This document relates to composite fabric articles.
Fabric articles, such as jackets and other outer wear, with qualities desired for use during exercise or exertion, especially warmth and breatheability, may be formed, e.g., by circular knit plaited construction or circular knit reverse plaited construction with a relatively smooth outer surface (the “technical face”) and an inner surface (the “technical back”) that can be raised, e.g. by processes such as napping, brushing, sanding, etc., to form an insulating layer of fleece. Unfortunately, in both knit constructions, the durability of the smooth technical face is inferior to many woven constructions, limiting use of the knit constructions in articles intended for harsher outdoor sports. In particular, the fuzziness of the smooth technical face will often have an inferior aesthetic look, as well as poor technical features. The smooth face also tends to fuzz out as the surface picks up snow, which it will not shed easily, to fuzz out during rock climbing, and to fuzz out in specific areas of a garment, e.g. at the elbows or at the shoulders, under the straps of a backpack.
Composite fabric articles are achieved by joining at least one material to a fabric body to attain desirable properties that cannot be attained by the fabric body alone. Laminar composites, e.g. having multiple layers joined by an adhesive, are sometimes employed to increase the thermal resistance of a fabric body. However, the feel (e.g., drapability, hand tactile, etc.) of a fabric is often substantially decreased by laminating one or more additional layers of material to the fabric body.
According to one aspect, a fabric article with knitted or woven construction of multi-filament, interlaced yarns has an inner surface and an outer surface. The inner surface has at least one region of pile or raised fibers or fleece formed thereupon and the outer surface has at least one region of a non-continuous coating of binder material adhered to yarns and to yarn fibers, e.g. at least at interlacing intersections, for enhanced durability of the outer surface against pilling or fraying during use.
Preferred implementations of this aspect may include one or more of the following additional features. The fabric article has construction selected from the group consisting of a plaited circular knit construction, reverse plaited circular knit construction, woven construction, and warp knit construction. The fabric article is an article of wearing apparel. The multi-filament yarns are textured or flat. The multi-filament yarns comprise fibers formed of materials selected from the group consisting of: polyester, nylon and polypropylene. The multi-filament yarns comprise spun yarns formed of materials selected from the group consisting of: natural fibers, synthetic fibers, and blends thereof. The multi-filament yarns of the outer surface comprise spandex. Fibers of the multi-filament yarns are highly intermingled at over at least about 10 tucks per meter (TPM), preferably at over about 60 TPM, and more preferably at over about 100 TPM, or more, or there may be little or no intermingling. The binder material adheres to yarn fibers in a manner to substantially avoid restriction of air permeability through the fabric article. Alternatively, the binder material comprises a film extending into interstitial air passageways through the fabric article in a manner to reduce air permeability. The region of non-continuous coating of binder material is without substantial adverse effect on drapability and hand of the fabric article. The region of non-continuous coating comprises one or more first regions of enhanced surface durability due to relatively greater density of binder or binder dots per unit area, and/or due to relatively greater durability of a first binder material, applied by engineered pattern printing technology to a fabric web. Preferably the one or more first regions comprises at least shoulder or elbow regions. The outer surface of the fabric article further comprises one or more second regions of relatively lesser surface durability due to relatively lesser density, including no or negligible density, of binder or binder dots per unit area, and/or due to relatively lesser durability of a second binder material, applied by engineered pattern printing technology to a fabric web. Preferably, the one or more second regions comprises at least body regions. One or more of the second other regions of relatively lesser surface durability have no or only negligible density of second binder material per unit area. Preferably, one or more of the second other regions of the outer surface comprises regions of pile or raised fibers or fleece and one or more of the first regions of the outer surface remains non-raised or smooth face. More preferably, the one or more second other regions comprises at least body regions of the fabric article.
According to another aspect, a method of forming a fabric article comprises the steps of: interlacing yarns comprising multi-filament fibers to form a fabric body of knit or woven construction, forming one or more raised or fleece regions upon an inner surface of the fabric body; and, thereafter, applying binder material to one or more regions of the outer surface of the fabric article to form a discontinuous coating of binder material upon yarn fibers, e.g. at least at interlacing intersections, on at least the outer surface of the fabric article, to resist pilling and fraying of yarn fibers at the outer surface.
Preferred implementations of this aspect may include one or more of the following additional features. The step of applying binder material comprises applying binder material by standard printing technology, e.g., selected from the group consisting of: rotary screen roll printing, gravure roll printing, and ink jet printing. The step of applying binder material comprises applying the binder material with a kiss roll. The method further comprises removing binder material in liquid state from interstitial spaces of the fabric body in a manner to control reduction of air permeability. The step of removing binder material comprises blowing air through the interstitial spaces or drawing air by suction through the interstitial spaces. The step of applying binder material comprises applying one or more binder materials in one or more forms selected from the group consisting of: resin, latex, polymer emulsion, polymer dispersion, and plastisol system. Preferably, the binder material is selected from the group consisting of: melamine, acrylate, polyurethane, silicon, poly vinyl chloride, epoxy, and blends thereof. The step of applying binder material to one or more regions of an outer surface comprises the steps of: applying first binder material to one or more regions by screen printing techniques in a first pattern, and applying second binder material different from the first binder material to one or more regions by screen printing techniques in a second pattern not overprinting the first pattern. The step of applying binder material comprises applying binder material in a liquid carrier and allowing the liquid carrier to evaporate leaving the binder material or applying binder material in a foam liquid carrier and allowing the foam carrier to collapse leaving the binder material. The step of applying binder material comprises applying binder material by engineered pattern printing technology to a fabric web. Preferably, binder material is applied by engineered pattern printing techniques to form one or more first regions of enhanced surface durability by applying a first pattern of binder material with relatively greater density of binder or binder dots per unit area, e.g. to shoulder regions and/or to elbow regions, and to form one or more second other regions of relatively lesser surface durability by applying a second pattern of binder material with relatively lesser density of binder or binder dots per unit area, e.g. to body regions. The step of applying binder material by engineered printing technology to a fabric web comprises the steps of: forming one or more first regions of enhanced surface durability by applying a first pattern with relatively greater density of binder or binder dots per unit area, and forming one or more second other regions of relatively lesser surface durability by applying no or only negligible density of binder or binder dots per unit area. The step of forming one or more first regions of enhanced surface durability comprises applying the first pattern of binder material to each first region, the binder material and/or the pattern being the same or different from region to region, with relatively greater density of binder or binder dots per unit area upon, e.g., shoulder regions and/or elbow regions. The step of forming one or more second other regions of relatively lesser surface durability comprises forming second other regions upon, e.g., body regions. The method comprises a further step performed after applying binder to the one or more first regions of enhanced surface durability, the further step comprising raising or napping the one or more second regions bearing little or only negligible density of binder or binder dots per unit area to form fleece or velour. The method comprises the steps of, prior to forming a raised or fleece region upon an inner surface of the fabric body, applying binder material to one or more predetermined regions of the inner surface by engineered printing technology, and generating, upon the inner surface of the fabric body, an engineered three-dimensional pattern of raised or fleece regions and non-raised or non-fleece regions designed to meet predetermined thermal insulation and/or breatheability at predetermined regions by forming one or more raised or fleece regions upon the inner surface of the fabric body while the one or more regions to which binder material is applied resist raising or fleecing. The method comprises the further step of forming the fabric body by plaited knit construction. Preferably, the fabric body is circular knit with terry sinker loop. Applying binder material to one or more regions of an inner surface of the fabric body is synchronized with wet printing in other regions.
According to another aspect, a method of forming a fabric article comprises the steps of: interlacing yarns comprising multi-filament fibers to form a fabric body of knit or woven construction, forming one or more raised or fleece regions upon an outer surface of the fabric body, applying binder material to one or more regions of an inner surface of the fabric body to form a discontinuous coating of binder material upon yarns fibers, e.g. at least at interlacing intersections, on at least the inner surface of the fabric body, and generating, upon the inner surface of the fabric body, an engineered three-dimensional pattern of raised or fleece regions and non-raised or non-fleece regions designed to meet predetermined thermal insulation and/or breatheability at predetermined regions by forming one or more raised or fleece regions upon the inner surface of the fabric body while the one or more regions to which binder material is applied resist raising or fleecing.
Preferred implementations of this aspect may include one or more of the following additional features. The method further comprises the steps of: applying binder material to the inner surface of the fabric body in a manner to cause the binder material to penetrate to the outer surface of the fabric body, and generating, upon the outer surface of the fabric body, an engineered three-dimensional pattern of raised or fleece regions and non-raised or non-fleece regions designed to meet predetermined thermal insulation and/or breatheability at predetermined regions by forming one or more raised or fleece regions upon the outer surface of the fabric body while the one or more regions to which binder material is applied resist raising or fleecing. The method further comprises the step of: generating, upon the inner surface of the fabric body, an engineered three-dimensional pattern of raised or fleece regions and non-raised or non-fleece regions designed to meet predetermined thermal insulation and/or breatheability at predetermined regions by forming one or more raised or fleece regions upon the inner surface of the fabric body while the one or more regions to which binder material is applied resist raising or fleecing, one or more raised or fleece regions of the inner surface of the fabric body being in registration with one or more raised or fleece regions of the outer surface of the fabric body. The method comprises the further step of forming the fabric body by reverse plaited knit construction. Preferably, the fabric body is circular knit with terry sinker loop. Applying binder material to one or more regions of an inner surface of the fabric body is synchronized with wet printing in other regions.
There is thus provided a composite fabric article that overcomes the recognized deficiencies of fabrics of knit construction, discussed above, in particular when used in garments and other articles for harsher outdoor sports, without detracting significantly from qualities of the original form of the fabric found highly desirable for use during exercise or exertion, e.g., warmth, breatheability, drapability, MVT, hand tactile, etc. Furthermore, improved fabric articles have a predetermined, controlled, i.e., limited, degree of air permeability or breatheability and/or thermal insulation performance may be formed according to the described methods.
The details of one or more implementations are set forth in the accompanying drawings and the description below. Other features, objects, and advantages will be apparent from the description and drawings, and from the claims.
Like reference symbols in the various drawings indicate like elements.
Referring to
Referring to
In a first example of a fabric article to be provided with an outer surface of enhanced durability, the fabric has a plaited circular knit construction, e.g., as described in Knitting Technology, by David J. Spencer (Woodhead Publishing Limited, 2nd edition, 1996), the entire disclosure of which is incorporated herein by reference, with a smooth outer surface (technical face) and a raised inner surface (technical back). The stitch yarn forming the technical face is preferably a filament yarn of textured filaments formed of synthetic material, e.g. polyester, nylon or polypropylene, the yarn fibers or filaments having a high level of intermingling, e.g. over at least about 10 tucks per meter, preferably over about 60 tucks per meter, and more preferably over about 100 tucks per meter, to reduce the tendency of individual fibers to fray or catch and later on to pill. In preferred implementations, the yarn has a fineness of 0.2 to 3.0 denier per filament (dpf). Fraying is a particular concern in multi-fiber yarns, especially with yarns of fine dpf, e.g. 0.2 to 1.5.
In a second example of a fabric article to be provided with the outer surface of enhanced durability, the fabric has a reverse plaited circular knit construction, where the raised surface can be formed on the loop yarn, either on the loop side (technical back), which is preferred, or on the smooth side (technical face). The technical back can be any of a variety of constructions, e.g., knit and/or knit-tuck and/or knit-welt and/or knit-tuck-welt in a variety of combinations.
To avoid restricting or reducing the capability of maximizing the bulk of the raised or fleece surface at the technical back, the fabric articles of knit construction are preferably finished before application of the binder material to the outer surface.
In yet another example, the fabric has a woven construction of synthetic, multi-filament, textured yarn. Spandex is incorporated into the yarn, e.g. in air tuck, cover or core spun position, to provide the fabric with two-way or one-way stretch.
In still another example, the fabric upon which a surface of enhanced durability is to be formed has a warp knit construction, e.g. as described in U.S. Pat. No. 6,196,032, issued Mar. 6, 2001, and in U.S. Pat. No. 6,199,410, issued Mar. 13, 2001, the complete disclosures of which are incorporated herein by reference.
A fabric article, e.g. from the examples described above, may be treated to provide an outer surface of enhanced durability by applying binder material to reduce fiber fraying and minimize pilling.
Referring to
In another preferred implementation, referring to
Referring again to
In another implementation, the binder for forming a surface region of enhanced durability surface is applied to the outer surface of the fabric article with a kiss roll. In this implementation, in order to reduce the tendency toward fraying while maintaining a high level of moisture vapor transmission, good drapability, hand and soft touch, deposit of the binder material is preferably limited primarily to the fibers and/or to the intersections of fibers in the yarn segments, and formation of binder film in the interstitial spaces between yarns is minimized, e.g. as seen in
Preferably, the binder material is applied in a low viscosity system, or in: a system with a relatively low level of binder solids or particulates in a liquid carrier, so that as the system dries, the liquid carrier evaporates (or in a foam system, collapses), leaving the solid binder deposited primarily or only on the yarns or yarn fibers. In this manner, the air permeability level and other characteristics of the base fabric are maintained.
In other implementations, a binder material of relatively higher viscosity may be employed, to encourage formation of a fine film in the interstitial areas between yarns that will partially or fully maintain its integrity during the drying process, e.g. as seen in
Referring again to
In another implementation, a fabric web 60 of plaited knit construction, such as a circular knit with terry sinker loops on the technical back surface 62 may be employed. For example, referring to
In yet another implementation, referring also to
In implementations employing fabric webs of plaited knit construction or reverse plaited knit construction, the smooth surfaces, i.e. the technical face, may also be printed with a binder material for improved durability.
Referring now to
Referring next to
In each of these implementations, the printed regions may be formed of sub-regions of contrasting thermal insulation, breatheability and/or abrasion resistance performance characteristics by use of different binder materials, densities of application, penetration, etc., thereby to achieve optimum performance requirements for each sub-region of the engineered printing pattern.
The improved surface durability of fabric articles is demonstrated in a severe pilling and abrasion test, such as the modified Martindale abrasion test method of ASTM D 4966. According to this test method, a fabric article to be tested is subjected to repeated rubbing by a strip of the hook element (General Application type, ¾-inch by ½-inch) of a hook-and-loop type fastener element. After 250 rubs, the appearance of the fabric article has been seen to be markedly better, e.g., as compared to untreated fabric articles.
A number of implementations have been described. Nevertheless, it will be understood that various modifications may be made without departing from the spirit and scope of the invention. For example, other aesthetic effects may be applied to the face side and/or to the back side, including, e.g., color differentiation and/or patterning on one or both surfaces, including three dimensional effects. As mentioned above, the fabric article may have one-way or two-way stretch, and/or the fabric may be constructed to provide a degree of stretch from any of a broad range, including from very low stretch (very stable) to high stretch or compression power stretch. The binder material may be applied in other fashions as appropriate, e.g. by kiss coating or froth foam application, preferably to the technical face after raising the technical back. In other applications, the binder material may also be deposited, e.g., by pad application or by kiss roll, upon both surfaces of the fabric article, including, e.g., upon a raised or fleece surface. The multi-strand or multi-filament yarn may, e.g., have the form of staple fibers in spun yarn or filaments in continuous yarn, or the fabric may be constructed with a combination of spun yarn, staple fibers and continuous filament yarn. In addition to suction and blowing of air through the fabric article during drying, the degree of film formation may also be controlled, e.g., by crushing the coated fabric between nip rollers.
Also, in other implementations, only selected regions, e.g., shoulders and/or elbows, may be printed to provide enhanced surface durability, and other regions of the shirt, e.g. the body region, may be left untreated to be raised while printed regions remain flat, resisting the napping process, for predetermined thermal insulation and/or breatheability performance effects.
Referring again to
Also, application of binder material in a predetermined engineered pattern for enhanced surface durability and abrasion resistance may be synchronized with the regular wet printing process, including in other regions of the fabric body.
Accordingly, other embodiments are within the scope of the following claims.
This application is a continuation-in-part of U.S. application Ser. No. 10/911,855, filed Aug. 5, 2004, now pending, which claims benefit from U.S. Provisional Application No. 60/493,275, filed Aug. 7, 2003, now expired. This application also claims benefit from U.S. Provisional Application No. 60/626,027, filed Nov. 8, 2004, now pending, and from U.S. Provisional Application No. 60/674,535, filed Apr. 25, 2005, now pending.
Number | Date | Country | |
---|---|---|---|
60493275 | Aug 2003 | US | |
60626027 | Nov 2004 | US | |
60674535 | Apr 2005 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10911855 | Aug 2004 | US |
Child | 11267767 | Nov 2005 | US |