The present invention is generally directed to a fluid flow control valve assembly, and more particularly to a sprinkler system control valve assembly having a test, drain and adjustable pressure relief valve.
In order to comply with certification and licensure requirements, automatic fire sprinkler systems are required to be periodically inspected and tested in accordance with the standards set by the National Fire Protection Association (“NFPA”). Under such standards, a pressure test is periodically performed on a sprinkler system to ensure that the system does not leak.
Generally, the pressure test requires pressurizing the system downstream from the control valve, i.e., between the control valve and the sprinklers, to a testing pressure greater than the normal operating pressure limit, e.g., a 200 psi testing pressure. The system must maintain the testing pressure level for two hours in order to pass.
To perform the test, a pump is connected with the control valve assembly and operated to increase the pressure within the system to the testing pressure. One drawback of conventional sprinkler systems is that the pressure relief valve of the sprinkler system, designed to vent when the pressure within the system exceeds normal operating pressure, opens before reaching the testing pressure, thereby preventing the system from reaching the testing pressure. Therefore, prior to initiating the pressure test, the water within the system must be drained and the pressure relief valve must be removed and replaced with a plug. Thereafter, upon completion of the test, the water within the system must be drained once again to re-install the pressure relief valve. Such a process is clearly inefficient, wasting both time and resources.
Therefore, it would be advantageous to manufacture a control valve assembly having an adjustable pressure relief valve, capable of being adjusted to remain closed during the pressure test, and, thereafter, re-adjusted back to the normal setting thereof.
Briefly stated, one aspect of the present invention is directed to a test, drain and adjustable pressure relief module for a sprinkler system. The module comprises a single body having three independent and fluidly connectable flow ports. A first port of the three flow ports is fluidly connectable at an inlet side thereof to the sprinkler system, the inlet side of the first port being an inlet of the module. A second port of the three flow ports has an adjustable pressure relief valve removably mounted to an outlet of the second port, the adjustable pressure relief valve being biased into a closed position and a threshold pressure required to open the valve and discharge fluid being selectively adjustable. A third port of the three flow ports has an open outlet end configured to removably connect with a drainage pipe, the outlet of the third port being an exit port of the module. The first, second and third ports form a Tee connection and have an internal flow valve therebetween to selectively direct flow between an outlet of the first port and at least one of an inlet of the second port and an inlet of the third port.
The following detailed description of embodiments of the invention will be better understood when read in conjunction with the appended drawings. It should be understood, however, that the invention is not limited to the precise arrangements and instrumentalities shown. In the drawings:
Certain terminology is used in the following description for convenience only and is not limiting. The words “lower,” “bottom,” “upper” and “top” designate directions in the drawings to which reference is made. The words “inwardly,” “outwardly,” “upwardly” and “downwardly” refer to directions toward and away from, respectively, the geometric center of the control valve assembly, and designated parts thereof, in accordance with the present disclosure. Unless specifically set forth herein, the terms “a,” “an” and “the” are not limited to one element, but instead should be read as meaning “at least one.” The terminology includes the words noted above, derivatives thereof and words of similar import.
It should also be understood that the terms “about,” “approximately,” “generally,” “substantially” and like terms, used herein when referring to a dimension or characteristic of a component of the invention, indicate that the described dimension/characteristic is not a strict boundary or parameter and does not exclude minor variations therefrom that are functionally similar. At a minimum, such references that include a numerical parameter would include variations that, using mathematical and industrial principles accepted in the art (e.g., rounding, measurement or other systematic errors, manufacturing tolerances, etc.), would not vary the least significant digit.
Referring to the drawings in detail, wherein like numerals indicate like elements throughout, there is shown in
In the illustrated configuration, the CVA 10 is comprised of two main components: an upstream control assembly 12 in series with a downstream check valve assembly or spool pipe 14, connected together by a mechanical coupling 16 in a manner well understood by those of ordinary skill in the art. The control assembly 12 defines a main inlet of the CVA 10 at a base end thereof (according to the orientation of the CVA 10 depicted in
The control assembly 12 controls manual shut-off of the CVA 10 for maintenance purposes, or to turn off sprinklers once a fire event is extinguished. As should be understood by those of ordinary skill in the art, aside from closing the CVA 10 for maintenance purposes the CVA 10 should generally be fully open at all times in order to ensure proper water flow to the sprinklers in the event of an emergency.
In the illustrated embodiment, the control assembly 12 includes an internal control valve (not shown), such as, for example, without limitation, a butterfly valve. The term “butterfly valve” as used herein, is sufficiently broad to cover any valve having a generally disk-shaped closure that is pivotable about an axis along a cross-section of a pipe, i.e., perpendicular to the direction of fluid flow, to regulate fluid flow.
A valve actuation assembly 22 includes an external hand wheel 24, operatively connected with the internal control valve, via a control arm 25, in a conventional manner. The control valve is movable, e.g., rotatable, between a closed position, substantially preventing fluid flow through the control assembly 12, and an open position, permitting fluid flow through the control assembly 12. Rotation of the hand wheel 24 moves the internal control valve between the open and closed positions thereof in a manner well understood by those of ordinary skill in the art, corresponding to open and closed configurations of the control CVA 10, respectively.
Turning to the check valve assembly 14, the assembly 14 defines a generally tubular, valve body 34. The valve body 34 fluidly connects or houses three main components of the CVA 10 as will be described in further detail below: a flow detection switch 28, an internal check valve (not shown), and a test, drain and adjustable pressure relief module 32. Where a spool pipe 14 is installed, the spool pipe 14 fluidly connects the flow detection switch 28 and the test, drain and adjustable pressure relief module 32 with the control assembly 12.
In one embodiment, the internal check valve may take the form of a clapper valve (not shown). As should be understood by those of ordinary skill in the art, however, the internal check valve is not limited to a clapper valve, and may take the form of other valves, currently known or that later become known, capable of performing the functions of the internal check valve described herein. As also should be understood, the internal check valve may alternatively take the form of a combination check and control valve (not shown), i.e., the check valve also including manual shut-off capability, or may take the form of a control valve that is solely manually opened and manually closed.
As should be understood by those of ordinary skill in the art, the internal check valve is positioned within the valve body 34 and is movable between open and closed positions according to the water pressure differential across the valve. Because the CVA 10 is fluidly connected to a wet standpipe, the valve body 34 is filled with water and pressurized at all times. Water pressure differential across the check valve maintains the valve in the closed position, i.e., water pressure is greater on the downstream side than the upstream side. When the sprinkler system is activated by a thermal event, e.g., a fire, a decrease in the water pressure on the downstream side of the check valve (resulting from spraying of the sprinklers) causes a pressure differential across the valve, and, in turn, the water upstream of the valve moves the valve to the open position, flowing therethrough and to the sprinklers.
Turning to the flow detection switch 28, the flow detection switch 28 is removably mounted to the check valve assembly 14 upstream of the test, drain and adjustable pressure relief module 32. The flow detection switch 28 detects water flow from the inlet to the outlet of the CVA 10, and outputs a notification, e.g., sounding an alarm. In one configuration, the flow detection switch 28 may take the form a conventional lever-style pressure flow detection switch. That is, and as should be understood by one of those of ordinary skill in the art, the flow detection switch 28 is actuated by a lever arm (not shown) extending from the flow detection switch 28, through a port 36a and into the interior of the valve body 34. Water flow through valve body 34, across the lever arm, such as, without limitation, when the check valve opens, moves, i.e., pivots, the lever arm, activates the switch 28 and sounds an alarm in a manner well understood by those of ordinary skill in the art.
As should be understood by those of ordinary skill in the art, however, the flow detection switch 28 is not limited to a lever-actuated flow detection switch. For example, without limitation, the flow detection switch 28 may take the form of a magnetically-actuated flow detection switch (not shown) triggered by magnetic detection of movement of the check valve or the test, drain and adjustable pressure relief module 32, a pressure-actuated flow detection switch (not shown) triggered by differential pressure across the check valve or the test, drain and adjustable pressure relief module 32, and the like.
Turning to the test, drain and adjustable pressure relief module 32, the test, drain and adjustable pressure relief features are combined into a single unit, fluidly connected with the valve body 34 of the check valve assembly 14 downstream of flow detection switch 28 and the check valve and upstream of the outlet of the CVA 10. Combining the test, drain and adjustable pressure relief systems into a single module 32 eliminates the need for a piping manifold, i.e., a network of interconnected pipes, positioned around the valve assembly for separately mounting the test valve, the drain valve and the adjustable pressure relief valve thereto. Therefore, the footprint of sprinkler system piping is greatly reduced with the elimination of the piping manifold, as well as the associated time, cost and complexity of assembly. As should be understood by those of ordinary skill in the art, however, the test, drain and adjustable pressure relief valves may nonetheless be separately and removably attached to the CVA 10. Yet further, one or more of the test, drain and adjustable pressure relief valves may be separately attached to the piping system network, upstream or downstream of the CVA 10 in a conventional manner.
In the illustrated embodiment, and as shown best in
The first port 42 of the module 32 (labeled “test” in
The load, i.e., force, applied by the loading member 66 on the valve member 64 is adjustable by a pressure adjusting screw 68 (positioned at an opposing end of the loading member 66 from the valve member 64) to adjust the pressure required to open the valve 60, i.e., to disengage the valve member 64 from the valve seat 62. In the illustrated embodiment, the pressure adjusting screw 68 is threadedly engaged with the portion of the valve body 60b housing the loading member 66 and is rotatable in a clockwise or counterclockwise manner to compress or decompress the loading member 66, to increase or decrease the load, respectively. As should be understood by those of ordinary skill in the art, however, the pressure adjusting screw 68 may be engageable with the valve body 60b and the loading member 66 in any manner, currently known or that later becomes known, capable of adjusting the load applied by the loading member 66 as described herein.
A discharge channel 70, forming a Tee connection with the valve inlet 60a and the valve body 60b, branches off of the valve 60 and is fluidly connected via external piping 50 with the third port 46 for pressure relief. The third port 46 (labeled “drain” in
When the lever 48 is oriented in the “test” position (not shown), the internal ball valve 40 is oriented to be partially open or restricted between the first and third ports 42, 46. As shown in
When the lever 48 is oriented in the “drain” position (not shown), the internal ball valve 40 is oriented to be fully open between the first and third ports 42, 46, and fully closed to the second port 44. As shown in
During normal operation of the CVA 10, the lever is oriented in the “off position” (
Therefore, if the water pressure within the CVA 10 exceeds 175 psi during normal operation thereof, the adjustable pressure relief valve 60 opens, i.e., the load applied by the loading member 66 on the valve member 64 is overcome and the valve member 64 is spaced away from the valve seat 62, and water is released from the check valve assembly 14, through the first port 46, through the adjustable pressure relief valve 60 at the second port 44 and out the discharge channel 70, and diverted through the external piping 50 to the third port 46 to be drained. When the pressure drops back below approximately 175 psi, the loading member 66 reengages the valve member 64 with the valve seat 62, closing the valve 60 and stopping the release of water. As should be understood, the adjustable pressure relief valve 60 may be adjusted to other normal operating pressure limits according to the requirements of a particular system.
A general purpose of the pressure relief valve is to allow the ability to maintain appropriate water pressure at the top floors of a building without over-pressurizing the bottom floors of the building. Because the loading force applied by the loading member 66 on the valve member 64 is adjustable, an additional advantage of the adjustable relief valve 60 is that the valve 60 need not be removed when conducting a pressure test on the CVA 10 that requires pressurizing the CVA 10 to a pressure greater than the normal operating pressure threshold. Rather, the loading force of the loading member 66 may be selectively increased by the pressure adjusting screw 68.
That is, for example, where the normal operating pressure threshold of the CVA 10 is 175 psi and the testing protocol requires the CVA 10 to remain leak-free under an internal pressure of approximately 200 psi, the adjustable pressure relief valve 60 may be adjusted (prior to conducting the test) to open at a pressure greater than 200 psi, e.g., 250 psi, and, therefore, the valve 60 remains closed during the test. Thereafter, the valve 60 may be re-adjusted back down to the normal operation setting of approximately 175 psi. Further advantageously, the re-adjustment back down to the normal operating pressure limit results in draining water out of the CVA 10 only until the internal pressure drops back down to less than 175 psi, rather than draining out all of the water in the CVA 10 in order to reinstall a pressure relief valve, as with the prior art systems.
To conduct a pressure test, a pump (not shown) is generally connected with the CVA 10 to pressurize the system to the testing pressure. Therefore, the check valve assembly 14 may include an additional port 72 having a one way valve (not shown), e.g., a pressure operated check valve, a ball valve or the like, proximate an external end of the port 72, permitting only the flow of water into the check valve assembly 14 and preventing the exit of water out of the check valve assembly 14. Advantageously, the pump may be connected to the port 72 without requiring draining of the CVA 10 prior to connection. Likewise, after completion of the pressure test, the pump may be disconnected from the port 72 without first requiring draining of the CVA 10. As should be understood by those of ordinary skill in the art, the port may be positioned elsewhere, such as, for example, without limitation, as a tee connection (not shown) branching off of the test, drain and adjustable pressure relief module 32. When the pump is not connected to the port 72, the port 72 may be plugged with a plug 74 as an extra safety measure.
It will be appreciated by those skilled in the art that changes could be made to the embodiments described above without departing from the broad inventive concept thereof. It is understood, therefore, that this invention is not limited to the particular embodiments disclosed, but it is intended to cover modifications within the spirit and scope of the present invention, as set forth in the appended claims.
This application claims priority from U.S. Provisional Patent Application No. 62/443,326, titled “Control Valve Assembly with Test, Drain and Adjustable Pressure Relief Valve”, filed on Jan. 6, 2017, the entire contents of which are incorporated by reference herein.
Number | Date | Country | |
---|---|---|---|
62443326 | Jan 2017 | US |