1. Field of the Invention
The invention is related to the field of electrical devices, and in particular, to a control unit for managing the usage of electrical devices, such as televisions, computer monitors, video game systems, etc.
2. Statement of the Problem
In the current technological era, children use electrical devices on a daily basis potentially for hours. Children might watch television from the time they get home after school until they go to bed. Teenagers may surf the Internet or exchange emails for hours on a nightly basis. Parents struggle with how to limit the time their children use these and other electrical devices.
Present control units have been developed to control the time a child may spend watching television. The present control units are external devices that control the AC power to a television. A user, such as a child, enters a special code or number into the control unit and the control unit decrements time from the user's account when the television is on. When the time in the user's account is depleted, the control unit interrupts power to the television and the television cannot be viewed. Present control units such as this are disclosed in U.S. Pat. No. 5,231,310 and U.S. Pat. No. 5,331,353.
There are many drawbacks to the present control units. The present control units do not provide protection mechanisms for the electrical devices with which they connect. For instance, in U.S. Pat. No. 5,331,353, the control unit stops decrementing from a user's account when the electrical device is shut off. A user may then shut a television off during commercials to avoid debiting of their account during those commercials. Turning a television on and off in such a manner can damage a television over time, especially large projection televisions. The present control units are also difficult to use and are substantially inflexible as to how time is added to or decremented from the user's account. It would be desirable to have an improved control unit.
The invention helps solve the above problems with an improved control unit for managing usage of electrical devices. A control unit in one embodiment includes a processing system and memory adapted to maintain a plurality of time accounts for a plurality of users. A time account indicates an amount of time assigned to a particular user for usage of the electrical device over a time period, such as a day, a week, etc.
Responsive to receiving a request to operate the electrical device from a user, the processing system identifies a time account for the user. The processing system also begins decrementing time from the time account for the user based on an algorithm when the electrical device is turned on by the user. During usage of the electrical device, the processing system decrements time from the time account of the user according to the algorithm, or determines an amount of time according to the algorithm to decrement from the time account of the user at a later time.
The processing system also monitors the on/off status of the electrical device through a current sensing system. Responsive to determining that the electrical device has been shut off, the processing system continues to decrement time from the time account of the user according to the algorithm after the electrical device is shut off. One or more desired algorithms may be used to decrement time from the time account of the user after the electrical device is shut off. By decrementing time after the electrical device is turned off (e.g., usage has ended) according to an algorithm, the user is advantageously deterred from shutting the device off periodically to save usage time. For instance, if the electrical device is a television, a child may turn off the television during commercials to save time on their time account. Turning televisions on and off frequently may damage the television over time, especially for large screen or projection televisions. By continuing the decrementing process after the television is turned off, the user will not benefit from turning the television on and off during commercials as the time the television is turned off will still be decremented from the time account of the user according to the algorithm.
In another embodiment, an algorithm defines decrementing time from the time account of the user in a defined time block, such as a one minute block, a two minute block, a five minute block, etc. The processing system continues to decrement from the time account of the user after the electrical device is shut off until the next time block according to this algorithm. As an example, assume that a defined time block of five minutes is used. If the electrical device is used for twenty-seven minutes and shut off, then the processing system decrements the usage in five minute blocks until the electrical device is shut off. After the electrical device is shut off, the processing system continues decrementing time from the time account of the user until the next five minute block, which is the thirty minute mark.
In another embodiment, an algorithm defines that time is decremented by rounding up or down to the closest defined time block. The processing system continues to decrement from the time account of the user after the electrical device is shut off by rounding up or down to the closest defined time block.
In another embodiment, an algorithm defines that time is decremented from the time account of the user based on actual usage of the electrical device and based additionally on the on/off status of the electrical device over a time period. To decrement based on the on/off status of the electrical device, the processing system may monitor the on/off status of the electrical device over the time period, estimate the amount of time the electrical device was shut off during the time period, and decrement the time account of the user based on the estimated time the electrical device was shut off during the time period. The processing system may alternatively monitor the oil/off status of the electrical device, identify a threshold number of on/off/on changes in the electrical device, and decrement a defined amount of time from the time account of the user based on the number of on/off/on changes.
In addition to automatically decrementing time from the time account of a user after the electrical device has been shut off, the control unit may allow for manual changes to the time account (adding or decrementing) in one embodiment. For the manual changes, the processing system receives a manual account change indication from a user, queries the user to input a time account, queries the user to input an amount of time, and adjusts the time account based on the amount of time inputted by the user.
In another embodiment, the control unit further includes a cutoff system adapted to interrupt power or content to the electrical device. The processing system may instruct the cutoff system to interrupt power or content to the electrical device responsive to determining that the electrical device has been shut off or responsive to determining that the time account of the user is depleted. In some embodiments, the processing system may wait a time period before instructing the cutoff system to interrupt power to the electrical device to allow time for the electrical device to cool down.
The invention may include other exemplary embodiments described below.
The same reference number represents the same element or same type of element on all drawings.
Control Unit Configuration and Operation
Control unit 100 includes an enclosure 102, a power cord 103, and a user interface 104. Enclosure 102 may include any desired shape or configuration, as one example is shown in
Although a power receptacle 306 is shown in
Current sensing system 502 comprises any device or component that senses a current traveling over a conductor 518. Current sensing system 502 may comprise a non-intrusive device that does not directly connect with the conductor 518. For instance, current sensing system 502 may be positioned proximate or adjacent to the conductor 518, but not in the conductive path of the conductor 518. Current sensing system 502 may be adapted to sense a power current, such as an AC current traveling from power cord 103 to power receptacle 306 over conductor 518. Current sensing system 502 may also be adapted to sense a content or data current, such as a cable TV signal traveling from content cord 520 to content receptacle 308 over conductor 518.
Cutoff system 504 comprises any device or component that is adapted to interrupt power or content being provided to an electrical device. One example of cutoff system 504 is a relay. Cutoff system 504 may be coupled to the power path of the electrical device so that it may interrupt or cut off power to the electrical device. Alternatively, cutoff system 504 may be coupled to a content path of the electrical device so that it may interrupt or cut off content or data being provided to the electrical device. For instance, if the electrical device is a television, then cutoff system 504 may be coupled to a coaxial cable running from the cable box to the television to interrupt the content being provided to the television over the coaxial cable.
Processing system 506 comprises one or more processors adapted to execute instructions or code to perform functions. Memory 508 comprises any desired memory device. Memory 508 may be resident on the same circuit board as processing system 506 as is common in many processor applications. Memory 508 may also be a separate component, such as an EPROM, that is accessible to processing system 506 through a system bus.
To hook up control unit 100, a power cord for an electrical device, such as a television, may be plugged into power receptacle 306 (see also
Additionally or alternatively, a content cord for an electrical device, such as coaxial cable, may be plugged into content receptacle 308 (see also
After control unit 100 is connected to the electrical device, control unit 100 is setup or initialized. Processing system 506 may guide the users through the setup by displaying questions or commands on display 106. As a brief summary, time accounts are set up for one or more users. The time accounts indicate an amount of time assigned to a particular user for usage of the electrical device over a time period, such as a week, a month, etc. As part of the setup, a user enters a password or access code for their time account. The time accounts are initialized and an initial time is allotted for a time period, such as ten hours of usage for a week period. The initial allotted time and time period are flexible and may be designated by a master user, such as a parent.
Processing system 506 also begins decrementing time from the user's time account according to a desired algorithm (step 608) as described further below. Processing system 506 may decrement time from the user's time account according to the algorithm in an active manner meaning that the time account is actually debited in real time. Processing system 506 may alternatively determine an amount of time to decrement according to the algorithm, and then decrement the time from the time account at a later time, such as after the electrical device has been shut off. Processing system 506 may wait for a time period before decrementing time from the time account to give the user time to turn on the electrical device. Processing system 506 may alternatively monitor when the user turns the electrical device on through the current sensing system 502 to determine when to begin decrementing time from the time account. Processing system 506 also indicates to the user that a session has been established, such as by illuminating an LED 110, playing a sound or sounds, displaying a message on display 106, etc.
When the electrical device is turned on by the user and is being operated, processing system 506 monitors the usage status of the electrical device through current sensing system 502 (step 610). For instance, current sensing system 502 may monitor the on/off status of the electrical device by monitoring the power being supplied to the electrical device. Current sensing system 502 may monitor the status of the electrical device by monitoring the content being supplied to the electrical device. Processing system 506 also monitors the time account of the user (step 612), which includes determining if the user has time left in their time account and possibly decrementing time from the time account as the electrical device is being used.
If processing system 506 determines that usage of the electrical device has ended, such as the electrical device being turned off, then the session has ended and processing system 506 decrements time from the user's time account according to the desired algorithm (step 614) after the electrical device is shut off. By decrementing time from the time account according to the algorithm, time decrementing is preformed in a different manner than present control units. Time is decremented, according to the algorithm, based on actual usage time and additional time. The additional time is time that is decremented even after the electrical device is shut off. There are multiple purposes for decrementing additional time from the time account, such as protecting the electrical device from being frequently turned on and off, defining the minimum time blocks for which a user may operate an electrical device, etc.
Processing system 506 may also communicate with cutoff system 504 to instruct cutoff system 504 to interrupt power or content (or both) to the electrical device (step 616). For instance, if cutoff system 504 is a relay, then processing system 506 turns the relay off.
If processing system 506 determines that the time account of the user is depleted, then processing system 506 communicates with cutoff system 504 to instruct cutoff system 504 to interrupt power or content (or both) to the electrical device (step 616). Processing system 506 may also indicate that the time account is depleted by turning off an LED 110, playing a sound or sounds, or displaying a message on display 106, for example. There may be other ways to end a session, such as the user entering an end code in control unit 100 or another user entering his/her access code to initiate a new session for that user.
Processing system 506 may wait for a time period before interrupting power to the electrical device through cutoff system 504 in some embodiments to allow for cool down (also referred to as cool down mode). In some electrical devices, such as projection televisions (LCDs, DLPs, or other televisions with a bulb), the electrical device will still draw a power current after the device has been shut off, such as to run a cooling fan.
In another embodiment, processing system 506 does not interrupt power to the electrical device using cutoff system 504 in normal operation (which may be referred to as “always-on” mode). Many electrical devices have programmable elements or settings, such as a clock, a calendar, program settings, etc. The electrical devices require a small current draw in order to maintain the programmable elements or settings. Interrupting power to the electrical devices may cause the programmable elements or settings to be erased, which can be annoying to the user of the electrical device. According to this embodiment of the invention, alarms are used instead of or in addition to interrupting power so as to avoid erasing programmable elements or settings in the electrical device.
In method 800, processing system 506 does not cut power to the electrical device as in the above embodiments after the electrical device has been shut off or after the time account is depleted. Alternatively, if processing system 506 determines that the time in the time account of the user is depleted, then processing system 506 triggers alarm 510 (step 816). Alarm 510 may be an audible alarm, a visual alarm, or a combination of both. Alarm 510 indicates that a user is no longer allowed to use the electrical device (i.e., time account is depleted, present time is a blocked time, etc). The sound or format of the alarm may be different for different users, may be different for different usage violations, and/or may be configurable by the master user.
Processing system 506 also sets a timer when starting the alarm 510. If processing system 506 determines that alarm 510 has been on for a time period (step 818), then processing system 506 may communicate with cutoff system 504 to interrupt power or content to the electrical device (step 820). Power or content interruption is hopefully a last resort as the alarm 510 is intended to invoke a reaction from the user or the master user to shut off the electrical device.
Processing system 506 may also trigger the alarm for other events to indicate a usage violation. For instance, if the user logs in during a blocked time or is using the electrical device during a blocked time, processing system 506 may trigger alarm 810 as in step 816. Once again, if the alarm 510 is on for a threshold time period, then processing system 506 may instruct cutoff system 504 to interrupt power or content to the electrical device.
In
One algorithm defines that time is decremented from the time account of the user in a defined time block. The defined time block may be about a thirty second block, a one minute block, a two minute block, a five minute block, a thirty minute block, etc. The exact time of the time block is not crucial, as a two minute time block may actually be two minutes and two seconds or some other time. According to this algorithm, processing system 506 decrements time from the time account in the defined time block while the electrical device is being used, and decrements time from the time account after the electrical device is turned off until the next defined time block. By decrementing time after the electrical device is turned off (e.g., usage has ended) according to the defined time blocks, the user is deterred from shutting the device off periodically to save usage time. For instance, if the electrical device is a television, a child may turn off the television during commercials to save time on their time account. Turning televisions on and off frequently may damage the television over time, especially for large screen or projection televisions. By continuing the decrementing process after the television is turned off in two minute blocks, five minute blocks, etc, the user will not benefit from turning the television on and off during commercials as the time the television is turned off will still be decremented from the time account of the user according to the defined time block.
As an example, assume that a defined time block of five minutes is used. If the electrical device is used for twenty-seven minutes and shut off, then processing system 506 decrements the usage in five minute blocks until the electrical device is shut off. After the electrical device is shut off, processing system 506 continues decrementing time from the time account of the user until the next five minute block, which is the thirty minute mark. In another example, assume that a defined time block of thirty minutes is used. The assumption in this case may be that a typical television viewer watches television in at least half hour blocks. If the television is shut off after fifteen minutes of viewing, then processing system 506 continues decrementing time from the time account of the user after the television is turned off until the thirty minute mark.
Another algorithm defines that time is decremented by rounding up or down to the closest defined time block. The defined time block may be about a thirty second block, a one minute block, a two minute block, a five minute block, a thirty minute block, etc. According to this algorithm, processing system 506 decrements time from the time account in the defined time block while the electrical device is being used, and decrements time from the time account after the electrical device is turned off by rounding up or down to the closest defined time block. For instance, assume that the defined time block is a five minute block. If the electrical device is shut off after 7 minutes and 25 seconds of use, then processing system 506 decrements 5 minutes of usage from the time account. If the electrical device is shut off after 7 minutes and 40 seconds of use, then processing system 506 keeps decrementing from the time account until the 10 minute mark.
Another algorithm defines that time is decremented from the time account of the user based on actual usage of the electrical device and based additionally on the on/off status of the electrical device over a time period. According to this algorithm, processing system 506 decrements time from the time account of the user as the electrical device is being used (possibly in defined time blocks as described above). Processing system 506 also monitors the on/off status (or the off/on status) of the electrical device over a time period. For instance, if the electrical device is a television, then processing system 506 may monitor the on/off status over a time period, such as one hour, two hours, etc. If the television has been shut off periodically during the time period, then processing system 506 may determine that the user is avoiding commercials during the viewing.
To alleviate the problem of the user turning the television or any other electrical device on and off in this manner, processing system 506 monitors the on and off status of the electrical device over a time period, and estimates the amount of time the electrical device was shut off during the time period. For instance, if an electrical device was shut on and off during time period from 7:00 to 8:00, then processing system 506 may determine that the time period was one hour. Processing system 506 can then estimate how much time the electrical device was shut off during that time period. Processing system 506 may then decrement the time account of the user based on the estimated time the electrical device was shut off during the time period. In the above example, the processing system 506 may decrement an additional 14 minutes from the time account for the time the television was shut off during commercials.
In another alternative of monitoring the on/off status of an electrical device, processing system 506 may identify a threshold number of on/off/on changes in the electrical device, and decrement a defined amount of time (e.g., one minute, two minutes, five minutes, etc) from the time account of the user based on the number of on/off/on changes. For instance, if processing system 506 identifies five on/off/on changes during an hour time period (such as illustrated in
Processing system 506 may also have protection mechanisms if one or more users try to circumvent the control unit 100. For instance, if a user turns the electrical device on and off a certain number of times in a time period, then processing system 506 may alert the master user. If a user enters the wrong password a certain number of times in a time period, then processing system 506 may alert the master user. If a number of users change the user status in control unit 100 a certain number of times in a time period, then processing system 506 may alert the master user.
Flytime
In addition to the algorithms described above, processing system 506 may also add to or decrement from the time account of a user based on input from a master user. A master user comprises any user with the authority to alter the time account of the users as maintained by control unit 100. A master user, such as a parent, may manually add to the time account of the user (child) as a reward for good behavior. If a child has bad behavior, a parent may manually delete time from the time account of the user as a punishment. Responsive to the input from the master user, processing system 506 adds to or decrements from the time account regardless of whether the electrical device is on or off. This type of decrementing may be referred to as flytime, which is a manual change to the time accounts.
In step 1006, processing system 506 queries the user to input the amount of time the user would like to add to or decrement from the time account. For instance, processing system 506 may prompt the user to add time increments, such as ten minutes, fifteen minutes, etc, by pressing the right arrow key in keypad 108 (see also
Sleep Timer
Control unit 100 as shown in
Peer-to-Peer Networking of Control Units
A typical residence has multiple electrical devices where it may be desirable to control usage. To control multiple electrical devices, a control unit such as described in
In the networked environment of
Standby Current Determination
Referring to
The algorithm shown in
Although specific embodiments were described herein, the scope of the invention is not limited to those specific embodiments. The scope of the invention is defined by the following claims and any equivalents thereof.
This non-provisional application claims priority to U.S. provisional application 60/803,319, filed on May 26, 2006 and to U.S. provisional application 60/718,848, filed on Sep. 20, 2005, which are both incorporated herein by reference as if fully provided herein.
Number | Date | Country | |
---|---|---|---|
60803319 | May 2006 | US | |
60718848 | Sep 2005 | US |