Information
-
Patent Grant
-
6340018
-
Patent Number
6,340,018
-
Date Filed
Tuesday, August 22, 200024 years ago
-
Date Issued
Tuesday, January 22, 200222 years ago
-
Inventors
-
Original Assignees
-
Examiners
Agents
-
CPC
-
US Classifications
Field of Search
US
- 123 467
- 123 506
- 123 446
- 123 447
- 123 514
- 137 59911
- 137 59901
- 137 59902
- 137 508
- 239 96
- 251 120
- 251 12915
-
International Classifications
-
Abstract
A control valve for a fuel injection valve, having a valve needle, which is displaceable in a control chamber that is provided with an inlet, an outlet, a valve needle seat, and a throttle seat. Various switching states that make different courses of the opening procedure of the nozzle needle, switched by the control valve, of the fuel injection valve possible. To that end, it is provided that a throttle ring is disposed on the valve needle and is provided with throttle bores, which extend parallel to the longitudinal axis of the valve needle, and that the dimensions of the throttle ring and valve needle are selected such that an outlet conduit is formed between the outer wall of the valve needle and the inner wall of the throttle ring.
Description
BACKGROUND OF THE INVENTION
The invention relates to a control valve for a fuel injection valve, having a valve needle that is displaceable in a control chamber that is provided with an inlet, an outlet, and a valve seat.
One such control valve is known from German Patent Disclosure DE 197 27 896 A1, for instance, and serves to bring about the opening of a nozzle needle of the injection valve in order to inject fuel into a cylinder of an internal combustion engine.
The nozzle needle is acted upon continuously with an opening pressure that seeks to lift the nozzle needle away from the associated valve seat. This opening force counteracts a closing force that is generated in a control pressure chamber. As long as the pressure in the control pressure chamber is kept at a high level, the closing force generated there is higher than the opening force acting on the nozzle needle, and thus the nozzle needle remains closed. Conversely, if the pressure in the control pressure chamber and consequently the closing force generated there drop, then the opening force succeeds in lifting the nozzle needle away from the valve seat. Fuel can now be injected.
The pressure in the control pressure chamber is controlled by the control valve, by opening or closing an outlet. If the medium, typically fuel, delivered to the control pressure chamber is dammed up by closure of the outlet, then a high pressure is generated in the control pressure chamber and keeps the nozzle needle in a closed state. If conversely the control valve opens the outlet, the pressure in the control pressure chamber drops, so that the nozzle needle can open.
OBJECT AND SUMMARY OF THE INVENTION
The control valve according to the invention has an advantage that at little expense, two different open states of the control valve can be attained, namely a partly open state, in which the fluid can escape from the control pressure chamber through the throttle bores, and a fully open state, in which both the throttle bores and the outlet conduit are open. The switchover between these two open states is effected solely by controlling the stroke of the valve needle. In this way, different types of injection can be attained.
In a preferred embodiment of the invention, the valve needle is provided with a needle head, which is larger than the inside diameter of the throttle ring, and the throttle ring is disposed between the needle head and the valve seat. Is this version, the valve needle serves not only for switching but also simultaneously as a guide for the throttle ring. The throttle ring is retained firmly in the axial direction between the needle head and the valve seat.
It is preferably also provided that a spring that urges the throttle ring away from the valve seat toward the needle head is disposed in the control chamber, and that a stop for the throttle ring is provided in the control chamber and limits the stroke of the throttle ring away from the valve seat. By means of the spring, the throttle ring can be displaced in an especially simple way in the interior of the control chamber, without requiring a separate actuating element controlled from outside. Also with this version, a partly open state of the control valve can be attained that is maximally independent of positional tolerances of the valve needle. Specifically, a tolerance range can be established within which the throttle ring is already lifted from the valve seat but has not yet struck the stop. Within the entire tolerance range, an outflow cross section through the throttle bores is obtained that is virtually independent of the position of the valve needle in this partly switched state.
The invention will be better understood and further objects and advantages thereof will become more apparent from the ensuing detailed description of a preferred embodiment taken in conjunction with the drawing.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1
is a schematic view of a fuel injection valve;
FIG. 2
, in an enlarged view which shows a control valve according to the prior art, which can be used in the fuel injection valve of
FIG. 1
; and
FIG. 3
is a cross-sectional view of a control valve of the invention.
DESCRIPTION OF THE PREFERRED EMBODIMENT
In
FIG. 1
, a conventional fuel injection valve with a control valve (see
FIG. 2
) is shown. The fuel injection valve has a valve body
10
, in which a nozzle needle
12
is mounted displaceably. The nozzle needle
12
controls the injection of fuel into a cylinder of an internal combustion engine (not shown). The delivered fuel exerts an opening force on the nozzle needle
12
that seeks to displace both the nozzle needle and an actuating part
14
, on which the nozzle needle
12
is braced, toward a control pressure chamber
16
.
Fuel is also delivered to the control pressure chamber
16
, and because of the pressure prevailing in the control pressure chamber
16
, this fuel exerts a closing force on the actuating part
14
. The fuel is furnished via an inlet
18
, and an outlet
20
extends away from the control pressure chamber
16
and leads to a control chamber
22
of a control valve
24
. For the control valve
24
, the outlet
20
acts as an inlet, and an outlet
26
is provided through which the fuel can flow out of the control pressure chamber
16
and the control chamber
22
.
In the control chamber
22
, the control valve
24
has a valve needle
28
, which cooperates with a valve seat
30
. When the valve needle
28
is resting on the valve seat
30
, the control valve
24
is closed, so that the fuel delivered to the control pressure chamber
16
via the inlet
18
is dammed up in the control pressure chamber. The high pressure generated in this way exerts a closing force on the actuating part
14
that is greater than the opening force acting on the nozzle needle
12
. The fuel injection valve is consequently closed. Conversely, if the valve needle
28
is lifted from the valve seat
30
, the fuel can flow out of the control pressure chamber
16
via the control chamber
22
and the outlet
26
, so that the pressure in the control pressure chamber drops. The then-reduced closing force enables the opening of the nozzle needle, so that fuel is injected.
The control valve of the invention will now be described, in conjunction with FIG.
3
. The valve needle
28
is provided with a needle head
32
. A throttle ring
34
is disposed displaceably on the valve needle
28
and is provided with a plurality of throttle bores
36
. These throttle bores extend parallel to a longitudinal axis of the valve needle
28
and are disposed on a radius such that the bores can be closed by contact with a throttle seat
30
′.
The throttle seat
30
′ is embodied on a cylindrical protrusion
37
, around which a compression spring
38
is disposed. The compression spring
38
urges the throttle ring
34
away from the throttle seat
30
′, toward the needle head
32
.
The control chamber
22
is provided with a shoulder
40
, which, as a stop, is opposite an end of the throttle ring
34
, on a side of the throttle ring remote from the compression spring
38
, and limits the maximum stroke of the throttle ring.
The outer diameter of the valve needle
28
and the inner diameter of the throttle ring
34
are adapted to one another in such a way that between the valve needle
28
and the throttle ring
34
, an outlet conduit
42
is formed through which the fuel can flow out of the control chamber
22
to the outlet
26
. A bottom surface of the throttle ring between the bores
36
and the inner diameter of the throttle ring forms a valve seat
30
upon which the needle head
32
seats.
The control valve described has three different switching states. In a first state, the valve needle
28
is in its upper position, in which the valve needle head
32
presses the throttle ring
34
against the throttle seat
30
′, counter to the action of the spring
38
. In this state, the control valve is closed, since the outlet conduit
42
is closed by contact of the needle head
32
with the throttle ring
34
and the throttle bores
40
are closed by contact with the throttle seat
30
′.
The control valve has a partly open switching state, in which the valve needle
28
, beginning at the closed state, is displaced by a stroke in the direction of the control pressure chamber
16
that is shorter than Δh. In this state, the throttle ring
34
continues to rest on the needle head
32
by the action of the spring
38
, but is at a distance from the throttle seat
30
′. Thus the fuel can escape from the control chamber
22
through the throttle bores
36
to the outlet
26
.
Since only a comparatively small outlet cross section is available by way of the outlet bores
36
, the pressure in the control pressure chamber
16
drops correspondingly slowly, and the nozzle needle
12
also begins to move slowly. This accordingly produces a slow increase in the nozzle needle stroke.
A third switching state is attained when the valve needle
28
executes a stroke in the direction of the control pressure chamber
16
that is greater than Δh. This long stroke cannot be executed by the throttle ring
34
, since before that the throttle ring is resting on the stop
40
. The outlet conduit
42
is thus opened. This outlet cross section is added to the outlet cross section furnished by the throttle bores
36
, so that now a large outlet cross section is available, which assures a rapid pressure relief in the control pressure chamber
16
.
The control valve described can be switched in such a way that the valve needle
28
executes a stroke greater than Δh for a brief period of time. The large outlet cross section that is then available assures a rapid relief of the control pressure chamber
16
, so that the nozzle needle quickly lifts from the nozzle needle valve seat. In order to keep the nozzle needle suspended afterward, the outflow from the control pressure chamber
16
must be reduced, while the inflow via the inlet
18
is constant. To that end, the stroke of the valve needle
28
is adjusted to a value less than Δh, so that now only the outlet cross section determined by the throttle bores
36
is available. In this way, a boot injection can be attained.
The foregoing relates to a preferred exemplary embodiment of the invention, it being understood that other variants and embodiments thereof are possible within the spirit and scope of the invention, the latter being defined by the appended claims.
Claims
- 1. A control valve for a fuel injection valve, comprising a valve needle (28), which is displaceable in a control chamber (22) that is provided with an inlet (20), an outlet (26), a valve needle seat (30), and a throttle seat (30′), a throttle ring (34) is disposed on the valve needle (28) and the throttle ring is provided with throttle bores (36), the throttle bores extend parallel to a longitudinal axis of the valve needle (28), and dimensions of the throttle ring (34) and valve needle (28) are selected such that an outlet conduit (42) is formed between an outer wall of the valve needle and an inner wall of the throttle ring.
- 2. The control valve according to claim 1, in which the valve needle (28) is provided with a needle head (32), which is larger than an inside diameter of the throttle ring (34), and that the throttle ring (34) is disposed between the needle head (32) and the throttle seat (30′).
- 3. The control valve according to claim 1, in which a spring (38) urges the throttle ring (34) away from the throttle seat (30′) toward the needle head (32) disposed in the control chamber (22), and that a stop (40) for the throttle ring (34) is provided in the control chamber (22) and limits a stroke of the throttle ring (34) away from the throttle seat (30′).
Priority Claims (1)
Number |
Date |
Country |
Kind |
199 40 292 |
Aug 1999 |
DE |
|
US Referenced Citations (9)