At equilibrium with one atmosphere of air pressure, water will contain dissolved gases whose partial pressures will, quite naturally, sum to one atmosphere. Theoretically, neglecting gases such as argon and (for the moment) carbon dioxide, that one atmosphere of dissolved gas pressure will essentially consist of 0.21 atmospheres of oxygen pressure and 0.79 atmospheres of nitrogen pressure. When it comes to the concentration of each of these molecules in the water, however, the apparent 4:1 ratio of nitrogen to oxygen does not hold true. In actual fact, at 20° C., the water, at equilibrium, will contain about 15.3 ppm of nitrogen and 9.3 ppm of oxygen-less than a 2:1 ratio! This difference is due to Henry's Law and the ability of water to dissolve gases. The Henry's Law constant for nitrogen at 20° C. is approximately 79,000 (atm. per mol fraction) while that oxygen is approximately 44,000. Put another way, each ppm of dissolved nitrogen exerts a higher pressure than a dissolved ppm of oxygen. This difference, in areas such as aquaculture, can be exploited with the correct technology. Gas Infusion is such a technology.
It is known that the level of dissolved oxygen(DO) in the water can influence the health and growth rate of fish. Generally speaking, the higher the DO level in the water, the better is for the fish. (This is a general statement only. Obviously, there are/will be limitations.) One of the problems faced by the industry is finding an economical method of introducing higher levels of oxygen into the water. It is also known that the overall dissolved gas pressure can play a significant role in fish health and growth rate, etc. Just like humans who can undergo the ‘bends’ as a result of exposure to high (principally inert) gas pressures, fish can also be adversely affected if the total dissolved gas pressure is too high. Conventionally, the limitation here is that an increase in dissolved oxygen content would result in an increase in total dissolved gas pressure. Another factor that can affect health and growth rate, is the presence or build up in the water of noxious gases. Principle among these is carbon dioxide. Although present in the water in very low quantities as a result of atmospheric equilibrium, it can build up as a result of respiration. The major problem is that the pH of the water falls dramatically with even small increases in CO2 concentration.
Conventional gas/liquid mass transfer equipment or technology in the aquaculture industry seems focused only on achieving a minimum dissolved oxygen concentration in the water and not on what is really needed, reaching and maintaining an optimum water ‘atmosphere’.
In our prior U.S. patent application Ser. No. 09/307,423, filed 10 May 1999 (now U.S. Pat. No. 6,209,855, issued Apr. 3, 2001), the invention described involves the concept of gas infusion. The hydrophobic nature of a hydrophobic microporous hollow fibre membrane establishes a stable interface between an aqueous phase on one side of the fibre and a gas phase on the other. This interface remains stable so long as there does not exist a pressure differential between the phases in excess of the ‘breakthrough’ pressure required to ‘push’ the aqueous phase through the micropores, or the gas pressure exceeds the liquid pressure to such an extent as to bubble into the liquid phase. This stable interface can be used to transfer mass from one phase to the other. The disclosure of this patent is incorporated herein by reference.
According to the invention, we have now found that, designed, built and operated correctly, gas infusion can be used to increase dissolved gas content(DG) of a first gas e.g oxygen of an aqueous liquid to previously unimagined levels, while simultaneously lowering the dissolved gas content of other dissolved gases such as nitrogen, ammonia, carbon dioxide and mixtures thereof and altering e.g by lowering total dissolved gas pressure(TG) of the aqueous liquid, and do it all economically. We call this new concept, “controlled atmosphere gas infusion”.
What is not covered in our prior patent, or in the literature, is the concept and utility of using that stable interface described above for two-way gas transport. That is, the mass transfer of a first gas (e.g. O2) from the gaseous phase to the liquid phase and the simultaneous mass transfer of noxious gas (e.g. N2) from the liquid phase to the gaseous phase.
The transfer of mass from a gaseous phase to a liquid phase is known as absorption. We have found that if the concentration of the ‘solute’ (the gas to be transferred) gas in the gaseous phase is not pure at all points within the transfer ‘device’, the most efficient ‘device’ should be countercurrent in nature. Transfer of a dissolved gas mass from a liquid phase to a gaseous phase is known as stripping.
The absorption and stripping processes are represented schematically in
According to one aspect of the invention, a method is provided for controlling the dissolved gas content of an aqueous liquid containing a dissolved gas, comprising
According to another aspect of the invention, an apparatus is provided for controlling the dissolved gas content of an aqueous liquid containing dissolved gas, comprising
According to yet another aspect of the invention, the mass transfer of the first gas from the gaseous phase into the liquid phase occurs by absorption, and the mass transfer of the second gas from the liquid phase into the gaseous phase occurs by stripping.
According to a further aspect of the invention, wherein the process operates under the control of the G/L ratio, wherein G is the flow rate of the first gas in g/time unit, and L is the flow rate of the aqueous phase in 1/time unit. An increase in the G/L ratio occurs e.g. by increasing the amount of the first gas(G) e.g. oxygen in the aqueous phase, while keeping other operational parameters L and including temperature constant. Also, it will be appreciated that L can be varied, while keeping G and the other operating parameters constant, or both G and L can be varied, depending upon the desired result.
According to yet another aspect of the invention, the aqueous liquid is water, the first gas is oxygen and the second gas is another dissolved gas such as nitrogen, ammonia, carbon dioxide or a mixture thereof.
If, for example, the object of a process was to increase the dissolved oxygen content of water (aquaculture and hydroponics are just two applications) by using pure oxygen then it would preferable for that process to utilize as much of the oxygen as possible. with little wastage. Conversely, if it was desired to remove gases such as nitrogen and carbon dioxide from water, using oxygen, then it is obvious (from
The first of the devices(A) would likely suffer from poor flow distribution outside the fibres (shell side) and is unlikely to exhibit the same degree of countercurrent flow as devices B and C
The second device(B) (which has an internal hollow core 28a, through which the shell side fluid enters) employs internal wraps 23 (darker lines) of impermeable material, effectively dividing the device into distinct radial sections, to direct shell side flow countercurrent to the lumen/tube side flow.
The third device(C)(which has a solid core plug 29) uses two shell side outlets to distribute the shell side fluid. One of these outlets is on the radial exterior of the fibre bundle and the other 31, is on the radial interior of the fibre bundle and is done through the hollow core, on the opposite side of the solid core plug from the shell side fluid inlet. Internal wraps, such as those in device B, could conceivably be useful in this device.
Some may argue that this invention is simply an artificial lung and, as such, can be found in the literature. However, this would be wrong. An artificial lung is meant to provide the oxygen required by a biological organism(s) and remove the products of respiration. From the attached graphs it is obvious that Controlled Atmosphere(CA) Gas Infusion does far more than was ever, or could ever have been, anticipated by hollow fibre based artificial lungs. CA gas infusion creates an environment (or a water ‘atmosphere’) that can be optimized for different species of fish or plants, or other biological organism. It is emphasized that nitrogen is not normally considered a noxious gas, but its removal is primarily responsible for being able to lower the overall dissolved gas pressure. If the device removed CO2 only, it might be thought of as an artificial lung, but since the nitrogen level is also altered (and in fact all dissolved gases present in the system), this process has been called “controlled atmosphere”.
It will be appreciated that
It will also be appreciated by those skilled in the art that
The following is a description of the tests that were performed and the modules on which they were performed:
For comparison purposes, tests were run on a prior art membrane module used in our prior U.S. application Ser. No. 09/307,423 (see
Each module consisted of 6400 microporous hydrophobic hollow fibres 20, potted in epoxy tubesheets 22 and inserted into a pressure case 24. Appropriate ‘O-rings’ 26 needed for sealing the gas from the liquid are shown. The fibres were obtained from Mitsubishi Rayon Corp. and were of the type 540T (polyethylene), having approximately 75% porosity. Other microporous hydrophobic fibre materials may also be used, such as those described in our prior U.S. application Ser. No. 09/307,423. The diameter of the fibre bundle (constructed around a perforated ¾″plastic pipe 28) was approximately 3 inches. The difference between the modules of
For our so-called ‘PurGRO2’ module according to the invention and illustrated in
Each of the assembled modules was controlled in the following manner:
As illustrated schematically in
As described above, dissolved gas (for these tests nitrogen was used) is removed from the water, simultaneously as oxygen is being transferred to the water. The rate at which this gas is removed from the module will clearly influence overall gas transfer to and from the water. In order to demonstrate this, gas exiting the modules, was piped directly to a solenoid valve 56 before ultimate discharge to the atmosphere. This solenoid valve had a suitably small valve constant or Cv, such that when it was activated (for ˜0.25 seconds), using a built-in timer, a very small amount of gas would be released and causing only a small fluctuation in the differential pressure between the oxygen inlet and the water outlet. (This fluctuation would only cause the differential pressure to increase, not decrease, thereby assuring that no gas bubbling would occur.) Increasing the frequency of the timer activation is equivalent to increasing the oxygen flow into the module. Whereas a higher oxygen flow would likely result in more nitrogen being removed from the water, it would also result in more oxygen purged (or wasted) to the atmosphere. (Those skilled in the art will recognize that other forms of oxygen flow rate control are possible.
The following results were either measured or calculated from the measurements:
Oxygen inlet flow rate, dissolved oxygen in the water leaving the module, dissolved nitrogen in the water leaving the module and the percentage of the oxygen fed that was actually utilized in increasing the oxygen content of the water. In each case, the water temperature was 14.5° C., the water flow rate was 15.5 LPM, the water inlet pressure was 6 psi, the water inlet contain 0 ppm of oxygen and 22.5 ppm of nitrogen.
The variable presented in the graphs of
From the
Those skilled in the art will readily recognize that although our invention of the ability to produce a controlled altered ‘atmosphere’ has been illustrated using countercurrent gas/liquid flow, which provides a greater alteration of ‘atmosphere’, clearly, crosscurrent (and by logical extension co-current) operation can accomplish some lesser degree of ‘atmosphere’ alteration.
The following is another mode of operation which those skilled in the art will recognize has merit, in an aquaculture operation. These numbers are generated by a model which is based on that used in our previous U.S. application Ser. No. 09/307,423, as well as the results presented in
In the above illustrated scheme, a device such as that described in example 2 is fed water exiting a tank containing fish, using a pump. The water exiting the device is recombined with make-up water entering the operation and fed to the tank. Depending on the respiration rate of the fish (oxygen uptake rate) and the amount of fish present in the tank, as well as other variables shown in BOLD print, the ‘atmospheric’ conditions in the tank will reach a steady state. Proper choice of operating variables will allow the steady state ‘atmospheric’ condition of the tank to be beneficial to the health/growth rate, for example, of the fish.
It will be appreciated by those skilled in the art that the apparatus/method according to this invention is suitable for any gas/liquid combination, meeting the same criteria as described above and in our previous U.S. application Ser. No. 09/307,423, such as a liquid which is repellant to the fibre material, suitable chemical compatibility of gas/liquid and fibre material, as well as being suitable for the situation of liquid flow down the fibre bore and gas flow outside of the fibres or vice versa.
This application is a National Stage application of PCT Application PCT/CA2003/001651 filed 30 Oct. 2003 which claims benefit of U.S. Provisional Application 60/422,490 filed Oct. 31, 2002.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/CA03/01651 | 10/30/2003 | WO | 00 | 11/15/2005 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2004/039482 | 5/13/2004 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4268279 | Shindo et al. | May 1981 | A |
6156096 | Sirkar | Dec 2000 | A |
6858145 | Dey et al. | Feb 2005 | B2 |
20030201223 | Cheng et al. | Oct 2003 | A1 |
20040089600 | Haq et al. | May 2004 | A1 |
20050230856 | Parekh et al. | Oct 2005 | A1 |
Number | Date | Country | |
---|---|---|---|
20060163753 A1 | Jul 2006 | US |
Number | Date | Country | |
---|---|---|---|
60422490 | Oct 2002 | US |