Information
-
Patent Grant
-
6589020
-
Patent Number
6,589,020
-
Date Filed
Thursday, July 5, 200123 years ago
-
Date Issued
Tuesday, July 8, 200321 years ago
-
Inventors
-
Original Assignees
-
Examiners
- Freay; Charles G.
- Rodriquez; William H.
Agents
-
CPC
-
US Classifications
Field of Search
US
- 417 2222
- 062 2285
- 062 2283
-
International Classifications
-
Abstract
A control valve used for a variable displacement type compressor. The compressor has a crank chamber, a discharge pressure zone, and a supply passage. The supply passage connects the crank chamber to the discharge pressure zone. The control valve is located in the supply passage. The control valve has a valve body. The valve body adjusts the size of the opening of the supply passage in accordance with the discharge pressure. The valve body is exposed to the pressure of the supply passage. The valve body moves in accordance with the discharge pressure such that the displacement is varied to counter changes of the discharge pressure. The direction in which the valve body moves in response to an increase of the discharge is the same as the direction in which the valve body moves when the pressure of the supply passage increases.
Description
BACKGROUND OF THE INVENTION
The present invention relates to a control valve for a variable displacement compressor employed, for example, in a vehicle air conditioner.
As shown in
FIG. 9
, a vehicular variable displacement compressor is provided with a displacement controlling mechanism as disclosed, for example, in Japanese Unexamined Patent Publication No. Hei 10-278567 or in Japanese Unexamined Patent Publication No. Hei 11-223179. The displacement control mechanism has a control valve for controlling the compressor displacement to maintain the discharge pressure having, which correlates with the refrigerant flow rate of a refrigerant circuit, at a target level. The valve position of the control valve is adjusted to adjust the internal pressure of the crank chamber (crank pressure). The compressor changes its displacement according to the crank pressure.
In the displacement control mechanism disclosed in Japanese Unexamined Patent Publication No. Hei 10-278567, a pressure sensor electrically detects the discharge pressure to carry out feedback control of a solenoid control valve based on the detected discharge pressure. In the displacement control mechanism shown in
FIG. 9
, the discharge pressure Pd is mechanically detected by the control valve CV, and the position of the valve body
101
depends on the detected discharge pressure Pd.
However, in the displacement control mechanism disclosed in Japanese Unexamined Patent Publication No. Hei 10-278567, a pressure sensor, an expensive part, is used. The pressure sensor must be wired manually, which increases the cost of the air conditioning system.
In the displacement control mechanism in
FIG. 9
, the valve body
101
of the control valve CV is located in a gas passage
102
connecting a discharge chamber to a crank chamber. A force is applied to the valve body
101
to open the gas passage
102
based on the discharge pressure Pd. Further, a force based on the crank pressure Pc within a valve chamber
103
acts upon the valve body
101
to close the gas passage
102
. Therefore, the discharge pressure Pd and the crank pressure Pc are involved in positioning of the valve body
101
. More specifically, the valve body
101
is positioned to maintain a constant pressure difference between the discharge pressure Pd and the crank pressure Pc.
For example, in the case where the crank pressure Pc is increased excessively, the displacement control mechanism increases the compressor displacement to maintain a constant pressure difference between the discharge pressure Pd and the crank pressure Pc. As a result, the actual discharge pressure Pd exceeds the target discharge pressure Pd (set) by a wide margin, which exerts excessive stress upon the compressor and the piping of the refrigerant circuit. Therefore, it is essential to reinforce the structures of the compressor, piping, etc. or to incorporate an open valve for preventing excessive increases of the discharge pressure Pd in the discharge pressure region. This increases the cost of the air conditioning system.
BRIEF SUMMARY OF THE INVENTION
It is an object of the present invention to provide a control valve for a variable displacement compressor which can smoothly control the discharge pressure using no electrical constitution and which does not cause excessive increase of the discharge pressure.
To attain the above object, the present invention provides a control valve used for a variable displacement type compressor. The compressor varies the displacement in accordance with the pressure of a crank chamber. The compressor has a discharge pressure zone, the pressure of which is a discharge pressure, and a control passage, which connects the crank chamber to a zone in which the pressure is different from the pressure of the crank chamber. The control valve is located in the control passage. The control valve comprises a valve housing. A valve body adjusts the size of the opening of the control passage in accordance with the discharge pressure. The valve body is exposed to the pressure of the control passage. The valve body moves in accordance with the discharge pressure such that the displacement is varied to counter changes of the discharge pressure. The pressure in the control passage is applied to the valve body without hindering movement of the valve body due to an increase of the discharge pressure.
Other aspects and advantages of the invention will become apparent from the following description, taken in conjunction with the accompanying drawings, illustrating by way of example the principles of the invention.
BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWING
The invention, together with objects and advantages thereof, may best be understood by reference to the following description of the presently preferred embodiments together with the accompanying drawings in which:
FIG. 1
is a cross-sectional view of the variable displacement swash plate compressor in which a control valve according to a first embodiment of the present invention is included;
FIG. 2
is a cross-sectional view of the control valve incorporated into the compressor shown in
FIG. 1
;
FIG. 3
is a graph of duty ratio vs. target discharge pressure;
FIG. 4
is an enlarged partial view of
FIG. 2
;
FIG. 5
is a cross-sectional view of the control valve according to a second embodiment;
FIG. 6
is a graph of duty ratio vs. target discharge pressure;
FIG. 7
is a cross-sectional view of the control valve according to a third embodiment;
FIG. 8
is a cross-sectional view of the control valve according to a fourth embodiment; and
FIG. 9
is a cross-sectional view of a prior art control valve.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
A first embodiment of a control valve for a variable displacement compressor, which is incorporated in a vehicle air conditioner, will be described with reference to
FIGS. 1
to
4
.
The compressor shown in
FIG. 1
includes a cylinder block
1
, a front housing member
2
connected to the front end of the cylinder block
1
, and a rear housing member
4
connected to the rear end of the cylinder block
1
. A valve plate
3
is located between the rear housing member
4
and the cylinder block
1
.
A crank chamber
5
is defined between the cylinder block
1
and the front housing member
2
. A drive shaft
6
is supported in the crank chamber
5
. A lug plate
11
is fixed to the drive shaft
6
in the crank chamber
5
to rotate integrally with the drive shaft
6
.
The front end of the drive shaft
6
is connected to an external drive source, which is a vehicle engine E in this embodiment, through a power transmission mechanism PT. The power transmission mechanism PT is a clutchless mechanism that includes, for example, a belt and a pulley. Alternatively, the mechanism PT may be a clutch mechanism (for example, an electromagnetic clutch) that selectively transmits power in accordance with the value of an externally supplied current.
A swash plate
12
, which is a drive plate in this embodiment, is accommodated in the crank chamber
5
. The swash plate
12
is supported by the drive shaft
6
. The swash plate
12
can slide along the drive shaft
6
and can incline with respect to the axis of the drive shaft
6
. A hinge mechanism
13
is provided between the lug plate
11
and the swash plate
12
. The swash plate
12
is coupled to the lug plate
11
and the drive shaft
6
through the hinge mechanism
13
. The swash plate
12
rotates synchronously with the lug plate
11
and the drive shaft
6
.
Formed in the cylinder block
1
are cylinder bores
1
a
(only one is shown in
FIG. 1
) at equiangular intervals around the drive shaft
6
. Each cylinder bore la accommodates a single headed piston
20
such that the piston can reciprocate in the bore
1
a
. In each cylinder bore
1
a
is defined a compression chamber, the volume of which varies in accordance with the position of the piston
20
. The front end of each piston
20
is connected to the periphery of the swash plate
12
through a pair of shoes
19
. As a result, the rotation of the swash plate
12
is converted into reciprocation of the pistons
20
, and the strokes of the pistons
20
depend on the inclination angle of the swash plate
12
.
The valve plate
3
and the rear housing member
4
define, between them, a suction chamber
21
and a discharge chamber
22
, which surrounds the suction chamber
21
. The valve plate
3
forms, for each cylinder bore
1
a
, a suction port
23
, a suction valve
24
for opening and closing the suction port
23
, a discharge port
25
, and a discharge valve
26
for opening and closing the discharge port
25
. The suction chamber
21
communicates with the cylinder bores
1
a
through the respective suction ports
23
, and the cylinder bores
1
a
communicate with the discharge chamber
22
through the respective discharge ports
25
.
When the piston
20
moves from its top dead center position to its bottom dead center position, the refrigerant gas in the suction chamber
21
flows into the cylinder bore
1
a
through the corresponding suction port
23
and the corresponding suction valve
24
. When the piston
20
moves from its bottom dead center position toward its top dead center position, the refrigerant gas in the cylinder bore
1
a
is compressed to a predetermined pressure, and the refrigerant gas is then discharged through the corresponding discharge port
25
and the corresponding discharge valve
26
into the discharge chamber
22
, which is also referred to as a discharge pressure zone. The corresponding discharge valve
26
is forced open by the flow of gas.
The inclination angle of the swash plate
12
(the angle between the swash plate
12
and a plane perpendicular to the axis of the drive shaft
6
) is determined on the basis of various moments such as the moment of rotation caused by the centrifugal force upon rotation of the swash plate, the moment of inertia based on the reciprocation of the piston
20
, and a moment due to the gas pressure. The moment due to the gas pressure is based on the relationship between the pressure in the cylinder bores
1
a
and the crank pressure Pc. The moment due to the gas pressure selectively increases or decreases the inclination angle of the swash plate
12
in accordance with the crank pressure Pc.
In this embodiment, the moment due to the gas pressure is changed by controlling the crank pressure Pc with a displacement control valve CV to be described later. The inclination angle of the swash plate
12
is changed to an arbitrary angle between the minimum inclination angle (shown by a solid line in
FIG. 1
) and the maximum inclination angle (shown by a broken line in FIG.
1
).
As shown in
FIG. 1
, a control mechanism for controlling the crank pressure Pc essentially includes of a bleed passage
27
, a supply passage
28
, and a displacement control valve CV, which are defined in the housing. The bleed passage
27
connects the suction chamber
21
to the crank chamber
5
. The supply passage
28
is for connecting the discharge chamber
22
and the crank chamber
5
. The displacement control valve CV is located in the supply passage
28
.
The displacement control valve CV changes the opening degree of the supply passage
28
to control the flow rate of refrigerant gas flowing from the discharge chamber
22
to the crank chamber
5
. The pressure in the crank chamber
5
is changed in accordance with the relation between the flow rate of refrigerant gas flowing from the discharge chamber
22
into the crank chamber
5
and the flow rate of refrigerant gas flowing out from the crank chamber
5
through the bleed passage
27
into the suction chamber
21
. In accordance with changes in the crank pressure Pc, the difference between the crank pressure Pc and the pressure in the cylinder bores
1
a
varies to change the inclination angle of the swash plate
12
. As a result, the stroke of the pistons
20
is changed to control the discharge displacement.
As shown in
FIG. 1
, the refrigerant circuit of the vehicle air conditioner includes the compressor and an external refrigerant circuit
30
. The external refrigerant circuit
30
includes, for example, a condenser
31
, an expansion valve
32
, and an evaporator
33
. The position of the expansion valve
32
is feedback-controlled on the basis of the temperature detected by a temperature sensing tube
34
located near the outlet of the evaporator
33
. The expansion valve
32
supplies a quantity of refrigerant corresponding to the thermal load to the evaporator
33
to control the flow rate.
As shown in
FIG. 2
, the control valve CV is provided with an inlet valve portion and a solenoid
60
. The inlet valve portion controls the opening degree of the supply passage
28
connecting the discharge chamber
22
with the crank chamber
5
. The solenoid
60
serves as an electromagnetic actuator for controlling a valve body
41
located in the control valve CV on the basis of an externally supplied electric current.
A valve housing
45
of the control valve CV has a cap
45
a
, an upper half body
45
b
, and a lower half body
45
c
. Defined in the upper half body
45
b
are a valve chamber
46
and a communication passage
47
.
The valve body
41
is located in the valve chamber
46
to move in the axial direction of the control valve CV. The valve body
41
has a cylindrical main body
41
a
and a spherical blocking face
41
b
. The main body
41
a
has a flange
41
c
formed at the upper end thereof. The blocking face
41
b
of the valve body
41
moves toward and away from a valve seat
53
formed between the valve chamber
46
and the communication passage
47
.
In the holding space
48
, an operating rod
40
is located to be able to move in the axial direction of the control valve CV. The operating rod
40
has a spherical upper end. The upper end of the operating rod
40
is fitted in the communication passage
47
. The upper end can enter the valve chamber
46
as the operating rod
40
moves. The cross-sectional area SB of the communication passage
47
is larger than that of the operating rod
40
and is smaller than the cross-sectional area SC of the main body
41
a
(the cylindrical portion excluding the blocking face
41
b
) of the valve body
41
.
A bellows
54
, or pressure sensing member, is housed in the valve chamber
46
. The bellows
54
is fixed at the upper end to a washer
55
attached to the cap
45
a
and at the lower end to the flange
41
c
of the valve body
41
. Therefore, the valve body
41
moves up and down integrally with the bellows
54
as the bellows
54
expands and contracts. According to this movement, the distance between the valve body
41
and the valve seat
53
, i.e., the opening of the communication passage
47
(supply passage
28
), is adjusted.
Within the bellows
54
, a first spring
57
is located between the washer
55
and the valve body
41
. The first spring
57
urges the valve body
41
downward, or the direction in which the communication passage
47
is closed. A second spring
58
is located between the flange
41
c
of the valve body
41
and the proximity of the valve seat
53
of the upper half body
45
b
, within the valve chamber
46
. The second spring
58
urges the valve body
41
upward, or the direction in which the communication passage
47
is opened.
The cap
45
a
of the valve housing
45
has a port
51
. The port
51
secures communication between the valve chamber
46
and the discharge chamber
22
through the upstream portion of the supply passage
28
serving as a pressure detecting passage. The valve housing
45
has in the upper half body
45
b
thereof a port
52
. The port
52
secures communication among the holding space
48
, the communicating chamber
49
and the crank chamber
5
through the downstream portion of the supply passage
28
. Thus, the port
51
, the valve chamber
46
, the communication passage
47
, the holding space
48
, the communicating chamber
49
and the port
52
constitute a control passage, which is part of the supply passage
28
.
A movable iron core
64
formed integrally with the operating rod
40
is housed in the holding space
48
and is movable in the axial direction. The movable iron core
64
divides the holding space
48
into a communicating chamber
49
and a spring chamber
50
. A very small clearance (not shown) is defined between the external surface of the movable iron core
64
and the internal wall surface of the holding space
48
. The communicating chamber
49
and the spring chamber
50
communicate with each other through this clearance. Therefore, the spring chamber
50
is exposed to the same crank pressure as in the communicating chamber
49
.
The bottom of the spring chamber
50
serves also as the upper end face of a fixed iron core
62
in the solenoid
60
. A follow-up spring
61
is located between the fixed iron core
62
and the movable iron core
64
within the spring chamber
50
. The follow-up spring
61
urges the movable iron core
64
away from the fixed iron core
62
, or toward the valve body
41
. Thus, the upper end face of the operating rod
40
and the blocking face
41
b
of the valve body
41
are abutted against each other under the force of the first spring
57
and the follow-up spring
61
. Here, the operating rod
40
moves up and down integrally with the valve body
41
.
The upper end face of the operating rod
40
and the blocking face
41
b
of the valve body
41
are in contact with each other. In the totally closed state where the valve body
41
is seated on the valve seat
53
, the blocking face
41
b
of the valve body
41
and the valve seat
53
are brought into contact with each other.
A coil
67
is wound around the fixed iron core
62
and the movable iron core
64
. A drive signal is supplied from a drive circuit
71
to the coil
67
based on a command from a controller
70
, and the coil
67
generates a level of electromagnetic force F corresponding to the power supply. Supply current value to the coil
67
is controlled by adjusting the voltage to be applied thereto. In this embodiment, duty control is employed for adjustment of the application voltage. The controller
70
determines the duty ratio Dt that is sent as a command to the drive circuit
71
based on external information from external information detecting means
72
, which is essentially an air conditioner switch, a temperature setting device and a temperature sensor.
The valve travel of the control valve CV in
FIG. 2
is determined by the arrangement of the operating rod
40
including the valve body
41
.
First, as shown in
FIG. 2
, in the absence of current supply to the coil
67
(duty ratio Dt=0%), upward forces of the second spring
58
and the follow-up spring
61
(f
2
+f
3
) act upon the valve body
41
, so that the valve body
41
opens fully the communication passage
47
. Here, the crank pressure Pc assumes the maximum value and the difference between the crank pressure Pc and the internal pressure of the cylinder bore
1
a
is the maximum value. Thus, the inclination angle of the swash plate
12
is minimized to minimize the displacement of the compressor.
When a current of the minimum duty ratio Dt is supplied to the coil
67
, the upward force f
3
of the follow-up spring
61
, from which the downward electromagnetic force F is deducted, is opposed to the downward force f
1
of the first spring
57
, from which the upward force f
2
and the upward force based on the discharge pressure Pd are deducted.
As shown in
FIG. 4
, the blocking face
41
b
of the valve body
41
is intersected by an imaginary cylinder (indicated by two vertical broken lines) extended from the wall surface of the communication passage
47
. The imaginary cylinder divides the valve body
41
into an inner portion and an outer portion. The effective pressure receiving surface area corresponding to the inner portion of the blocking face
41
b
is expressed by SB. The effective pressure receiving surface area corresponding to the outer portion of the blocking face
41
b
is expressed by SC−SB. The crank pressure Pc in the communication passage
47
acts upon the inner portion in an upward direction. The discharge pressure Pd in the valve chamber
46
acts upon the outer portion in an upward direction.
As shown in
FIG. 2
, the communicating chamber
49
and the spring chamber
50
are exposed to the same crank pressure Pc through the clearance. The operating rod
40
and the valve body
41
are brought into point contact with each other by their spherical faces. Thus, the effective pressure receiving surface area (receiving the crank pressure Pc of the communicating chamber
49
) of the upper end face of the movable iron core
64
is equal to the effective pressure receiving surface area (receiving the crank pressure Pc) of the inner circumferential wall and the lower end face of the movable iron core
64
defining the spring chamber
50
. Therefore, the upward force and the downward force based on the crank pressure Pc acting upon the movable iron core
64
cancel each other.
Provided that the upward forces are positive forces, the valve body
41
is positioned with respect to the valve seat
53
such that the relationship among the forces acting upon the bellows
54
and the valve body
41
satisfies the following equation:
Pd·SA
−f
1
+f
2
+
Pd
(
SC−SB
)+
Pc·SB=F
−f
3
,
which can be rearranged as follows:
(
SA+SC−SB
)
Pd+Pc·SB=F
+f
1
−f
2
−f
3
(1).
For example, when the speed of the engine E is reduced to reduce the flow rate of the refrigerant in the refrigerant circuit, the discharge pressure Pd, which correlates with the refrigerant flow rate, is reduced, and the upward force based on the discharge pressure Pd becomes smaller than the electromagnetic force F and the force f
1
of the first spring
57
. Thus, the valve body
41
moves downward to reduce the opening degree of the communication passage
47
. As a result, the crank pressure Pc is reduced, and the pressure difference between the crank pressure Pc and the internal pressure of the cylinder bore
1
a
is reduced. Therefore, the inclination angle of the swash plate
12
is increased, which increases the displacement of the compressor. Now that the displacement of the compressor is increased, the flow rate of the refrigerant in the refrigerant circuit and the discharge pressure Pd are increased.
When the speed of the engine E and the flow rate of the refrigerant in the refrigerant circuit increase, the discharge pressure Pd is increased, which increases the upward force based on the discharge pressure Pd. Thus, the valve body
41
moves upward, which increases the opening degree of the communication passage
47
. As a result, the crank pressure Pc is increased, and the pressure difference between the crank pressure Pc and the internal pressure of the cylinder bore
1
a
increases. Therefore, the inclination angle of the swash plate
12
is reduced, which reduces the displacement of the compressor. Now that the displacement of the compressor is reduced, the flow rate of the refrigerant in the refrigerant circuit and the discharge pressure Pd are reduced.
Further, for example, in the case where the duty ratio Dt supplied to the coil
67
is increased to increase the force F, the valve body
41
moves downward to reduce the opening degree of the communication passage
47
and to increase the compressor displacement. As a result, the flow rate of the refrigerant in the refrigerant circuit is increased, which increases the discharge pressure Pd.
In the case where the duty ratio Dt supplied to the coil
67
is reduced to reduce the force F, the valve
41
moves upward to increase the opening degree of the communication passage
47
and to reduce the compressor displacement. As a result, the flow rate of the refrigerant in the refrigerant circuit and the discharge pressure Pd are reduced.
As described above, the valve body
41
is positioned such that the control valve CV maintains the target discharge pressure Pd (set) determined by the force F when the crank pressure Pc is constant. As shown in
FIG. 3
, the target discharge pressure Pd (set) is set at a high value or at a low value by increasing or reducing the force F (duty ratio Dt).
This embodiment has the following effects.
The discharge pressure Pd is mechanically detected in the control valve CV, and the detected discharge pressure Pd is reflected directly in the position of the valve body
41
. This eliminates the need for an expensive pressure sensor or the like for electrically detecting the discharge pressure Pd. Further, non-electrical detection of the discharge pressure Pd reduces enumeration parameters of the duty ratio Dt, which reduces the operational load of the controller
70
.
As shown in Equation (1), positioning the valve body
41
involves the crank pressure Pc and the discharge pressure Pd. However, the crank pressure Pc acts upon the valve body
41
in the same direction as the discharge pressure Pd (because SA+SC−SB>0 in Equation (1)). Therefore, for example, in the case where the crank pressure Pc is increased when the target discharge pressure Pd (set) is set at the maximum value, the valve body
41
moves in the direction in which the displacement is reduced (valve opening direction), which reduces the discharge pressure Pd. This prevents excessive increases in the discharge pressure Pd.
The target discharge pressure Pd (set) can be changed by changing the duty ratio Dt for controlling the control valve CV (coil
67
). Thus, the control valve CV can perform more delicate control compared with a control valve having no electromagnetic device (solenoid
60
) and having only a single target discharge pressure Pd (set).
The valve chamber
46
serves also as a part of the supply passage
28
and the pressure sensing chamber. The upstream portion of the supply passage
28
connecting the valve chamber
46
and the discharge chamber
22
serves as a pressure detecting passage, so that no extra pressure sensing chamber or pressure detecting passage is necessary, which reduces the size of the control valve CV and simplifies the structure thereof. In addition, as described the valve body
41
can be fixed directly to the bellows
54
, to facilitate the connection between them.
The solenoid
60
is made such that the duty ratio Dt controlling the control valve CV (coil
67
) and the target discharge pressure Pd (set) have a positive correlation. Therefore, for example, if the solenoid
60
should get out of order (force F=0), the displacement of the compressor is fixed at the minimum value to reduce the load of the engine E.
Next, a control valve according to a second embodiment will be described referring to
FIGS. 5 and 6
. In this embodiment, only the differences from the embodiment shown in
FIG. 1
will be described. The same or like elements are designated with the same reference numbers, and detailed descriptions of them will be omitted.
As shown in
FIGS. 5 and 6
, this embodiment is different from the embodiment of
FIG. 2
in that the solenoid
60
is made such that the duty ratio Dt and the target discharge pressure Pd (set) have a negative correlation.
The upper end face of the fixed iron core
62
in the solenoid
60
serves as the bottom of the communicating chamber
49
. A guide hole
81
is defined through the fixed iron core
62
, and the operating rod
40
is fitted in the hole
81
. A solenoid chamber
83
is defined between the fixed iron core
62
and a holding cylinder
82
having a closed bottom. The movable iron core
64
is housed in the solenoid chamber
83
and is movable in the axial direction. The lower end portion of the operating rod
40
protrudes into the solenoid chamber
83
and is fitted in a through hole defined at the center of the movable iron core
64
. The rod
40
is fixed to the iron core
64
by crimping. Thus, the movable iron core
64
and the operating rod
40
always move integrally.
The crank pressure Pc in the communicating chamber
49
is applied to the solenoid chamber
83
through the clearance between the operating rod
40
and the wall of the guide hole
81
. The pressure in the upper space and that in the lower space of the solenoid chamber
83
are equalized through a passage
64
a
defined through the movable iron core
64
.
As described above, in this embodiment, the vertical positional relationship between the fixed iron core
62
and the movable iron core
64
in the embodiment shown in
FIG. 2
is reversed. If the duty ratio Dt controlling the control valve CV (coil
67
) is increased to increase the force F, the solenoid
60
moves the valve body
41
upward. That is, the force for opening the communication passage
47
is increased to reduce the target discharge pressure Pd (set). In other words, the duty ratio Dt controlling the control valve CV and the target discharge pressure Pd (set) have a negative correlation. Therefore, for example, even if the solenoid
60
should get out of order (force F=0), the valve body
41
is immobilized in the state where it closes the communication passage
47
, which maximizes the compressor displacement. This satisfies the demand for cooling by passengers.
Next, a control valve according to a third embodiment will be described referring to FIG.
7
. In this embodiment, only the differences from the embodiment shown in
FIG. 5
will be described. The same or like elements are designated with the same reference numbers, and detailed descriptions of them will be omitted.
As shown in
FIG. 7
, this embodiment is different from that shown in
FIG. 5
in that the crank pressure Pc does not affect the positioning of the valve body
41
.
The inside diameter of the communication passage
47
is substantially the same as the outside diameter of the operating rod
40
. The operating rod
40
has at the distal end face
40
a
a rod-shaped connecting section
85
. The distal end face (convex spherical face) of the connecting section
85
is abutted against the blocking face
41
b
of the valve body
41
. Therefore, a downward force based on the crank pressure Pc in the communication passage
47
and the communicating chamber
49
acts upon the distal end face of the connecting section
85
and the distal end face
40
a
of the operating rod
40
.
There is no clearance for permitting passage of the gas to and from the communicating chamber
49
and the solenoid chamber
83
between the outer surface of the operating rod
40
and the wall of the guide hole
81
. The solenoid chamber
83
and the valve chamber
46
are connected to each other through a passage
86
formed in the valve housing
45
. Therefore, the solenoid chamber
83
is subjected to the same discharge pressure Pd as the valve chamber
46
. An upward force based on the discharge pressure Pd acts upon the movable iron core
64
.
Provided that the flange
41
c
of the valve body
41
has a cross-sectional area SE, an upward force based on the discharge pressure Pd in the valve chamber
46
acts upon the lower face of the flange
41
c
and on the effective pressure receiving surface area (SE−SB) of the outer portion of the blocking face
41
b.
Therefore, provided that the upward forces are positive forces, the valve body
41
is positioned with respect to the valve seat
53
such that the relationship among the forces acting upon the bellows
54
and the valve body
41
satisfies the following equation:
Pd·SA
−f
1
+f
2
+
Pd
(
SE−SB
)+
Pc·SB=Pc·SB−F−Pd·SB,
which can be rearranged as follows:
Pd
(
SA+SE
(−f
1
+f
2
=−
F
(2)
In other words, the valve body
41
position of the depends on the fluctuation of the discharge pressure Pd in the control valve CV so that the valve CV maintains the target discharge pressure Pd (set) determined by the force F. Further, like in
FIG. 6
, the target discharge pressure Pd (set) is set at a low value and at a high value by increasing and reducing the force F (duty ratio Dt), respectively.
As shown in Equation (2), only the discharge pressure Pd affects the position of the valve body
41
in the control valve CV of this embodiment, and the crank pressure Pc is uninvolved. Therefore, in addition to the same effects as in the embodiments of
FIGS. 2 and 5
, the control valve performs high-accuracy control of the compressor displacement using, as an index, only the discharge pressure Pd. This improves the air-conditioning and the fuel consumption of the engine E.
The present invention may be modified as follows.
As shown in
FIG. 8
, the upstream portion (discharge chamber
22
side) and the downstream portion (crank chamber
5
side) of the supply passage
28
are connected to the port
52
and to the port
51
, respectively. Thus, the relationship of the control passages
46
,
47
and
49
in the embodiment of
FIG. 2
may be reversed. In this case, the valve body
41
directly receiving the discharge pressure Pd in the communication passage
47
serves also as a pressure sensing member that can shift depending on the fluctuation of the discharge pressure Pd. That is, the valve body
41
is arranged in the same manner as in the prior art shown in FIG.
9
. However, while the force of the crank pressure Pc acts upon the valve body
101
in
FIG. 9
in a direction that is opposite to the force of the discharge pressure Pd, the bellows
54
in
FIG. 8
allows the crank pressure Pc to act in the same direction as the discharge pressure Pd, in this embodiment.
The control valve CV may be a so-called bleed control valve used for adjusting the crank pressure Pc by adjusting the opening degree of the bleed passage
27
and not of the supply passage
28
. In this case, the crank pressure Pc and the suction pressure Ps act, in addition to the discharge pressure Pd, upon the valve body
41
, which located in disposed the bleed passage
27
.
In each of the above embodiments, the bellows
54
, which is used as the pressure sensing member, may be replaced with a diaphragm.
The present invention may be embodied in a control valve of a wobble type variable displacement compressor.
It should be apparent to those skilled in the art that the present invention may be embodied in many other specific forms without departing from the spirit or scope of the invention. Particularly, it should be understood that the invention may be embodied in the following forms.
Therefore, the present examples and embodiments are to be considered as illustrative and not restrictive and the invention is not to be limited to the details given herein, but may be modified within the scope and equivalence of the appended claims.
Claims
- 1. A control valve used for a variable displacement type compressor, which varies the displacement in accordance with the pressure of a crank chamber, wherein the compressor has a discharge pressure zone, the pressure of which is a discharge pressure, a suction pressure zone, the pressure of which is a suction pressure, and a control passage, which connects the crank chamber to the discharge pressure zone or the suction pressure zone, wherein the control valve is located in the control passage, the control valve comprising:a valve housing; and a valve body located in the valve housing and for adjusting the size of the opening of the control passage in accordance with the discharge pressure, the suction pressure or the pressure of the crank chamber, wherein the valve body moves in accordance with the discharge pressure such that the displacement is varied to counter changes of the discharge pressure, wherein the valve body is exposed to the pressure of the control passage, and the direction in which the valve body moves in response to an increase of the discharge is the same as the direction in which the valve body moves when the pressure of the control passage increases.
- 2. The control valve according to claim 1 further comprising:a pressure sensitive chamber defined in the valve housing, wherein the pressure sensitive chamber is connected to the discharge pressure zone; and a pressure sensitive member accommodated in the pressure sensitive chamber, wherein the pressure sensitive member moves the valve body in accordance with the pressure of the pressure sensitive chamber.
- 3. The control valve according to claim 1, wherein the valve body moves in accordance with only the discharge pressure.
- 4. The control valve according to claim 2, wherein the valve body is located in the pressure sensitive chamber.
- 5. The control valve according to claim 4, wherein the control passage is a supply passage, which connects the crank chamber to the discharge pressure zone, wherein the pressure sensitive chamber is located in the supply passage, wherein an upstream part of the supply passage, which connects the pressure sensitive chamber to the discharge pressure zone, serves as a pressure detecting passage that applies the discharge pressure to the pressure sensitive chamber.
- 6. The control valve according to claim 2 further comprising an external controller for determining a target value of the discharge pressure, wherein the pressure sensitive member moves the valve body such that the discharge pressure seeks the target value.
- 7. The control valve according to claim 6, wherein the external controller is an electromagnetic actuator, which urges the valve body with a force in accordance with the magnitude of a supplied electric current, wherein the force of the electromagnetic actuator corresponds to the target value of the discharge pressure.
- 8. The control valve according to claim 7, wherein as the force of the electromagnetic actuator increases, the target value of the discharge pressure increases.
- 9. The control valve according to claim 7, wherein as the force of electromagnetic actuator increases, the target value of the discharge pressure decreases.
- 10. A control valve used for a variable displacement type compressor, which varies the displacement in accordance with the pressure of a crank chamber, wherein the compressor has a discharge pressure zone, the pressure of which is a discharge pressure, a suction pressure zone, the pressure of which is a suction pressure, and a control passage, which connects the crank chamber to the discharge pressure zone or the suction pressure zone, wherein the control valve is located in the control passage, the control valve comprising:a valve housing; a valve body located for adjusting the size of the opening of the control passage, wherein the valve body is exposed to the pressure of the control passage; a pressure sensitive chamber defined in the valve housing, wherein the pressure sensitive chamber is connected to the discharge pressure zone, the suction pressure or the pressure of the crank chamber; and a pressure sensitive member accommodated in the pressure sensitive chamber, wherein the pressure sensitive member moves the valve body in accordance with the pressure of the pressure sensitive chamber such that the displacement is varied to counter changes of the discharge pressure, and the direction in which the valve body moves in response to an increase of the discharge is the same as the direction in which the valve body moves when the pressure of the control passage increases.
Priority Claims (1)
Number |
Date |
Country |
Kind |
2000-205152 |
Jul 2000 |
JP |
|
US Referenced Citations (7)
Number |
Name |
Date |
Kind |
5584670 |
Kawaguchi et al. |
Dec 1996 |
A |
5636973 |
Sonobe et al. |
Jun 1997 |
A |
5713725 |
Kawaguchi et al. |
Feb 1998 |
A |
5807076 |
Kawaguchi et al. |
Sep 1998 |
A |
5842834 |
Kawaguchi et al. |
Dec 1998 |
A |
5865604 |
Kawaguchi et al. |
Feb 1999 |
A |
5890878 |
Murase et al. |
Apr 1999 |
A |
Foreign Referenced Citations (3)
Number |
Date |
Country |
0 952 344 |
Oct 1999 |
EP |
10-278567 |
Oct 1998 |
JP |
11-223179 |
Aug 1999 |
JP |