the alert interface 1500 includes a customer action window 1504. The customer action window 1104 requests the customer 102 to verify recent transactions that caused delivery of the alert to the customer 102. Customer action window 1504 includes a first option 1506 enabling the customer 102 to view recent transactions (or information requests) and to indicate their legitimacy to the financial institution computing system 110. Customer action window 1504 also includes a deferral option 1508 enabling the customer 102 to put off the verification process to a later time.
Referring now to
In various embodiments, the interface 1600 is presented to the customer 102 upon the customer 102 accessing the data control tower (e.g., via performance of the steps 302 and 304 discussed above) after unusual activity with respect to customer application activity has been detected. In the example shown, the interface 1600 includes an unusual activity indication 1602 notifying the customer 102 that unusual activity has been detected with respect to a particular application listed in the application listing 502. Additionally, the customer interface 1600 includes a verification button 1604 enabling the customer 102 to view the transactions that caused the display of the unusual activity information 1302.
Referring back to
Referring generally to
The customer 102 can interact with a given slider toggle 1712 to activate or deactivate a given channel's access to the selected account. For example, as shown in the user interface 1700, the debit card is active (as shown by the associated slider toggle 1712 being in the “Y” position). Accordingly, when the customer 102 attempts to use the debit card to make a payment (e.g., a purchase with a merchant) or withdraw cash from an ATM, the debit card is linked to the checking account identified in the drop down box 1708, and the payment can go through or funds can be withdrawn (assuming the checking account has the appropriate balance). If the customer 102 interacts with the slider toggle 1712 to deactivate the debit card's access to the checking account (e.g., by sliding the toggle 1712 to the “N” position), the debit card is no longer linked to the checking account. If the sliding toggle 1712 is in the “N” position and the customer 102 attempts to use the debit card at a merchant point-of-sale system or an ATM, the transaction will be denied or not processed from the checking account.
The user interface 1700 also includes an add button 1714 and a delete button 1716. If the customer 102 interacts with the add button 1714, the customer 102 can add a new channel to the listing 1710 of approved channels that are linked to the identified account. In doing so, the customer 102 may need to register the customer device 108 (e.g., by providing a device identifier, by providing a primary account number of a payment card, by logging into an application or website via the customer device 108, etc.) or the third-party system 106 (e.g., by logging into a third-party website or application associated with the third-party system 106) with the financial institution 104 to pair the channel with the financial institution computing system 110. If the customer 102 interacts with the delete button 1716, the customer 102 can select a channel in the listing 1710 to revoke access of the selected channel to the account.
In certain implementations, toggling the sliding toggle 1712 to “N” temporarily deactivates the channel's link to the account while maintaining the link for possible future reactivation and use. Deactivation of a link can be implemented, for example, by declining requests for access unless and until the link reactivated, without requiring re-registration to reestablish a new link between the channel and the account. By contrast, deletion of a channel may dissociate the account from the channel and sever the link between the account and the deleted channel, such that subsequent steps (e.g., selecting add button 1714 or otherwise registering or “signing up” anew) may be required for relinking. In some implementations, deleting a channel may include deletion or deactivation of encryption keys and access tokens such that a new key and/or access token would need to be generated if a new link is to be established.
In various embodiments, deletion of a channel may additionally or alternatively require or involve deletion of certain information with respect to the customer or the account. For example, deletion of a channel may result in deletion of customer data from the computing systems of a third party, from relevant applications, and/or from applicable devices. In some implementations, deletion of an account may result in the transmission of a scrub command, instruction, or message from the financial institution client application 208, from the financial institution computing system 110, and/or from a third-party intermediary (e.g., a computing system in a financial network, such as a computing system of Visa Inc.) to one or more third-party systems 106, customer devices 108, and/or third-party client applications 206. In some implementations, the scrub command, instruction, or message may request or require, for example, that the customer's account (e.g., a PayPal account) be deleted from third-party systems. Additionally or alternatively, the scrub command, instruction, or message may request or require, for example, that all customer data, or a specified subset thereof, be wiped from third-party systems and applications. In some implementations, if a customer selects the delete button 1716, the customer may be prompted (e.g., via another graphical user interface) about whether a scrub command is desired. The customer may be asked, for example, “Would you like your data scrubbed from third-party systems and applications?” If the customer responds affirmatively, the scrub command may be transmitted. Otherwise, if the customer does not respond affirmatively, the link may be severed without the scrub command being transmitted.
Referring to
The customer 102 can interact with a given slider toggle 1806 to activate or deactivate the selected channel's access to an account associated with the slider toggle 1806. For example, as shown in the user interface 1800, the token associated with credit card 1 is active (as shown by the associated slider toggle 1806 being in the “Y” position). Accordingly, when the customer 102 attempts to make a payment with the mobile wallet (e.g., a purchase with a merchant) credit card 1 is listed as an option for the payment source of the transaction. If the customer 102 interacts with the slider toggle 1806 to deactivate the channel's access to the token associated with credit card 1 (e.g., by sliding the toggle 1806 to the “N” position), the credit card is no longer listed as a payment source in the mobile wallet (or is listed as an unavailable payment source). For example, in response to the customer 102 deactivating the channel's access, the financial institution computing system 110 may transmit a command to a third party system 106 associated with a token service provider instructing the third party system 106 to delete or temporarily deactivate the token.
Each entry in the listing 1804 also includes a default payment indicator 1808 and a delete payment button 1810. The default payment indicator 1808 is highlighted to indicate the default payment source of the mobile wallet. As shown in
Still referring to
Referring to
The debit card specific user interface 1900 includes a linked account drop down box 1902. The linked account drop down box 1902 allows the customer 102 to change the account associated with the selected debit card. As shown in
Additionally, the user interface 1900 includes a plurality of different purchase controls 1904. Each of the purchase controls 1904 includes a toggle slider 1906 that allows the customer 102 to activate or deactivate a particular control associated with the debit card (where “Y” means the feature is active, and “N” means the feature is inactive). The purchase controls 1904 may include a point of sale control that either permits or blocks the debit card from being used at a merchant point of sale system, an ATM control that either permits or blocks the debit card from being used at an ATM, a mobile wallet control that either permits or blocks the debit card from being used in a mobile wallet, a merchant e-commerce control that either permits or blocks the debit card from being used at a merchant e-commerce site, a travel fraud detection control that turns on or off a fraud detection feature, and the like. The customer 102 can interact with a given toggle slider 1906 to activate or deactivate the associated purchase control 1904. The available purchase controls may vary by channel. In some implementations, toggling a toggle slider (or other user input) alternatively or additionally restricts the storage of customer data information following use of the information in a transaction. For example, a user input may allow the customer to prohibit customer information from being stored, such as prevention of the storage by an e-commerce merchant of debit or credit card information as a stored payment method.
Referring now to
Another toggle switch 2006 enables the customer to turn the selected account on and off for use in a particular mobile wallet. Thus, the account control interface 2000 may include a number of toggle switches similar to the toggle switch 2006 depending on the mobile wallets that the customer has registered for. In response to the customer switching a card off for a particular mobile wallet, the financial institution computing system 110 may contact a token service provider associated with the mobile wallet (or contact the mobile wallet provider directly) to, for example, deactivate an account token to disable access. In various embodiments, the account control customer interface 2000 includes many additional transaction controls. For example, the user may manually restrict amounts (e.g., transactions exceeding a threshold dollar value), locations (e.g., transactions in certain geographical locations, certain types of merchants such as certain retailers, etc.), times (e.g., between specified hours, on particular days of the week or month or on holidays, etc.), and the like that the card may be turned off or turned on for use in transactions. As such, not only does the financial institution client application 208 provide the customer with control over external entities that have access to customer account information, but it also provides the customer with an extensive amount of personal controls over each individual account.
In various embodiments, a control tower portal allows the customer to instruct entities (e.g., third party computing systems and applications, customer computing devices, etc.) to delete accounts, restrict the use or sharing of customer data, and/or to delete customer data (e.g., all data or data of a particular type). In some implementations, restrictions on customer data or deletion thereof may be accomplished by, for example, the financial institution computing system 110 and/or the financial institution client application 208 making an API call to third party systems 106 to have customer data restricted or deleted (or marked for subsequent restriction or deletion). The control tower portal may allow for multiple levels of deletion or scrubbing. For example, an account may be deleted, all accounts may be deleted, all accounts of a certain type may be deleted, certain customer data or customer data of particular types may be deleted, and/or all customer data may be deleted. In some implementations, only customer data received from the financial institution computing system 110 through access granted by the customer (and not received by the third party from other sources, such as directly from the customer) may be marked for deletion. Advantageously, the ability to choose to have account data deleted empowers the customer with the right to be partially or wholly forgotten.
Referring to
In the example customer interface 2100, devices from which customer data have been deleted or accounts deleted are marked as having been “scrubbed” by scrubbed icon 2104. As shown in customer interface 2100, the smart vehicle has been scrubbed. The customer may wish to scrub a device if, for example, the device is lost, stolen, sold, or donated (such as a stolen car or a lost smart watch). It is noted that, as a consequence of the smart vehicle being scrubbed, granting the smart vehicle with access to customer data cannot be turned on or off (as indicated by the “—N/A—” in
Similarly, referring to
Referring to
Referring to
A digital wallet controls section 2408 allows for control over the use of the card in transactions and funds transfers. An entities listing 2410 lists entities that are linked with the card (e.g., that may use the card for transactions, like making purchases or funds transfers, or that otherwise may access data related to the card, such as for checking account balance, confirming that the account is still open, or determining the next payment due date). Entities listing 2410 in interface 2400 includes two entities (Entity 1 and Entity 2), and each entity is provided with a corresponding remove button 2416. Selection of the remove button 2416 for an entity allows the customer to, for example, delete customer data and/or delete the account that is maintained by the entity and with which the customer's debit card is linked. For example, Entity 1 may be PayPal Holdings or Amazon.com, and the customer may have a PayPal account which uses the debit card for payments, or an account at Amazon.com which uses the debit card for purchases. In various versions, the customer may press the remove button 2416 corresponding with one of the entities to, for example, delete the user account at the entity (e.g., delete the PayPal account or Amazon.com account). Alternatively or additionally, the remove button 2416 may allow the customer to delete the customer's account data specific to the debit card ending in 1603 (e.g., the account number, expiration date, etc.) saved in a database in a computing system of PayPal, Amazon.com, or other entity, without necessarily deleting other customer data. In some implementations, the remove button 2416 causes a scrub command, instruction, or message to be generated and transmitted to the application, device, or system of the entity. In various implementations, the scrub command identifies the data to be deleted from the databases of the third-party systems 106. The scrub command may be transmitted to the third party system 106 (with an identification of the customer data to be scrubbed) directly or via a financial payment processing network.
Referring to
Referring to
In interface 2700B of
In various implementations, interface 2700B may provide a manage payee icon 2730 and/or a hide payee icon 2732, depending on the payee or payment arrangement. Interface 2700B (as well as interfaces 2700C—2700F) also provide a home-page icon 2734 to allow the user to leave the recurring payments interfaces and return to the control tower main/home page (e.g., interface 400 of
In various embodiments, if the user selects the continue icon 2750, the user may be presented with a suggestion or recommendation to contact the payee. This may be suitable, for example, in cases in which the user has granted the payee with authorization that, by agreement, is only revocable through the payee. Even in cases in which the recurring payment may be stopped at any time through the financial institution, the user may wish to contact the payee to arrange for payment in an alternative manner (e.g., using a different account/payment vehicle). Interface 2700D provides contact information for the payee at 2756. The user may be allowed to select a cancel icon 2758 to turn back, or continue icon 2760 to proceed with the request.
In various embodiments, a user wishing to continue may, for example, be presented with a confirmation page via interface 2700E in
In various embodiments, if the stop recurring payment is confirmed (e.g., by selection of continue icon 2776), the financial institution may: cancel future payments that would have been initiated by the financial institution; decline one or more subsequent payment requests from the identified payee from the corresponding account/payment vehicle; and/or to communicate to the payee the user's desire to revoke his or her authorization for, or to otherwise cease, subsequent payments, from the identified account/payment vehicle. In some implementations, a payment authorization may be revoked via, for example, an API call from the financial institution computing system 110 to the third-party system 106 of the payee. Such an API call may include, for example: a security/access token (which may have been received from the third-party system 106) that authenticates the financial institution computing system 110; an identification of the user/payor; an identification of the account/payment vehicle; a unique identifier for the recurring payment (which may have been generated/assigned by the financial institution or the payee); details on one or more past payments; details on one or more subsequent payments; an effective date; a duration for the cessation of the recurring payment, if the user identified a duration (e.g., at 2770) or the cessation is otherwise not permanent; and/or any other relevant information.
In various embodiments, the user may additionally or alternatively be allowed to remove (hide/suppress) a payee/recurring payment from being listed. For example, in interface 2700B, a user may select hide payee icon 2732. In certain implementations, control tower may, upon detecting that the hide payee icon 2732 has been selected, present the user with, for example, interface 2700F in
In some implementations, the option to stop a recurring payment for a particular account/payment vehicle and/or for a particular payee may not be available for various reasons, and the user may thus only be provided the option to hide the recurring payment (e.g., 2732 but not 2730). Additionally or alternatively, if a recurring payment is not cancelable via control tower, the user may be advised to contact the merchant (see, e.g., interface 2700D and the contact information at 2756). In some implementations, if the user indicated a desire to have the financial institution send a request to the payee on the user's behalf to request that the payee cancel or pause a recurring payment (with the understanding that a recurring payment will be deemed to remain in effect until the payee confirms that it will stop/pause the recurring payment) but the payee does not honor the request, the user may wish to contact the payee himself/herself, and/or hide the recurring payment.
Referring to
In interface 2800C of
In interface 2800E of
After confirming that the automated payment is to be disabled (e.g., by selecting “disable” in dialogue box 2820 of interface 2800E), the user may be returned to the listing of automated payments made to Entity 3 using Account 1a, as illustrated by interface 2800F of
In example implementations, the user may then wish to select another source account from which automated payments are made to one or more entities. Interface 2800G in
In various embodiments, the user may then be presented with interface 2800I of
In interface 2800J of
Once an automated payment is disabled or enabled, the entity holding the source account and/or the entity holding the destination account may be notified via a transmission to a computing system or device associated with the entities. In some versions, this may involve an API call to the computing system or device. For example, in some implementations, if an automated payment from Account 1c to Account 2a is disabled, an API call (or other transmission) may be sent by a computing system or device of the entity providing the “Control Tower” application (e.g., Entity 1, Entity 2, or a third-party entity), or by the user device running the application, to a computing system or device of the one or more entities holding the accounts involved in the automated payment. Alternatively or additionally to such a notification, in some implementations, a subsequent payment request may be declined. The API calls may be accompanied by security tokens and data identifying the automated payment or relevant users, entities, and/or accounts.
Referring to
In interface 2900B, automated payment 2 has been selected via arrowhead 2908. Interface 2900B identifies the selected automated payment (i.e., automated payment 2) at 2910. At 2912, interface 2900B identifies the entity and account (i.e., Entity 2, Account 2a) used to make the automated payment, as well as historical, account, or other information on the payments or recipient (such as the most recent payment to Account 1c, as presented in
In example versions, a “Control Tower” application allows for control of transactions between financial institutions. For example, a user may have a Bank A checking account and a Bank B credit card. The user is able to disable automatic payment of the Bank B credit card from the Bank A checking account via Control Tower. The same Control Tower user may also have a Bank A credit card and a Bank C checking account. In addition to being able to disable automatic payment of the Bank B credit card from the Bank A checking account via Control Tower, the user is able to disable automatic payment of the Bank A credit card from the Bank C checking account via Control Tower.
In various embodiments, the Control Tower application is not a client application of any of the financial institutions involved in the transactions that are controllable via the client application. The application may be a client application of a third-party entity. In various embodiments, the Control Tower application may be a client application of one of the financial institutions involved in the inter-institutional transactions controllable via the client application.
The embodiments described herein have been described with reference to drawings. The drawings illustrate certain details of specific embodiments that implement the systems, methods and programs described herein. However, describing the embodiments with drawings should not be construed as imposing on the disclosure any limitations that may be present in the drawings.
It should be understood that no claim element herein is to be construed under the provisions of 35 U.S.C. § 112(f), unless the element is expressly recited using the phrase “means for.”
As used herein, the term “circuit” may include hardware structured to execute the functions described herein. In some embodiments, each respective “circuit” may include machine-readable media for configuring the hardware to execute the functions described herein. The circuit may be embodied as one or more circuitry components including, but not limited to, processing circuitry, network interfaces, peripheral devices, input devices, output devices, sensors, etc. In some embodiments, a circuit may take the form of one or more analog circuits, electronic circuits (e.g., integrated circuits (IC), discrete circuits, system on a chip (SOCs) circuits, etc.), telecommunication circuits, hybrid circuits, and any other type of “circuit.” In this regard, the “circuit” may include any type of component for accomplishing or facilitating achievement of the operations described herein. For example, a circuit as described herein may include one or more transistors, logic gates (e.g., NAND, AND, NOR, OR, XOR, NOT, XNOR, etc.), resistors, multiplexers, registers, capacitors, inductors, diodes, wiring, and so on).
The “circuit” may also include one or more dedicated processors communicatively coupled to one or more dedicated memory or memory devices. In this regard, the one or more dedicated processors may execute instructions stored in the dedicated memory or may execute instructions otherwise accessible to the one or more dedicated processors. In some embodiments, the one or more dedicated processors may be embodied in various ways. The one or more dedicated processors may be constructed in a manner sufficient to perform at least the operations described herein. In some embodiments, the one or more dedicated processors may be shared by multiple circuits (e.g., circuit A and circuit B may comprise or otherwise share the same processor which, in some example embodiments, may execute instructions stored, or otherwise accessed, via different areas of memory). Alternatively or additionally, the one or more dedicated processors may be structured to perform or otherwise execute certain operations independent of one or more co-processors. In other example embodiments, two or more processors may be coupled via a bus to enable independent, parallel, pipelined, or multi-threaded instruction execution. Each processor may be implemented as one or more general-purpose processors, application specific integrated circuits (ASICs), field programmable gate arrays (FPGAs), digital signal processors (DSPs), or other suitable electronic data processing components structured to execute instructions provided by memory. The one or more dedicated processors may take the form of a single core processor, multi-core processor (e.g., a dual core processor, triple core processor, quad core processor, etc.), microprocessor, etc.
Any foregoing references to currency or funds are intended to include fiat currencies, non-fiat currencies (e.g., precious metals), and math-based currencies (often referred to as cryptocurrencies). Examples of math-based currencies include Bitcoin, Litecoin, Dogecoin, and the like.
It should be noted that although the diagrams herein may show a specific order and composition of method steps, it is understood that the order of these steps may differ from what is depicted. For example, two or more steps may be performed concurrently or with partial concurrence. Also, some method steps that are performed as discrete steps may be combined, steps being performed as a combined step may be separated into discrete steps, the sequence of certain processes may be reversed or otherwise varied, and the nature or number of discrete processes may be altered or varied. The order or sequence of any element or apparatus may be varied or substituted according to alternative embodiments. Accordingly, all such modifications are intended to be included within the scope of the present disclosure as defined in the appended claims.
The foregoing description of embodiments has been presented for purposes of illustration and description. It is not intended to be exhaustive or to limit the disclosure to the precise form disclosed, and modifications and variations are possible in light of the above teachings or may be acquired from this disclosure. The embodiments were chosen and described in order to explain the principals of the disclosure and its practical application to enable one skilled in the art to utilize the various embodiments and with various modifications as are suited to the particular use contemplated. Other substitutions, modifications, changes and omissions may be made in the design, operating conditions and arrangement of the embodiments without departing from the scope of the present disclosure as expressed in the appended claims.
This application is a continuation-in-part of U.S. patent application Ser. No. 16/383,388 entitled “CONTROL TOWER FOR PROSPECTIVE TRANSACTIONS,” filed Apr. 12, 2019, which is a continuation-in-part of U.S. patent application Ser. No. 16/215,558 entitled “CONTROL TOWER RESTRICTIONS ON THIRD PARTY PLATFORMS,” filed Dec. 10, 2018, which is a continuation of U.S. patent application Ser. No. 16/204,831 entitled “ACCESS CONTROL TOWER,” filed Nov. 29, 2018, which claimed priority to U.S. Provisional Patent Application No. 62/766,400 entitled “ACCESS CONTROL TOWER,” filed Oct. 16, 2018. U.S. patent application Ser. No. 16/204,831 is a continuation-in-part of U.S. patent application Ser. No. 15/723,078 entitled “ACCESS CONTROL TOWER,” filed Oct. 2, 2017, which claimed priority to U.S. Provisional Patent Application No. 62/529,360 entitled “DATA CONTROL TOWER,” filed Jul. 6, 2017, and to U.S. Provisional Patent Application No. 62/403,396 entitled “DATA CONTROL TOWER,” filed Oct. 3, 2016. U.S. patent application Ser. No. 15/723,078 is a continuation-in-part of U.S. patent application Ser. No. 15/629,423 entitled “ACCESS CONTROL TOWER,” filed Jun. 21, 2017, which claimed priority to U.S. Provisional Application No. 62/357,737 entitled “SYSTEMS AND METHODS FOR LOCATION BINDING AUTHENTICATION,” filed Jul. 1, 2016. All of the above are incorporated herein by reference in their entireties.
Number | Name | Date | Kind |
---|---|---|---|
2751554 | Schlesinger et al. | Jun 1956 | A |
5485510 | Colbert | Jan 1996 | A |
5573457 | Watts et al. | Nov 1996 | A |
5737423 | Manduley | Apr 1998 | A |
5953710 | Fleming | Sep 1999 | A |
5999978 | Angal et al. | Dec 1999 | A |
6047268 | Bartoli et al. | Apr 2000 | A |
6105006 | Davis et al. | Aug 2000 | A |
6188309 | Levine | Feb 2001 | B1 |
6193152 | Fernando et al. | Feb 2001 | B1 |
6408330 | Delahuerga | Jun 2002 | B1 |
6422462 | Cohen | Jul 2002 | B1 |
6494367 | Zacharias | Dec 2002 | B1 |
6575361 | Graves et al. | Jun 2003 | B1 |
6717592 | Gusler et al. | Apr 2004 | B2 |
6845906 | Royer et al. | Jan 2005 | B2 |
6865547 | Brake et al. | Mar 2005 | B1 |
6879965 | Fung et al. | Apr 2005 | B2 |
6910021 | Brown et al. | Jun 2005 | B2 |
6931382 | Laage et al. | Aug 2005 | B2 |
6980969 | Tuchler et al. | Dec 2005 | B1 |
7014107 | Singer et al. | Mar 2006 | B2 |
7016877 | Steele et al. | Mar 2006 | B1 |
7107243 | McDonald et al. | Sep 2006 | B1 |
7155411 | Blinn et al. | Dec 2006 | B1 |
7219833 | Cantini et al. | May 2007 | B2 |
7225156 | Fisher et al. | May 2007 | B2 |
7249099 | Ling | Jul 2007 | B2 |
7264154 | Harris | Sep 2007 | B2 |
7319986 | Praisner et al. | Jan 2008 | B2 |
7331518 | Rable | Feb 2008 | B2 |
7347361 | Lovett | Mar 2008 | B2 |
7359880 | Abel et al. | Apr 2008 | B2 |
7383988 | Slonecker, Jr. | Jun 2008 | B2 |
7383998 | Parker et al. | Jun 2008 | B2 |
7392224 | Bauer et al. | Jun 2008 | B1 |
7398248 | Phillips et al. | Jul 2008 | B2 |
7401731 | Pletz et al. | Jul 2008 | B1 |
7413113 | Zhu | Aug 2008 | B1 |
7451395 | Brants et al. | Nov 2008 | B2 |
7512563 | Likourezos et al. | Mar 2009 | B2 |
7552088 | Malcolm | Jun 2009 | B2 |
7571142 | Flitcroft et al. | Aug 2009 | B1 |
7587365 | Malik et al. | Sep 2009 | B2 |
7594258 | Mao et al. | Sep 2009 | B2 |
7653597 | Stevanovski et al. | Jan 2010 | B1 |
7685037 | Reiners et al. | Mar 2010 | B2 |
7689502 | Lilly et al. | Mar 2010 | B2 |
7698221 | Blinn et al. | Apr 2010 | B2 |
7707082 | Lapstun et al. | Apr 2010 | B1 |
7712655 | Wong | May 2010 | B2 |
7740170 | Singh et al. | Jun 2010 | B2 |
7753265 | Harris | Jul 2010 | B2 |
7778932 | Yan | Aug 2010 | B2 |
7818319 | Henkin et al. | Oct 2010 | B2 |
7857212 | Matthews | Dec 2010 | B1 |
7873573 | Realini | Jan 2011 | B2 |
7930228 | Hawkins et al. | Apr 2011 | B1 |
7937325 | Kumar et al. | May 2011 | B2 |
7941534 | De La Huerga | May 2011 | B2 |
7949572 | Perrochon et al. | May 2011 | B2 |
7954704 | Gephart et al. | Jun 2011 | B1 |
8090346 | Cai | Jan 2012 | B2 |
8099109 | Altman et al. | Jan 2012 | B2 |
8127982 | Casey et al. | Mar 2012 | B1 |
8160933 | Nguyen et al. | Apr 2012 | B2 |
8175938 | Olliphant et al. | May 2012 | B2 |
8196131 | Von Behren et al. | Jun 2012 | B1 |
8245909 | Pletz et al. | Aug 2012 | B2 |
8249983 | Dilip et al. | Aug 2012 | B2 |
8255323 | Casey et al. | Aug 2012 | B1 |
8266031 | Norris et al. | Sep 2012 | B2 |
8266205 | Hammad et al. | Sep 2012 | B2 |
8280786 | Weiss et al. | Oct 2012 | B1 |
8280788 | Perlman | Oct 2012 | B2 |
8296228 | Kloor | Oct 2012 | B1 |
8297502 | McGhie et al. | Oct 2012 | B1 |
8301566 | Mears | Oct 2012 | B2 |
8332294 | Thearling | Dec 2012 | B1 |
8359531 | Grandison et al. | Jan 2013 | B2 |
8360952 | Wissman et al. | Jan 2013 | B2 |
8364556 | Nguyen et al. | Jan 2013 | B2 |
8396808 | Greenspan | Mar 2013 | B2 |
8407136 | Bard et al. | Mar 2013 | B2 |
8407142 | Griggs | Mar 2013 | B1 |
8423349 | Huynh et al. | Apr 2013 | B1 |
8473394 | Marshall | Jun 2013 | B2 |
8489761 | Pope et al. | Jul 2013 | B2 |
8489894 | Comrie et al. | Jul 2013 | B2 |
8543506 | Grandcolas et al. | Sep 2013 | B2 |
8589335 | Smith et al. | Nov 2013 | B2 |
8595074 | Sharma et al. | Nov 2013 | B2 |
8595098 | Starai et al. | Nov 2013 | B2 |
8625838 | Song et al. | Jan 2014 | B2 |
8630952 | Menon | Jan 2014 | B2 |
8635687 | Binder | Jan 2014 | B2 |
8639629 | Hoffman | Jan 2014 | B1 |
8655310 | Katzer et al. | Feb 2014 | B1 |
8655719 | Li et al. | Feb 2014 | B1 |
8660926 | Wehunt et al. | Feb 2014 | B1 |
8666411 | Tokgoz et al. | Mar 2014 | B2 |
8682753 | Kulathungam | Mar 2014 | B2 |
8682802 | Kannanari | Mar 2014 | B1 |
8700729 | Dua | Apr 2014 | B2 |
8706625 | Vicente et al. | Apr 2014 | B2 |
8712839 | Steinert et al. | Apr 2014 | B2 |
8725601 | Ledbetter et al. | May 2014 | B2 |
8762211 | Killian et al. | Jun 2014 | B2 |
8762237 | Monasterio et al. | Jun 2014 | B2 |
8768838 | Hoffman | Jul 2014 | B1 |
8781957 | Jackson et al. | Jul 2014 | B2 |
8781963 | Feng et al. | Jul 2014 | B1 |
8793190 | Johns et al. | Jul 2014 | B2 |
8794972 | Lopucki | Aug 2014 | B2 |
8851369 | Bishop et al. | Oct 2014 | B2 |
8868458 | Starbuck et al. | Oct 2014 | B1 |
8868666 | Hellwege et al. | Oct 2014 | B1 |
8880047 | Konicek et al. | Nov 2014 | B2 |
8887997 | Barret et al. | Nov 2014 | B2 |
8910304 | Tsujimoto | Dec 2014 | B2 |
8924288 | Easley et al. | Dec 2014 | B1 |
8925099 | Saxe et al. | Dec 2014 | B1 |
8954839 | Sharma et al. | Feb 2015 | B2 |
9043609 | Calman | May 2015 | B2 |
9076134 | Grovit et al. | Jul 2015 | B2 |
9105021 | Tobin | Aug 2015 | B2 |
9195984 | Spector et al. | Nov 2015 | B1 |
9256871 | Anderson et al. | Feb 2016 | B2 |
9256904 | Haller et al. | Feb 2016 | B1 |
9305155 | Vo et al. | Apr 2016 | B1 |
9351193 | Raleigh et al. | May 2016 | B2 |
9372849 | Gluck et al. | Jun 2016 | B2 |
9390417 | Song et al. | Jul 2016 | B2 |
9396491 | Isaacson et al. | Jul 2016 | B2 |
9444824 | Balazs et al. | Sep 2016 | B1 |
9489694 | Haller et al. | Nov 2016 | B2 |
9514456 | England et al. | Dec 2016 | B2 |
9519934 | Calman et al. | Dec 2016 | B2 |
9524525 | Manyam et al. | Dec 2016 | B2 |
9558478 | Zhao | Jan 2017 | B2 |
9569473 | Holenstein et al. | Feb 2017 | B1 |
9569766 | Kneen | Feb 2017 | B2 |
9576318 | Caldwell | Feb 2017 | B2 |
9646300 | Zhou et al. | May 2017 | B1 |
9647855 | Deibert et al. | May 2017 | B2 |
9690621 | Kim et al. | Jun 2017 | B2 |
9699610 | Chicoine et al. | Jul 2017 | B1 |
9710566 | Ainslie et al. | Jul 2017 | B2 |
9740543 | Savage et al. | Aug 2017 | B1 |
9775029 | Lopez | Sep 2017 | B2 |
9792636 | Milne | Oct 2017 | B2 |
9792648 | Experian | Oct 2017 | B1 |
9849364 | Tran et al. | Dec 2017 | B2 |
9853959 | Kapczynski et al. | Dec 2017 | B1 |
9858405 | Ranadive | Jan 2018 | B2 |
9858576 | Song et al. | Jan 2018 | B2 |
9978046 | Lefebvre et al. | May 2018 | B2 |
9996837 | Siddens et al. | Jun 2018 | B2 |
10032146 | Caldwell | Jul 2018 | B2 |
10044501 | Bradley et al. | Aug 2018 | B1 |
10044647 | Karp et al. | Aug 2018 | B1 |
10050779 | Alness et al. | Aug 2018 | B2 |
10055747 | Sherman et al. | Aug 2018 | B1 |
10096006 | Loevenguth et al. | Oct 2018 | B2 |
10096043 | Beck et al. | Oct 2018 | B2 |
10097356 | Zinder | Oct 2018 | B2 |
10115155 | Haller et al. | Oct 2018 | B1 |
10152756 | Isaacson et al. | Dec 2018 | B2 |
10157420 | Narayana et al. | Dec 2018 | B2 |
10187483 | Golub et al. | Jan 2019 | B2 |
10204327 | Katzin et al. | Feb 2019 | B2 |
10216548 | Zhang et al. | Feb 2019 | B1 |
10250453 | Singh et al. | Apr 2019 | B1 |
10275602 | Bjorn et al. | Apr 2019 | B2 |
10282741 | Yu et al. | May 2019 | B2 |
10359915 | Asai | Jul 2019 | B2 |
10373129 | James et al. | Aug 2019 | B1 |
10402817 | Benkreira et al. | Sep 2019 | B1 |
10402818 | Zarakas et al. | Sep 2019 | B2 |
10417396 | Bawa et al. | Sep 2019 | B2 |
10423948 | Wilson et al. | Sep 2019 | B1 |
10438290 | Winklevoss et al. | Oct 2019 | B1 |
10445152 | Zhang et al. | Oct 2019 | B1 |
10460395 | Grassadonia | Oct 2019 | B2 |
10521798 | Song et al. | Dec 2019 | B2 |
10592882 | Viswanath et al. | Mar 2020 | B1 |
10614478 | Georgi | Apr 2020 | B1 |
10650448 | Haller et al. | May 2020 | B1 |
10657503 | Ebersole et al. | May 2020 | B1 |
10673862 | Threlkeld | Jun 2020 | B1 |
10742655 | Taylor et al. | Aug 2020 | B2 |
10872005 | Killis | Dec 2020 | B1 |
10878496 | Duong et al. | Dec 2020 | B1 |
10936711 | Jain et al. | Mar 2021 | B2 |
10963589 | Fakhraie et al. | Mar 2021 | B1 |
10984482 | Thangarajah et al. | Apr 2021 | B1 |
10992679 | Fakhraie et al. | Apr 2021 | B1 |
11107561 | Matthieu et al. | Aug 2021 | B2 |
11144903 | Ready et al. | Oct 2021 | B2 |
11151529 | Nolte et al. | Oct 2021 | B1 |
11200569 | James et al. | Dec 2021 | B1 |
20010001856 | Gould et al. | May 2001 | A1 |
20010032183 | Landry | Oct 2001 | A1 |
20010051920 | Joao et al. | Dec 2001 | A1 |
20010056398 | Scheirer | Dec 2001 | A1 |
20020016749 | Borecki et al. | Feb 2002 | A1 |
20020035539 | O'Connell | Mar 2002 | A1 |
20020038289 | Lawlor et al. | Mar 2002 | A1 |
20020062249 | Iannacci | May 2002 | A1 |
20020095386 | Maritzen et al. | Jul 2002 | A1 |
20020143655 | Elston et al. | Oct 2002 | A1 |
20020169720 | Wilson et al. | Nov 2002 | A1 |
20030046246 | Klumpp et al. | Mar 2003 | A1 |
20030055786 | Smith et al. | Mar 2003 | A1 |
20030061163 | Durfield | Mar 2003 | A1 |
20030097331 | Cohen | May 2003 | A1 |
20030172040 | Kemper et al. | Sep 2003 | A1 |
20030195847 | Felger | Oct 2003 | A1 |
20030200179 | Kwan | Oct 2003 | A1 |
20030216997 | Cohen | Nov 2003 | A1 |
20030217001 | McQuaide et al. | Nov 2003 | A1 |
20040054564 | Fonseca et al. | Mar 2004 | A1 |
20040054591 | Spaeth et al. | Mar 2004 | A1 |
20040073903 | Melchione et al. | Apr 2004 | A1 |
20040078325 | O'Connor | Apr 2004 | A1 |
20040090825 | Nam et al. | May 2004 | A1 |
20040128243 | Kavanagh et al. | Jul 2004 | A1 |
20040143632 | McCarty | Jul 2004 | A1 |
20040148259 | Reiners et al. | Jul 2004 | A1 |
20040178907 | Cordoba | Sep 2004 | A1 |
20040225606 | Nguyen et al. | Nov 2004 | A1 |
20040249710 | Smith et al. | Dec 2004 | A1 |
20040249753 | Blinn et al. | Dec 2004 | A1 |
20040263901 | Critelli et al. | Dec 2004 | A1 |
20050010483 | Ling | Jan 2005 | A1 |
20050039041 | Shaw et al. | Feb 2005 | A1 |
20050060233 | Bonalle et al. | Mar 2005 | A1 |
20050114705 | Reshef et al. | May 2005 | A1 |
20050131815 | Fung et al. | Jun 2005 | A1 |
20050171898 | Bishop et al. | Aug 2005 | A1 |
20050199714 | Brandt et al. | Sep 2005 | A1 |
20050205662 | Nelson | Sep 2005 | A1 |
20050224587 | Shin et al. | Oct 2005 | A1 |
20050228750 | Olliphant et al. | Oct 2005 | A1 |
20050273431 | Abel et al. | Dec 2005 | A1 |
20060046742 | Zhang | Mar 2006 | A1 |
20060046745 | Davidson | Mar 2006 | A1 |
20060059110 | Madhok et al. | Mar 2006 | A1 |
20060178986 | Giordano et al. | Aug 2006 | A1 |
20060184456 | de Janasz | Aug 2006 | A1 |
20060190374 | Sher | Aug 2006 | A1 |
20060202012 | Grano et al. | Sep 2006 | A1 |
20060206912 | Klarfeld et al. | Sep 2006 | A1 |
20060235795 | Johnson et al. | Oct 2006 | A1 |
20060278698 | Lovett | Dec 2006 | A1 |
20070051797 | Randolph-Wall et al. | Mar 2007 | A1 |
20070083463 | Kraft | Apr 2007 | A1 |
20070100773 | Wallach | May 2007 | A1 |
20070112673 | Protti | May 2007 | A1 |
20070123305 | Chen et al. | May 2007 | A1 |
20070143831 | Pearson et al. | Jun 2007 | A1 |
20070203836 | Dodin | Aug 2007 | A1 |
20070226086 | Bauman et al. | Sep 2007 | A1 |
20070255653 | Tumminaro et al. | Nov 2007 | A1 |
20070266257 | Camaisa et al. | Nov 2007 | A1 |
20080000052 | Hong et al. | Jan 2008 | A1 |
20080005037 | Hammad et al. | Jan 2008 | A1 |
20080017702 | Little et al. | Jan 2008 | A1 |
20080021787 | Mackouse | Jan 2008 | A1 |
20080029608 | Kellum et al. | Feb 2008 | A1 |
20080052226 | Agarwal et al. | Feb 2008 | A1 |
20080066185 | Lester et al. | Mar 2008 | A1 |
20080086398 | Parlotto | Apr 2008 | A1 |
20080115104 | Quinn | May 2008 | A1 |
20080149706 | Brown et al. | Jun 2008 | A1 |
20080154772 | Carlson | Jun 2008 | A1 |
20080170156 | Kim | Jul 2008 | A1 |
20080191878 | Abraham | Aug 2008 | A1 |
20080208726 | Tsantes et al. | Aug 2008 | A1 |
20080226142 | Pennella et al. | Sep 2008 | A1 |
20080229383 | Buss et al. | Sep 2008 | A1 |
20080244724 | Choe et al. | Oct 2008 | A1 |
20080260119 | Marathe et al. | Oct 2008 | A1 |
20080283590 | Oder et al. | Nov 2008 | A1 |
20080301043 | Unbehagen | Dec 2008 | A1 |
20080319889 | Hammad et al. | Dec 2008 | A1 |
20090005269 | Martin et al. | Jan 2009 | A1 |
20090007231 | Kaiser et al. | Jan 2009 | A1 |
20090012898 | Sharma et al. | Jan 2009 | A1 |
20090055269 | Baron | Feb 2009 | A1 |
20090055642 | Myers et al. | Feb 2009 | A1 |
20090089113 | Rousso et al. | Apr 2009 | A1 |
20090112763 | Scipioni et al. | Apr 2009 | A1 |
20090132351 | Gibson | May 2009 | A1 |
20090164324 | Bishop et al. | Jun 2009 | A1 |
20090205014 | Doman et al. | Aug 2009 | A1 |
20090228381 | Mik et al. | Sep 2009 | A1 |
20090254447 | Blades | Oct 2009 | A1 |
20090254971 | Herz et al. | Oct 2009 | A1 |
20090287603 | Lamar et al. | Nov 2009 | A1 |
20090319638 | Faith et al. | Dec 2009 | A1 |
20100036769 | Winters et al. | Feb 2010 | A1 |
20100036906 | Song et al. | Feb 2010 | A1 |
20100063906 | Nelsen et al. | Mar 2010 | A1 |
20100082445 | Hodge et al. | Apr 2010 | A1 |
20100082487 | Nelsen | Apr 2010 | A1 |
20100094735 | Reynolds et al. | Apr 2010 | A1 |
20100100470 | Buchanan et al. | Apr 2010 | A1 |
20100114768 | Duke et al. | May 2010 | A1 |
20100132049 | Vernal et al. | May 2010 | A1 |
20100199098 | King | Aug 2010 | A1 |
20100228671 | Patterson | Sep 2010 | A1 |
20100274691 | Hammad et al. | Oct 2010 | A1 |
20100276484 | Banerjee et al. | Nov 2010 | A1 |
20100312700 | Coulter et al. | Dec 2010 | A1 |
20100327056 | Yoshikawa et al. | Dec 2010 | A1 |
20110023129 | Vernal et al. | Jan 2011 | A1 |
20110035288 | Clyne | Feb 2011 | A1 |
20110035318 | Hargrove et al. | Feb 2011 | A1 |
20110035596 | Attia et al. | Feb 2011 | A1 |
20110078010 | Postrel | Mar 2011 | A1 |
20110106698 | Isaacson et al. | May 2011 | A1 |
20110162057 | Gottumukkala et al. | Jun 2011 | A1 |
20110172837 | Forbes, Jr. | Jul 2011 | A1 |
20110176010 | Houjou et al. | Jul 2011 | A1 |
20110178929 | Durkin | Jul 2011 | A1 |
20110191177 | Blackhurst et al. | Aug 2011 | A1 |
20110191239 | Blackhurst et al. | Aug 2011 | A1 |
20110196791 | Dominguez | Aug 2011 | A1 |
20110202462 | Keenan | Aug 2011 | A1 |
20110218849 | Rutigliano et al. | Sep 2011 | A1 |
20110247055 | Guo et al. | Oct 2011 | A1 |
20110276479 | Thomas | Nov 2011 | A1 |
20110307826 | Rivera et al. | Dec 2011 | A1 |
20110320246 | Tietzen et al. | Dec 2011 | A1 |
20120024946 | Tullis et al. | Feb 2012 | A1 |
20120030006 | Yoder et al. | Feb 2012 | A1 |
20120030109 | Dooley Maley et al. | Feb 2012 | A1 |
20120041881 | Basu et al. | Feb 2012 | A1 |
20120046994 | Reisman | Feb 2012 | A1 |
20120047072 | Larkin | Feb 2012 | A1 |
20120096534 | Boulos et al. | Apr 2012 | A1 |
20120099780 | Smith et al. | Apr 2012 | A1 |
20120101938 | Kasower | Apr 2012 | A1 |
20120117467 | Maloney | May 2012 | A1 |
20120123841 | Taveau et al. | May 2012 | A1 |
20120123933 | Abel et al. | May 2012 | A1 |
20120124658 | Brudnicki et al. | May 2012 | A1 |
20120158590 | Salonen | Jun 2012 | A1 |
20120173387 | Talker et al. | Jul 2012 | A1 |
20120197691 | Grigg et al. | Aug 2012 | A1 |
20120214577 | Petersen et al. | Aug 2012 | A1 |
20120227094 | Begen et al. | Sep 2012 | A1 |
20120239417 | Pourfallah et al. | Sep 2012 | A1 |
20120239479 | Amaro et al. | Sep 2012 | A1 |
20120239670 | Horn et al. | Sep 2012 | A1 |
20120240235 | Moore | Sep 2012 | A1 |
20120246122 | Short et al. | Sep 2012 | A1 |
20120254038 | Mullen | Oct 2012 | A1 |
20120259782 | Hammad | Oct 2012 | A1 |
20120265682 | Menon | Oct 2012 | A1 |
20120265685 | Brudnicki et al. | Oct 2012 | A1 |
20120270522 | Laudermilch et al. | Oct 2012 | A1 |
20120296725 | Dessert et al. | Nov 2012 | A1 |
20120296831 | Carrott | Nov 2012 | A1 |
20120310760 | Phillips et al. | Dec 2012 | A1 |
20120317036 | Bower et al. | Dec 2012 | A1 |
20130006847 | Hammad et al. | Jan 2013 | A1 |
20130031006 | McCullagh et al. | Jan 2013 | A1 |
20130046607 | Granville, III | Feb 2013 | A1 |
20130046690 | Calman et al. | Feb 2013 | A1 |
20130055378 | Chang et al. | Feb 2013 | A1 |
20130080219 | Royyuru et al. | Mar 2013 | A1 |
20130090998 | Shimogori | Apr 2013 | A1 |
20130091452 | Sorden et al. | Apr 2013 | A1 |
20130103391 | Millmore et al. | Apr 2013 | A1 |
20130117696 | Robertson et al. | May 2013 | A1 |
20130132854 | Raleigh et al. | May 2013 | A1 |
20130151405 | Head et al. | Jun 2013 | A1 |
20130159178 | Colon et al. | Jun 2013 | A1 |
20130173402 | Young et al. | Jul 2013 | A1 |
20130174244 | Taveau et al. | Jul 2013 | A1 |
20130191213 | Beck et al. | Jul 2013 | A1 |
20130204894 | Faith | Aug 2013 | A1 |
20130212666 | Mattsson et al. | Aug 2013 | A1 |
20130218649 | Beal | Aug 2013 | A1 |
20130218758 | Koenigsbrueck et al. | Aug 2013 | A1 |
20130226813 | Voltz | Aug 2013 | A1 |
20130240618 | Hall | Sep 2013 | A1 |
20130246258 | Dessert | Sep 2013 | A1 |
20130246272 | Kirsch | Sep 2013 | A1 |
20130254079 | Murali | Sep 2013 | A1 |
20130254115 | Pasa et al. | Sep 2013 | A1 |
20130282542 | White | Oct 2013 | A1 |
20130301392 | Zhao | Nov 2013 | A1 |
20130317893 | Nelson et al. | Nov 2013 | A1 |
20130332256 | Faith et al. | Dec 2013 | A1 |
20130339124 | Postrel | Dec 2013 | A1 |
20130346302 | Purves | Dec 2013 | A1 |
20130346306 | Kopp | Dec 2013 | A1 |
20130346310 | Burger et al. | Dec 2013 | A1 |
20140006209 | Groarke | Jan 2014 | A1 |
20140019352 | Shrivastava | Jan 2014 | A1 |
20140024354 | Haik et al. | Jan 2014 | A1 |
20140026193 | Saxman et al. | Jan 2014 | A1 |
20140032419 | Anderson et al. | Jan 2014 | A1 |
20140032723 | Nema | Jan 2014 | A1 |
20140040134 | Ciurea | Feb 2014 | A1 |
20140040144 | Plomske et al. | Feb 2014 | A1 |
20140046827 | Hochstatter et al. | Feb 2014 | A1 |
20140053069 | Yan | Feb 2014 | A1 |
20140058912 | Bajaj | Feb 2014 | A1 |
20140067503 | Ebarle Grecsek et al. | Mar 2014 | A1 |
20140067683 | Varadarajan | Mar 2014 | A1 |
20140068030 | Chambers et al. | Mar 2014 | A1 |
20140076967 | Pushkin et al. | Mar 2014 | A1 |
20140081736 | Blackhurst et al. | Mar 2014 | A1 |
20140108140 | Crawford | Apr 2014 | A1 |
20140108260 | Poole et al. | Apr 2014 | A1 |
20140108263 | Ortiz et al. | Apr 2014 | A1 |
20140114780 | Menefee et al. | Apr 2014 | A1 |
20140114855 | Bajaj et al. | Apr 2014 | A1 |
20140122328 | Grigg | May 2014 | A1 |
20140123312 | Marcotte | May 2014 | A1 |
20140129357 | Goodwin | May 2014 | A1 |
20140129448 | Aiglstorfer | May 2014 | A1 |
20140136419 | Kiyohara | May 2014 | A1 |
20140143886 | Eversoll et al. | May 2014 | A1 |
20140149198 | Kim et al. | May 2014 | A1 |
20140149293 | Laracey | May 2014 | A1 |
20140149368 | Lee et al. | May 2014 | A1 |
20140162598 | Villa-Real | Jun 2014 | A1 |
20140164220 | Desai et al. | Jun 2014 | A1 |
20140172576 | Spears et al. | Jun 2014 | A1 |
20140172707 | Kuntagod et al. | Jun 2014 | A1 |
20140180854 | Bryant, II | Jun 2014 | A1 |
20140198054 | Sharma et al. | Jul 2014 | A1 |
20140200957 | Biggs | Jul 2014 | A1 |
20140207672 | Kelley | Jul 2014 | A1 |
20140236792 | Pant et al. | Aug 2014 | A1 |
20140237236 | Kalinichenko et al. | Aug 2014 | A1 |
20140248852 | Raleigh et al. | Sep 2014 | A1 |
20140250002 | Isaacson et al. | Sep 2014 | A1 |
20140258104 | Harnisch | Sep 2014 | A1 |
20140258109 | Jiang et al. | Sep 2014 | A1 |
20140258110 | Davis et al. | Sep 2014 | A1 |
20140279309 | Cowen et al. | Sep 2014 | A1 |
20140279474 | Evans et al. | Sep 2014 | A1 |
20140279551 | Samid | Sep 2014 | A1 |
20140279559 | Smith et al. | Sep 2014 | A1 |
20140282852 | Vestevich | Sep 2014 | A1 |
20140297438 | Dua | Oct 2014 | A1 |
20140306833 | Ricci | Oct 2014 | A1 |
20140324527 | Kulkarni et al. | Oct 2014 | A1 |
20140337188 | Bennett et al. | Nov 2014 | A1 |
20140337215 | Howe | Nov 2014 | A1 |
20140344149 | Campos | Nov 2014 | A1 |
20140344153 | Raj et al. | Nov 2014 | A1 |
20140344877 | Ohmata et al. | Nov 2014 | A1 |
20140357233 | Maximo et al. | Dec 2014 | A1 |
20140365291 | Shvarts | Dec 2014 | A1 |
20140372308 | Sheets | Dec 2014 | A1 |
20140379575 | Rogan | Dec 2014 | A1 |
20150019443 | Sheets et al. | Jan 2015 | A1 |
20150019944 | Kalgi | Jan 2015 | A1 |
20150026026 | Calman et al. | Jan 2015 | A1 |
20150026049 | Theurer et al. | Jan 2015 | A1 |
20150026057 | Calman et al. | Jan 2015 | A1 |
20150032625 | Dill et al. | Jan 2015 | A1 |
20150032626 | Dill et al. | Jan 2015 | A1 |
20150032627 | Dill et al. | Jan 2015 | A1 |
20150039457 | Jacobs et al. | Feb 2015 | A1 |
20150039496 | Shuster | Feb 2015 | A1 |
20150046338 | Laxminarayanan et al. | Feb 2015 | A1 |
20150046339 | Wong et al. | Feb 2015 | A1 |
20150066768 | Williamson et al. | Mar 2015 | A1 |
20150070132 | Candelore | Mar 2015 | A1 |
20150073989 | Green et al. | Mar 2015 | A1 |
20150079932 | Zelinka et al. | Mar 2015 | A1 |
20150081349 | Johndrow et al. | Mar 2015 | A1 |
20150082042 | Hoornaert et al. | Mar 2015 | A1 |
20150088633 | Salmon et al. | Mar 2015 | A1 |
20150088756 | Makhotin et al. | Mar 2015 | A1 |
20150095238 | Khan et al. | Apr 2015 | A1 |
20150095999 | Toth | Apr 2015 | A1 |
20150096039 | Mattsson et al. | Apr 2015 | A1 |
20150100477 | Salama et al. | Apr 2015 | A1 |
20150100495 | Salama et al. | Apr 2015 | A1 |
20150106239 | Gaddam et al. | Apr 2015 | A1 |
20150112870 | Nagasundaram et al. | Apr 2015 | A1 |
20150121500 | Venkatanaranappa et al. | Apr 2015 | A1 |
20150127524 | Jacobs et al. | May 2015 | A1 |
20150127547 | Powell et al. | May 2015 | A1 |
20150128215 | Son et al. | May 2015 | A1 |
20150132984 | Kim et al. | May 2015 | A1 |
20150134700 | Macklem et al. | May 2015 | A1 |
20150142673 | Nelsen et al. | May 2015 | A1 |
20150149272 | Salmon et al. | May 2015 | A1 |
20150149357 | Ioannidis et al. | May 2015 | A1 |
20150154595 | Collinge et al. | Jun 2015 | A1 |
20150178724 | Ngo et al. | Jun 2015 | A1 |
20150180836 | Wong et al. | Jun 2015 | A1 |
20150186856 | Weiss et al. | Jul 2015 | A1 |
20150193639 | Esposito et al. | Jul 2015 | A1 |
20150193764 | Haggerty et al. | Jul 2015 | A1 |
20150193866 | Van Heerden et al. | Jul 2015 | A1 |
20150199679 | Palanisamy et al. | Jul 2015 | A1 |
20150199689 | Kumnick et al. | Jul 2015 | A1 |
20150200495 | Yu et al. | Jul 2015 | A1 |
20150213435 | Douglas et al. | Jul 2015 | A1 |
20150220917 | Aabye et al. | Aug 2015 | A1 |
20150220999 | Thornton et al. | Aug 2015 | A1 |
20150221149 | Main et al. | Aug 2015 | A1 |
20150229622 | Grigg et al. | Aug 2015 | A1 |
20150242853 | Powell | Aug 2015 | A1 |
20150248405 | Rudich et al. | Sep 2015 | A1 |
20150254635 | Bondesen et al. | Sep 2015 | A1 |
20150254638 | Bondesen et al. | Sep 2015 | A1 |
20150254646 | Harkey et al. | Sep 2015 | A1 |
20150254647 | Bondesen et al. | Sep 2015 | A1 |
20150254655 | Bondesen et al. | Sep 2015 | A1 |
20150254656 | Bondesen et al. | Sep 2015 | A1 |
20150269566 | Gaddam et al. | Sep 2015 | A1 |
20150277712 | Ratcliffe | Oct 2015 | A1 |
20150286834 | Ohtani et al. | Oct 2015 | A1 |
20150287133 | Marlov et al. | Oct 2015 | A1 |
20150295906 | Ufford et al. | Oct 2015 | A1 |
20150312038 | Palanisamy | Oct 2015 | A1 |
20150319158 | Kumnick | Nov 2015 | A1 |
20150319198 | Gupta et al. | Nov 2015 | A1 |
20150324592 | Dutta | Nov 2015 | A1 |
20150332067 | Gorod | Nov 2015 | A1 |
20150339663 | Lopreiato et al. | Nov 2015 | A1 |
20150339664 | Wong et al. | Nov 2015 | A1 |
20150348083 | Brill et al. | Dec 2015 | A1 |
20150371221 | Wardman | Dec 2015 | A1 |
20150372999 | Pi-Sunyer | Dec 2015 | A1 |
20150379508 | Van | Dec 2015 | A1 |
20160004741 | Johnson et al. | Jan 2016 | A1 |
20160026997 | Tsui et al. | Jan 2016 | A1 |
20160028550 | Gaddam et al. | Jan 2016 | A1 |
20160028735 | Francis et al. | Jan 2016 | A1 |
20160036790 | Shastry et al. | Feb 2016 | A1 |
20160042381 | Braine et al. | Feb 2016 | A1 |
20160063497 | Grant, IV | Mar 2016 | A1 |
20160065370 | Le Saint et al. | Mar 2016 | A1 |
20160078428 | Moser et al. | Mar 2016 | A1 |
20160080403 | Cunningham et al. | Mar 2016 | A1 |
20160086222 | Kurapati | Mar 2016 | A1 |
20160092696 | Guglani et al. | Mar 2016 | A1 |
20160092870 | Salama et al. | Mar 2016 | A1 |
20160092872 | Prakash et al. | Mar 2016 | A1 |
20160092874 | O'Regan | Mar 2016 | A1 |
20160098577 | Lacey et al. | Apr 2016 | A1 |
20160098692 | Johnson et al. | Apr 2016 | A1 |
20160109954 | Harris et al. | Apr 2016 | A1 |
20160119296 | Laxminarayanan et al. | Apr 2016 | A1 |
20160125405 | Alterman et al. | May 2016 | A1 |
20160125409 | Meredith et al. | May 2016 | A1 |
20160127892 | Huang et al. | May 2016 | A1 |
20160132918 | Thomas | May 2016 | A1 |
20160140221 | Park et al. | May 2016 | A1 |
20160140541 | Pearson et al. | May 2016 | A1 |
20160149875 | Li et al. | May 2016 | A1 |
20160155156 | Gopal et al. | Jun 2016 | A1 |
20160171483 | Luoma et al. | Jun 2016 | A1 |
20160173483 | Wong et al. | Jun 2016 | A1 |
20160180302 | Bagot, Jr. | Jun 2016 | A1 |
20160189121 | Best et al. | Jun 2016 | A1 |
20160217461 | Gaddam et al. | Jul 2016 | A1 |
20160232600 | Purves | Aug 2016 | A1 |
20160239437 | Le et al. | Aug 2016 | A1 |
20160239835 | Marsyla | Aug 2016 | A1 |
20160239840 | Preibisch | Aug 2016 | A1 |
20160260084 | Main et al. | Sep 2016 | A1 |
20160260176 | Bernard et al. | Sep 2016 | A1 |
20160267467 | Rutherford et al. | Sep 2016 | A1 |
20160267480 | Metral | Sep 2016 | A1 |
20160292673 | Chandrasekaran | Oct 2016 | A1 |
20160294879 | Kirsch | Oct 2016 | A1 |
20160307229 | Balasubramanian | Oct 2016 | A1 |
20160314458 | Douglas et al. | Oct 2016 | A1 |
20160321669 | Beck et al. | Nov 2016 | A1 |
20160328522 | Howley | Nov 2016 | A1 |
20160328577 | Howley | Nov 2016 | A1 |
20160358163 | Kumar et al. | Dec 2016 | A1 |
20160371471 | Patton et al. | Dec 2016 | A1 |
20160373458 | Moreton et al. | Dec 2016 | A1 |
20160379211 | Hoyos et al. | Dec 2016 | A1 |
20170004506 | Steinman | Jan 2017 | A1 |
20170004590 | Gluhovsky | Jan 2017 | A1 |
20170011215 | Poiesz et al. | Jan 2017 | A1 |
20170011389 | McCandless et al. | Jan 2017 | A1 |
20170011450 | Frager et al. | Jan 2017 | A1 |
20170018029 | Eiriz et al. | Jan 2017 | A1 |
20170024393 | Choksi et al. | Jan 2017 | A1 |
20170068954 | Hockey et al. | Mar 2017 | A1 |
20170070484 | Kruse et al. | Mar 2017 | A1 |
20170078299 | Castinado et al. | Mar 2017 | A1 |
20170078303 | Wu | Mar 2017 | A1 |
20170091759 | Selfridge et al. | Mar 2017 | A1 |
20170132633 | Whitehouse | May 2017 | A1 |
20170147631 | Nair et al. | May 2017 | A1 |
20170161724 | Lau | Jun 2017 | A1 |
20170161973 | Katta et al. | Jun 2017 | A1 |
20170237554 | Jacobs et al. | Aug 2017 | A1 |
20170249478 | Lovin | Aug 2017 | A1 |
20170344991 | Mark et al. | Nov 2017 | A1 |
20170352028 | Vridhachalam et al. | Dec 2017 | A1 |
20170364898 | Ach et al. | Dec 2017 | A1 |
20170366348 | Weimer | Dec 2017 | A1 |
20180005323 | Grassadonia | Jan 2018 | A1 |
20180006821 | Kinagi | Jan 2018 | A1 |
20180025145 | Morgner et al. | Jan 2018 | A1 |
20180053200 | Cronin et al. | Feb 2018 | A1 |
20180075440 | Beck et al. | Mar 2018 | A1 |
20180088909 | Baratta et al. | Mar 2018 | A1 |
20180096752 | Ovalle | Apr 2018 | A1 |
20180121913 | Unnerstall et al. | May 2018 | A1 |
20180158137 | Tsantes et al. | Jun 2018 | A1 |
20180174148 | Selvarajan | Jun 2018 | A1 |
20180247302 | Armstrong et al. | Aug 2018 | A1 |
20180254898 | Sprague et al. | Sep 2018 | A1 |
20180268382 | Wasserman | Sep 2018 | A1 |
20180270363 | Guday et al. | Sep 2018 | A1 |
20180276628 | Radiotis et al. | Sep 2018 | A1 |
20180293554 | Johnson | Oct 2018 | A1 |
20180331835 | Jackson | Nov 2018 | A1 |
20180349922 | Carlson et al. | Dec 2018 | A1 |
20180357440 | Brady et al. | Dec 2018 | A1 |
20180373891 | Barday et al. | Dec 2018 | A1 |
20190007381 | Isaacson et al. | Jan 2019 | A1 |
20190035664 | Lin et al. | Jan 2019 | A1 |
20190095898 | Bhatia | Mar 2019 | A1 |
20190164221 | Hill et al. | May 2019 | A1 |
20190171831 | Xin | Jun 2019 | A1 |
20190197501 | Senci | Jun 2019 | A1 |
20190220834 | Moshal et al. | Jul 2019 | A1 |
20190228173 | Gupta et al. | Jul 2019 | A1 |
20190228428 | Bruner et al. | Jul 2019 | A1 |
20190228430 | Givol et al. | Jul 2019 | A1 |
20190244214 | Flores et al. | Aug 2019 | A1 |
20190295069 | Pala et al. | Sep 2019 | A1 |
20190318122 | Hockey et al. | Oct 2019 | A1 |
20190318424 | McWilliams | Oct 2019 | A1 |
20190325161 | Zavesky et al. | Oct 2019 | A1 |
20190332802 | Barday et al. | Oct 2019 | A1 |
20190333061 | Jackson et al. | Oct 2019 | A1 |
20190347442 | Marlin et al. | Nov 2019 | A1 |
20190354979 | Crawford | Nov 2019 | A1 |
20190356641 | Isaacson et al. | Nov 2019 | A1 |
20190362069 | Park et al. | Nov 2019 | A1 |
20190369845 | Rucker | Dec 2019 | A1 |
20190370798 | Hu et al. | Dec 2019 | A1 |
20190378182 | Weinflash | Dec 2019 | A1 |
20190392443 | Piparsaniya | Dec 2019 | A1 |
20200005283 | Zimmerman et al. | Jan 2020 | A1 |
20200005347 | Boal | Jan 2020 | A1 |
20200074552 | Shier et al. | Mar 2020 | A1 |
20200076601 | Jafari | Mar 2020 | A1 |
20200090179 | Song et al. | Mar 2020 | A1 |
20200118114 | Benkreira et al. | Apr 2020 | A1 |
20200118132 | Schmidt et al. | Apr 2020 | A1 |
20200118133 | Schmidt | Apr 2020 | A1 |
20200286057 | Desai | Sep 2020 | A1 |
20200286076 | Zhu et al. | Sep 2020 | A1 |
20200380514 | Crofts | Dec 2020 | A1 |
20210012326 | Maxwell Zelocchi | Jan 2021 | A1 |
20210027300 | Chetia et al. | Jan 2021 | A1 |
20210035072 | Awasthi | Feb 2021 | A1 |
20210124760 | Klein et al. | Apr 2021 | A1 |
20210217002 | Basu et al. | Jul 2021 | A1 |
20210233170 | Cadet | Jul 2021 | A1 |
20210258169 | Basu et al. | Aug 2021 | A1 |
20210303335 | Foreman et al. | Sep 2021 | A1 |
20210350343 | Gaur et al. | Nov 2021 | A1 |
20210350458 | Gaur et al. | Nov 2021 | A1 |
20220029815 | Basu et al. | Jan 2022 | A1 |
20220292496 | Yan | Sep 2022 | A1 |
20220294630 | Collen | Sep 2022 | A1 |
20230036439 | Olson et al. | Feb 2023 | A1 |
20230070625 | Gaur et al. | Mar 2023 | A1 |
20230206329 | Cella et al. | Jun 2023 | A1 |
20230214925 | Cella et al. | Jul 2023 | A1 |
20240265405 | Kramme et al. | Aug 2024 | A1 |
Number | Date | Country |
---|---|---|
2015255170 | Nov 2015 | AU |
2016285320 | Jan 2017 | AU |
2369296 | Oct 2000 | CA |
2751554 | Aug 2010 | CA |
1353842 | Jun 2002 | CN |
101303717 | Nov 2008 | CN |
102498497 | Jun 2012 | CN |
102804219 | Nov 2012 | CN |
103635920 | Mar 2014 | CN |
104106276 | Oct 2014 | CN |
102648476 | Mar 2016 | CN |
103413231 | Oct 2017 | CN |
107230049 | Oct 2017 | CN |
107230070 | Oct 2017 | CN |
1 259 947 | Nov 2002 | EP |
1 770 628 | Apr 2007 | EP |
3 073 670 | Sep 2016 | EP |
0 441 156 | Jan 1936 | GB |
2 441 156 | Feb 2008 | GB |
20160015375 | Feb 2016 | KR |
WO-9013096 | Nov 1990 | WO |
WO-0072245 | Nov 2000 | WO |
WO-03038551 | May 2003 | WO |
WO-2004081893 | Sep 2004 | WO |
WO-2004090825 | Oct 2004 | WO |
WO-2009151839 | Dec 2009 | WO |
WO-2011017613 | Feb 2011 | WO |
WO-2011053404 | May 2011 | WO |
WO-2012054148 | Apr 2012 | WO |
WO-2012150602 | Nov 2012 | WO |
WO-2013075071 | May 2013 | WO |
WO-2013082190 | Jun 2013 | WO |
WO-2015103443 | Jul 2015 | WO |
WO-2015135131 | Sep 2015 | WO |
WO-2016015054 | Jan 2016 | WO |
WO-2016025291 | Feb 2016 | WO |
WO-2017035399 | Mar 2017 | WO |
WO-2018005635 | Jan 2018 | WO |
WO-2022154789 | Jul 2022 | WO |
Entry |
---|
Microsoft, “Automatically summarize a document”, 2016. 3 pages. |
IP.com Search Query; May 5, 2020 (Year: 2020). |
Konsko: “Credit Card Tokenization: Here's What You Need to Know”, Credit Card Basics, Credit Card—Advertisement Nerdwallet (Year: 2014). |
ASB, “How to command your cards with ASB Card Control” Apr. 20, 2015, https://www.youtube.com/watch?v=O1sfxvVUL74 (Year: 2015). |
Authorize.Net. Authorize.Net Mobile Application: iOS User Guide. Sep. 2015. Authorize.Net LLC. Ver.2.0, 1-23. https://www.authorize.net/content/dam/anet-redesign/documents/iosuserguide.pdf (Year: 2015). |
Co-Op Think, Rachna Ahlawat at Co-Op Think—Evolution Sessions from Think14, Dec. 22, 2014, 26:22. https://www.youtube.com/watch?v=yEp-qfZoPhl (Year: 2014). |
Fiserv. CardValet: Mobile Application Training. Fiserv, Inc. 1-93. https://www.westernbanks.com/media/1664/ cardvalet-application .pdf (Year: 2015). |
Notre Dame FCU “Irish Card Shield: How to Control Transaction Types” Jan. 15, 2016, 0:27, https://youtube.com/watch?v=0eZG1c6Bn38 (Year: 2016). |
PCM Credit Union, “CardValet Tutorial” Jun. 24, 2015, https://www.youtube.com/watch?v=uGPh9Htw0Wc (Year: 2015). |
Cronian, Darrin “Credit card companies Freeze Spending whilst Abroad”, published Jun. 9, 2007, Available at: http://www.travel-rants.com/2007/06/09/credit-card-companies-freeze-spending-whilst-abroad/. |
Austin Telco Federal Credit Union, “Lost or Stolen Cards”, www.atfcu.org/lost-stolen-cards.htm; Apr. 9, 2004. 6 pages. |
BancFirst, “Lost Card”, https://www.bancfirst.com/contact.aspx, Oct. 28, 2003. 1 page. |
CM/ECF, “CM/ECF Internet Credit Card Payment Guide”, https://www.vaeb.uscourts.gov/wordpress/?page_id=340, Mar. 16, 2005. 12 pages. |
Fort Knox Federal Credit Union, “Lost or Stolen VISA Card”, http://www.fortknoxfcu.org/loststolen.html, Feb. 1, 2001. 2 pages. |
Merrick Bank, “Reporting Lost or Stolen Card Help Return to the Cardholder Center FAQs”, http://www.merrickbank.com/Frequent-Asked-Questions/Report-Stolen-Card.aspx, Aug. 9, 2004. 1 page. |
RBC Royal Bank, “If Your Card is Lost or Stolen”, http://www.rblbank.com/pdfs/CreditCard/FAQs.pdf, Oct. 1, 2002. 2 pages. |
State Employees Credit Union, “Lost or Stolen Account Info”, https://www.secumd.org/advice-planning/money-and-credit/privacy-fraud-protection/lost-or-stolen-account-info.aspx, May 20, 2005. 2 pages. |
Union Bank & Trust, “Report Lost or Stolen Card”, http://www.fortknoxfcu.org/loststolen.html, Jul. 10, 2005. 13 pages. |
IEEE Xplore; 2009 First Asian Himalayas International Conference on Internet: Emergence of Payment Systems in the age of Electronic Commerce.; The state off Art. Author S Singh Nov. 1, 2009 pp. 1-18 (Year: 2009). |
Purchasing charges ahead. (1994). Electronic Buyers' News,, 68. Retrieved from https://dialog.proquest.com/professional/docview/681599288?accountid=131444 on Nov. 13, 2020 (Year: 1994). |
Transaction aggregation as a strategy for credit card fraud detection. file:///C:/Users/eoussir/Downloads/Transaction_aggregation_as_a_strategy for credit_c. pdf (Year: 2009). |
Demiriz et al. “Using Location Aware Business Rules for Preventing Retail Banking Frauds” Jan. 15, 2015, IEEE (Year: 2015). |
Using location aware business rules for preventing retail banking frauds. https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7351936 (Year: 2015). |
Yang MH. Security enhanced EMV-based mobile payment protocol. Scientific World Journal. 2014.https://www.ncbi.nlm.nih.gov/ pmc/articles/PMC4181509/ (Year: 2014). |
Urein et al: “A breakthrough for prepaid payment: End to end token exchange and management using secure SSL channels created by EAP-TLS smart cards”, 2011 International Conference on Collaboration Technologies and Systems (CTS) (Year: 2011). |
Diversinet enables new consumer mobile services from intersections inc.; MobiSecure wallet and vault helps identity management leader get closer to its customers. (May 30, 2007). PR Newswire Retrieved from https://dialog.proquest.com/professional/docview/ 450976918?accountid=131444 on Feb. 22, 2023 (Year: 2007). |
Smartphones as Practical and Secure Location Verification Tokens for Payments. (Year: 2014). |
Eickhoff et al: “Quality through Flow and Immersion: Gamifying Crowdsourced Relevance Assessments”,Proceedings of the 35th international ACM SIGIR conference on Research and development in information retrieval, Aug. 12, 2012. (Year: 2012). |
Hinze et al.; Event-Based Applications and Enabling Technologies. https://www.researchgate.net/profile/Annika-Hinze/publication/220796268_Event-based_applications_and_enabling_technologies/Links/0fcfd 50b638d9592a1000000/ Event-based-applications-and-enabling-technologies.pdf (Year: 2009). |
Technologies for Payment Fraud Prevention: EMV, Encryption, and Tokenization, Oct. 2014, Smart Card Alliance, pp. 1-34 (Year: 2014). |
Yang, Ming-Hour; Security Enhanced EMV-Based Mobile Payment Protocol. https://patents.google.com/scholar/ 15767854982483958498?q (Security Enhanced EMV-Based Mobile Payment Protocol)&patents=false&scholar&oq=Security Enhanced EMV-Based Mobile Payment Protocol (Year: 2014). |
“Bitcoin Off-Chain Transactions: Their Invention and Use,” by Michelle Mount. Geo. L. Tech. Rev. 4. 2020. pp. 685-698. (Year: 2020). |
“The Bitcoin Lightening Network: Scalable Off-Chain Instant Payments,” by Joseph Poon; and Thaddeus Dryia. Jan. 14, 2016. (Year: 2016). |
Are Central Bank Digital Currencies (CBDCs) the money of tomorrow. |
NPL Search Terms (Year: 2024). |
Shehnaz Ahmed, Private partners could help RBI run a digital currency. |
Shiravale, et al., Blockchain Technology: A Novel Approach in Information Security Research, IEEE 2018 (Year: 2018), 4 pps. |
Yang, et al., Impact of Bitcoin's Distributed Structure on the Construction of the Central Bank's Digital Currency System IEEE, 2020 (Year: 2020), 4 pps. |
Luz et al: “A Mobile NFC Payment Terminal for the Event-Wallet on an Android Smartphone” researchgat.net, (Year: 2012). |
Tene et al. Big Data for All: Privacy and User Control in the Age of Analytics. Northwestern Journal of technology and Intellectual Property. https://scholarlycommons.law.northwestern.edu/cgi/viewcontent.cgi?article= 1191 &context=njtip (Year: 2013). |
Demiriz et al., “Using location aware business rules for preventing retail banking frauds,” 2015 First International Conference on Anti-Cybercrime, pp. 1-6. https://ieeexplore.ieee.org/documenU7351936? source=IQplus. |
Dunman et al., “A Novel and Successful Credit Card Fraud Detection System Implemented in a Turkish Bank,” 2013 IEEE 13th International Conference on Data Mining Workshops, Dallas, TX, USA. Retrieved from https://ieeexplore.ieee.org/documenU6753916?source=IQplus. |
Ivatury, G., Mobile Phone Banking and Low-Income Customers, 2006, Retrieved from https://www.cgap.org/sites/default/files/CGAP-Mobile-Phone-Banking-and-Low-Income-Customers-Evidence-from-South-Africa-Jan-2006.pdf. |
Park et al., “Leveraging Cellular Infrastructure to Improve Fraud Prevention,” 2009 Annual Computer Security Applications Conference, Honolulu, HI, USA, https://ieeexplore.ieee.org/documenU5380689?source= IQplus. |
Trappey et al., “Patent portfolio analysis of e-payment services using technical ontology roadmaps,” 2016 IEEE International Conference on Systems, Man, and Cybernetics, Budapest, Hungary. Retrieved from https://ieeexplore.ieee.org/documenU7844992?source=IQplus. |
Number | Date | Country | |
---|---|---|---|
62766400 | Oct 2018 | US | |
62529360 | Jul 2017 | US | |
62403396 | Oct 2016 | US | |
62357737 | Jul 2016 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16204831 | Nov 2018 | US |
Child | 16215558 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16383388 | Apr 2019 | US |
Child | 16457257 | US | |
Parent | 16215558 | Dec 2018 | US |
Child | 16383388 | US | |
Parent | 15723078 | Oct 2017 | US |
Child | 16204831 | US | |
Parent | 15629423 | Jun 2017 | US |
Child | 15723078 | US |