Published German patent document DE 103 42 625 describes the operation of an impact sensor at a distance from a control unit and the configuration of this impact sensor, so that it transmits its sensor data by current pulses to the control unit. The sensor is supplied with power from the control unit via a dc current over this data line.
A control unit and a method according to the present invention for triggering a passenger protection system are advantageous in that due to a special design of an interface with regard to the processing of a sensor signal, an improved integrity of the sensor signal for providing the sensor signal for further processing in the control unit is achieved, in particular with regard to variations in a bias current component due to temperature influences.
In particular, when more than one sensor is connected to the line, the bias currents of the peripheral sensors are additive and thus the corresponding bias current tolerances are also additive. The total of these tolerances may reach the level of a current excursion with which the signal is modulated. Adapting to this is a great advantage of the present control unit and method. Component tolerances may be eliminated very easily in this way.
An object of the present invention is to process the signal through two different signal processors to thereby obtain two comparison signals which are compared by a comparison device. It is thus possible to reliably detect an edge change of the sensor signal transmitted, in particular by using Manchester coding. Ultimately, according to the present invention, independence is achieved with respect to fluctuations in bias current. The control unit according to the present invention and the method according to the present invention are thus based on the bias current being used at a given moment. Sensors having different bias current uptakes may thus be exchanged with one another without requiring adjustments in hardware or software. Any fluctuation in bias current of the sensors due to production is compensated according to the present invention.
The interface according to the present invention may be implemented in hardware but may also be implemented in software. An analyzer circuit is usually a microcontroller, but other conventional controllers such as microprocessors, ASICs or other computation units are also possible. Active or passive passenger protection means such as brakes, vehicle dynamics regulation, airbags, seat-belt tighteners or crash-activated head restraints may also be used as the passenger protection system. The sensor signal is usually transmitted digitally from the sensor to the control unit. The comparison device, the first and second signal processors, a decoder circuit and the analyzer circuit may each be implemented in either hardware and/or software. Different processors, hardware configurations or software architectures may be used for this purpose.
It is advantageous that the first signal processor has a hysteresis circuit. With such a hysteresis circuit, it is possible to achieve reliable detection of an edge change, in particular in the case of a Manchester-coded signal. The hysteresis circuit may be implemented in hardware and/or software and preferably has a connection to the output of the comparison device and to the input of the comparison device. This results in feedback. A feedback path may preferably contain a multiplier element for weighting the output signal of the comparison device accordingly. The weighting may be achieved by a constant or adaptive factor. Adaptation may also be performed on the signal itself or as a function of time or other signals. The feedback signal is fed back by an adding element to an input of the comparison device. The weighted feedback signal is counted together with the incoming sensor signal by the adding element.
The second signal processor preferably includes low-pass filtering. In the simplest case, this low-pass filtering may be embodied as an RC element. However, more complex low-pass filter hardware may be provided; digital low-pass filters may be provided and in particular it is also possible to implement the low-pass filtering in software. The low-pass filtering supplies a low-pass-filtered sensor signal that is transmitted to a second input of the comparison device. The sensor signal, which is influenced by the hysteresis circuit, and the low-pass-filtered sensor signal are then compared.
The comparison device advantageously has at least one comparator. There is thus a threshold value switch which compares the signal influenced by the hysteresis circuit with the low-pass-filtered sensor signal as a threshold. A corresponding output signal is generated as a function thereof. The at least one comparator may also be implemented in software.
The interface is preferably designed as an integrated circuit. A simple and reliable means of manufacturing the interface according to the present invention is thus possible.
According to the present invention, the reference voltage is generated with the help of a first signal processor 14 and a second signal processor 13. Through this signal processing arrangement, it is possible to compensate for fluctuations in bias current in Isig via variations in temperature and component. In the present case, the first signal processor 14 is implemented as a hysterisis circuit and the second signal processor 13 is implemented as a low-pass filter. Instead of the low-pass filter, timers, other filters, a software forming of the signal, digital filters and other alternatives with which those skilled in the art are familiar may be used. The hysteresis circuit may be omitted if necessary.
The low-pass filter 13 smoothes the fast edge change of the Manchester-coded sensor signal. The original Manchester signal is compared with its own low-pass-filtered version at comparator 12. After a positive or negative edge change of the communication signal, the low-pass-filtered signal requires a certain time to follow the edge change. During this time, the output signal of the comparator is positive or negative and may be analyzed by decoder 15. Comparator 12 is prevented from flipping back with the help of hysteresis circuit 14. The decoded signal may then go from decoder 15 to microcontroller μC, where it is analyzed by an analysis algorithm. As a function of this analysis, a trigger signal is generated, transmitted by triggering circuit FLIC, which has power switches, among other things, so that triggering circuit FLIC results in energization of passenger protection means PS. Additional signals may also be processed here, e.g., by other sensors or other analysis units.
It is also possible in this way to adaptively adjust to fluctuations in bias current.
On the basis of a trapezoidal input signal U′sig,
In implementing the present invention, well-coordinated dimensioning of parameters T and Uhyst is important. The following must be considered:
Number | Date | Country | Kind |
---|---|---|---|
10 2007 003 542.1 | Jan 2007 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP07/64608 | 12/28/2007 | WO | 00 | 8/13/2010 |