The present invention relates to making devices by vaporizing material and more particularly to controllably feeding material to a heated surface.
An organic light emitting diode (OLED) device includes a substrate, an anode, a hole-transporting layer made of an organic compound, an organic luminescent layer with suitable dopants, an organic electron-transporting layer, and a cathode. OLED devices are attractive because of their low driving voltage, high luminance, wide-angle viewing and capability for full-color flat emission displays. Tang et al. described this multilayer OLED device in their U.S. Pat. Nos. 4,769,292 and 4,885,211.
Physical vapor deposition in a vacuum environment is the principal means of depositing thin organic material films as used in small molecule OLED devices. Such methods are well known, for example Barr in U.S. Pat. No. 2,447,789 and Tanabe et al. in EP 0 982 411. The organic materials used in the manufacture of OLED devices are often subject to degradation when maintained at or near the desired rate dependant vaporization temperature for extended periods of time. Exposure of sensitive organic materials to higher temperatures can cause changes in the structure of the molecules and associated changes in material properties.
To overcome the thermal sensitivity of these materials, only small quantities of organic materials have been loaded in sources and they are heated as little as possible. In this manner, the material is consumed before it has reached the temperature exposure threshold to cause significant degradation. The limitations with this practice are that the available vaporization rate is very low due to the limitation on heater temperature, and the operation time of the source is very short due to the small quantity of material present in the source. In the prior art, it has been necessary to vent the deposition chamber, disassemble and clean the vapor source, refill the source, reestablish vacuum in the deposition chamber and degas the just-introduced organic material over several hours before resuming operation. The low deposition rate and the frequent and time consuming process associated with recharging a source has placed substantial limitations on the throughput of OLED manufacturing facilities.
A secondary consequence of heating the entire organic material charge to roughly the same temperature is that it is impractical to mix additional organic materials, such as dopants, with a host material unless the vaporization behavior and vapor pressure of the dopant is very close to that of the host material. This is generally not the case and as a result, prior art devices frequently require the use of separate sources to co-deposit host and dopant materials.
A consequence of using single component sources is that many sources are required in order to produce films containing a host and multiple dopants. These sources are arrayed one next to the other with the outer sources angled toward the center to approximate a co-deposition condition. In practice, the number of linear sources used to co-deposit different materials has been limited to three. This restriction has imposed a substantial limitation on the architecture of OLED devices, increases the necessary size and cost of the vacuum deposition chamber and decreases the reliability of the system.
Additionally, the use of separate sources creates a gradient effect in the deposited film where the material in the source closest to the advancing substrate is over represented in the initial film immediately adjacent the substrate while the material in the last source is over represented in the final film surface. This gradient co-deposition is unavoidable in prior art sources where a single material is vaporized from each of multiple sources. The gradient in the deposited film is especially evident when the contribution of either of the end sources is more than a few percent of the central source, such as when a co-host is used.
A further limitation of prior art sources is that the geometry of the interior of the vapor manifold changes as the organic material charge is consumed. This change requires that the heater temperature change to maintain a constant vaporization rate and it is observed that the overall plume shape of the vapor exiting the orifices can change as a function of the organic material thickness and distribution in the source, particularly when the conductance to vapor flow in the source with a full charge of material is low enough to sustain pressure gradients from non-uniform vaporization within the source. In this case, as the material charge is consumed, the conductance increases and the pressure distribution and hence overall plume shape improve.
It is therefore an object of the present invention to provide an effective way to vaporize powders.
This object is achieved in a method for metering powdered or granular material onto or in close proximity to a heated surface to vaporize such material, comprising:
(a) providing a rotatable auger for receiving powdered or granular material and as the rotatable auger rotates, such rotating rotatable auger translates such powdered or granular material along a feed path to a feeding location;
(b) providing at least one opening at the feeding location such that the pressure produced by the rotating rotatable auger at the feeding location causes the powdered or granular material to be forced through the opening onto the heated surface in a controllable manner, and
(c) agitating or fluidizing the powdered or granular material in proximity to the feeding location in cooperation with the rotatable auger so as to facilitate the flow of powdered or granular material through the opening(s) to the heated surface where the powdered or granular material is vaporized.
An advantage of this invention is that it provides controlled delivery of powdered or granular material with reduced expenditures of power. Feed uniformity is substantially improved.
Turning now to
The apparatus 5 can operate in a closed-loop control mode, in which case a sensor 50 is utilized to measure the vaporization rate of the material 10 as it is evaporated at the heated surface 40. The sensor 50 can also be used in measuring the material vaporization rate on a substrate either directly or indirectly. For example, a laser can be directed through the plume of evaporated material to directly measure the local concentration of vaporized material. Alternatively, crystal rate monitors indirectly measure the vaporization rate by measuring the rate of deposition of the vaporized material on the crystal surface. These two approaches represent only two of the many well-known methods for sensing the vaporization rate.
Turning now to
The invention has been described in detail with particular reference to certain preferred embodiments thereof, but it will be understood that variations and modifications can be effected within the spirit and scope of the invention.
Reference is made to commonly assigned U.S. patent application Ser. No. 10/784,585, filed Feb. 23, 2004 by Michael Long et al, entitled “Device and Method for Vaporizing Temperature Sensitive Materials”, U.S. patent application Ser. No. 10/945,940, filed Sep. 21, 2004 by Michael Long et al, entitled “Delivering Organic Powder to a Vaporization Zone”, U.S. patent application Ser. No. 10/945,941, filed Sep. 21, 2004 by Michael Long et al, entitled “Delivering Organic Power to a Vaporization Zone”, U.S. patent application Ser. No. 11/050,924, filed Feb. 4, 2005 by Michael Long et al, entitled “Controllably Feeding Organic Material in Making OLEDS”, and U.S. patent application Ser. No. ______ filed concurrently herewith, by Michael Long et al, entitled Metering Material To Promote Rapid Vaporization” the disclosures of which are incorporated herein by reference.