The human skull is primarily occupied by brain tissue and the supporting blood vessels. About ten percent of this volume is clear fluid with small amounts of dissolved protein, sugar and salts. This cerebrospinal fluid (CSF) cushions the delicate brain and spinal cord tissues from injuries and maintains the proper balance of nutrients and salts around the central nervous system.
A system of four interconnecting cavities, known as ventricles, in the brain provide pathways through which the CSF circulates from deep within the brain, around the spinal column, and over the surfaces of the brain. CSF is continually being created. In fact, about three to five times the volume contained in the skull at any point in time is produced on a daily basis.
Normally, almost all of the CSF is absorbed into the bloodstream, thus maintaining the delicate balance between CSF production and absorption. Normal intraventricular pressure (IVP) is 10 mm Hg (patient in a horizontal position) and typically varies from 5 to 15 mm Hg. Above 20 mm Hg for any sustained period can lead to serious complications. Normal IVP is between −5 mm Hg and 0 mm Hg when the patient is in the upright position.
For patients with normal CSF generation and normal CSF absorption, it may be beneficial to enhance the cerebrospinal turnover rate. The increased CSF turnover rate will remove toxins that may be present in the CSF. Increased cerebrospinal turnover rate may also be of benefit if excess therapeutic drug concentration build-up in the CSF is a concern. The use of shunt device together with lavage solution (saline solution with or without amenable drugs) infusion more effectively modulates the cerebrospinal turnover rate.
This combination therapy may be used to treat a range of neurological conditions that may include adult-onset dementia of the Alzheimer's type, Parkinson's disease, a cancerous tumor growth involving the brain, or any combination of these or other drug amenable neurological conditions.
The introduction of two cannulae into the brain area through the same bore hole allows for optimal placement of an infusion cannula for providing lavage solution infusion and CSF drainage cannula to modulate the CSF turnover rate. The CSF drainage is controlled via adjustments to the programmable IVP range. The amount of CSF drained by the shunt from the ventricles is a function of the IVP because the drained CSF flow is a function of the shunt pressure difference (the pressure difference between the proximal IVP and the distal shunt pressure). The amount of CSF generated by the choroid plexus is also influenced by the IVP because the CSF transport through the choroid plexus is a function of the cerebral perfusion pressure (the pressure difference between the mean arterial pressure and the mean IVP). For a patient with normal or somewhat compromised CSF absorption capability, the selection of a particular range for controlling the IVP will influence the amount of generated CSF and result in influencing the amount of CSF that is drained. In these cases, the increase in CSF fluid that bathes the surfaces of the brain will increase the wash out of the CSF within the brain. Thus, controlling the IVP and the lavage solution infusion time profile will result in changing the CSF turnover rate relative to specific localized areas of the brain and result in the ability to modulate the CSF turnover rate.
However, when providing CSF turnover rate therapy into patients with significantly decreased cerebrospinal fluid production and decreased cerebrospinal fluid absorption, it is important to avoid either under-drainage or over-drainage.
Shunt installation is a surgical procedure in which a valve system is usually implanted while the patient is under general anesthesia. In this commonly used procedure for hydrocephalus, a small hole is made in the skull and the protective membrane overlaying the brain. An incision is made in the abdomen and the valve unit and associated tubing are introduced under the skin between the scalp and the abdominal incisions. Usually one ventricular cannula is inserted into the lateral ventricle and connected to the drainage tube, which is inserted in the abdominal cavity. This system is intended to allow CSF from the ventricle to travel through the implanted tubes into the abdominal cavity, where it is then absorbed into the bloodstream.
CSF turnover rate is modulated by the infusion of a lavage solution and the drainage through the shunt. Under-drainage occurs when CSF is not removed quickly enough relative to the CSF generation and lavage infusion. Over-drainage occurs when the shunt allows CSF to drain from the ventricles more quickly relative to CSF generation and lavage infusion.
The shunt drainage rate of the shunts varies depending on the patient's relative position. In an upright position, an increased rate of CSF flow is generated, since gravity serves to create siphoning pressure, which will aid in the drainage process. In the supine, or horizontal, position, drainage is caused solely by the imbalance of pressure. Current shunt therapy devices are not designed to effectively treat over-drainage. These devices still maintain a large negative IVP (over-drainage) when the patient is in the upright position. A change of valve to a higher pressure cannot be relied upon to cure it, though it appears to do so in some cases. Anti-siphon devices, which consist of a small button inserted into the shunt tubing, may sometimes solve the problem. Some shunts have these built-in, but neurological opinion varies as to whether they should be used. To change a valve pressure, surgery is necessary to remove the valve and insert another. A relatively new shunt, the ‘programmable’ or adjustable shunt, is intended to allow adjustment of the working pressure of the valve without surgery. This valve contains magnets that allow the valve pressure setting to be altered by a transcutaneous magnetic field placed over the scalp. This is useful where the need for a valve of a different pressure arises, but the adjustable valve is no less prone to the over-drainage issue than any other and it cannot be used to treat this condition.
All the current passive shunts in clinical use rely on a precarious equilibrium between under-drainage in a lying position and acceptable over-drainage in an upright position. Some shunts use a variable resistance element to control drainage rate when the patient is standing. Other shunts use a programmable check valve for control of under-drainage along with a flow resistance element to limit the flow rate during over-drainage when the patient is in the standing position.
This CCIS invention, designed for chronic ambulatory therapy, describes a solution infusion capability via a programmable infusion device with an integral active shunt device that controls and monitors the intracranial pressure for all patient positions based on feedback from sensors. The CCIS is used to modulate the CSF turnover rate.
The limitations of the current intracranial therapy, i.e., using only a shunt, have been overcome by the present invention. This invention is directed to an active implantable device that combines two functions: cerebrospinal solution (preferably lavage solution) infusion using a programmable infusion pump, and cerebrospinal fluid (CSF) shunting using a programmable shunt. There are two important benefits to be had by combining these two functions into one device. First, direct cerebrospinal lavage solution infusion is often needed to enhance the CSF turnover rate. Second, controlled clearance of CSF provides a more controllable physiological sink for the CSF especially for CSF toxins.
The programmable infusion pump is a constant pressure flow-limited design whose flow output is programmable with flow modulation provided by an infusion bi-stable latching valve and monitored by a pressure sensor.
The shunt system is a multi-mode drainage system that contains at least two flow paths: a low resistance flow path for when the patient is in the supine or substantially supine position and a flow path containing a programmable variable check valve to prevent over-drainage when the patient is in the upright or substantially upright position. By providing at least two flow paths, the IVP pressure can be controlled within a programmed physiological range. This shunting of CSF fluid also has the benefit of providing a means for improving the CSF turnover rate.
This CCIS System, together with related non-invasive diagnostic algorithms, comprises a dual therapy cerebrospinal infusion and shunt management system.
The CCIS device is an implantable active battery operated device that is microprocessor controlled via algorithms stored in its memory. The CCIS device is a dual therapy system containing a programmable solution infusion device that is integral with a programmable actively controlled shunt system. The CCIS device can be implanted in the abdomen with an attached dual lumen cannula used for CSF infusion and for CSF shunting. A second shorter cannula attached to the CCIS device is used to divert the shunted CSF fluid into a suitable location, such as the peritoneal cavity in the abdomen.
In the preferred embodiment, the CCIS device contains a programmable lavage solution infusion system. A lavage solution reservoir is preferably within a pressurized container such that at body temperature, it produces a positive pressure. A refill septum can be provided, such as on the top surface of the device, so that the reservoir can be easily refilled, for example via a transcutaneous needle attached to a refill syringe. A flow restrictor, preferably consisting of a capillary tube of glass, is used to limit the maximum flow rate to the range of shunt drainage flow rates, for example, less than 5 ml per hour. A pressure sensor, preferably an absolute pressure sensor, is located in the flow path downstream of the flow restrictor and is preferably used to calculate the flow rate of the infused lavage solution. Downstream of the pressure sensor is a suitable device to control the flow of the infused lavage solution, preferably an infusion bi-stable latching valve that gates the flow between an on position and an off position. The control of the infusion bi-stable latching valve position is typically performed by the microprocessor and its interface electronics. The lavage solution infusion volumes and delivery profiles are thus controlled by the time profiles and the time durations of the programmed flow periods. This approach allows the infusion system to provide a very wide range of volumes and delivery profiles.
The actual flow rate and lavage solution volume delivery during the infusion bi-stable valve “on” flow period can be determined using the pressure sensor and the following algorithm. The flow determination algorithm is based on measuring the pressure on the upstream and downstream side of the flow restrictor with a known flow resistance. This flow resistance is determined during manufacture of the flow restrictor and is a function of the resistance or viscosity of the solution flowing through it. The upstream pressure can be measured just prior to the opening of the infusion bi-stable latching valve. Since the valve is not open, the pressure on both ends of the flow restrictor will be equal and will be equivalent to the upstream pressure. The downstream pressure is measured after the infusion bi-stable latching valve is opened. The pressure differential across the flow restrictor is the difference between the two pressure readings. The flow rate is determined by dividing the pressure differential by the known flow resistance of the solution. The solution volume delivered during each flow period is simply the flow rate multiplied by the infusion bi-stable latching valve “on” time.
The CCIS system also contains a dual mode shunt system. The programmable shunt contains at least two flow paths: (1) a supine mode: a low resistance flow path for when the patient is in the supine or substantially supine position and (2) an upright mode: a flow path containing a programmable variable check valve to prevent over-drainage when the patient is in the upright or substantially upright position. A shunt bi-stable latching valve directs the CSF flow to either the low resistance path or the check valve path based on an inclination sensor within the CCIS device. If the inclination sensor angle is below a programmable critical angle, the shunt bi-stable latching valve directs flow to the low resistance path. If the inclination sensor angle is equal to or above a critical programmable angle, the shunt bi-stable latching valve directs flow to the check valve path. For purposes of illustration, a dual mode device will be described; however, the present invention is not limited to only two modes.
Turning now to
The actual flow rate and fluid volume delivery during the infusion bi-stable valve 45 “on” flow period may be determined using the infusion pressure sensor 44. The flow determination algorithm is based on measuring the pressure on the upstream and downstream side of the flow restrictor 43 with a known flow resistance. The flow resistance of the flow restrictor 43 can be determined during manufacture and is a function of the viscosity of the fluid used. The upstream pressure is measured just prior to the opening of the infusion bi-stable latching valve 45. The downstream pressure is measured after the infusion bi-stable latching valve is opened. The pressure differential across the flow restrictor is the difference between the two pressure readings. The flow rate is determined by dividing this pressure differential by the previously known flow resistance of the fluid. Multiplying the flow rate by the infusion bi-stable latching valve 45 “on” time approximates the fluid volume delivered during each flow period.
The infusion pressure sensor 44 also serves as a diagnostic tool for detecting flow blockages in the infusion path. For example, if the infusion pressure sensor 44 measures the same pressure when the infusion bi-stable latching valve 45 is in the “on” position as when it is in the “off” position, a blockage may have occurred.
The combination of the infusion pressure sensor 44, the infusion bi-stable latching valve 45, and the flow restrictor 43 allows very accurate measurements of flow rate and therefore volume. This degree of accuracy allows this infusion system to be viable in this application.
The intracranial shunt lumen 200 is typically implanted in the ventricle of the patient's brain. It serves as the source for the CSF fluid into the CCIS system. The ventricular cannula is in fluid communication with the reservoir/occluders device 11. This device is implanted just beneath the scalp and can be actuated by pressing on the scalp. This device contains a reservoir 13 for holding CSF fluid. On either side of the reservoir is a manual blocking mechanism, known as an occluder. One nearer to the ventricle is known as the proximal occluder 12, while the other is the distal occluder 14. These occluders allow the physician to interrupt the flow of CSF to perform a number of in-office non-invasive diagnostics.
The distal occluder 14 is in fluid communication with one branch of the dual lumen cannula 15, which is in fluid communication with the Controlled Cerebrospinal Infusion and Shunt (CCIS) device 20. The CCIS device is preferably located in the subcutaneous abdominal area. It regulates the flow of CSF through it, and the outgoing CSF flows into the peritoneal shunt cannula 30. This outlet cannula is implanted such that its distal (far) end is inserted into a suitable drainage area, such as the peritoneal cavity.
Referring back to
The dual-lumen cannula 15 flows into the shunt pressure sensor component 22, located within the CCIS device 20. The purpose of this sensor is to determine the relative pressure of CSF at the shunt branch of the dual-lumen cannula 15. The following is for illustrative purposes only; a number of different embodiments could be used to implement the pressure sensor. In this embodiment, the pressure sensor component 22 is a MEMS (Micro-Electro-Mechanical Systems) absolute pressure sensing silicon elements. A second, reference pressure sensor 29, of the same type, is also used to determine the actual CSF pressure at the inlet. The two MEMS silicon pressure-sensing elements may be attached to a common vacuum. The non-vacuum sides of each are oil-coupled to the force-collecting diaphragms. The top force-collecting diaphragm is integral with a flat portion of the CSF fluid path and measures the absolute pressure in the CSF path. This corresponds to shunt pressure sensor 22. The lower force-collecting diaphragm is in communication with the outside bottom portion of the device and measures the absolute pressure on the outside of the device. This outside pressure sensing element, or reference pressure sensor 29, measures the tissue pressure of the implanted device and closely tracks the atmospheric pressure. A mechanical guard over the outside force-collecting diaphragm protects it from mechanical forces that may produce pressure artifacts. The difference between the two absolute pressure sensors is the gauge pressure of the CSF at the inlet to the CCIS device. This pressure is indicative of the intraventricular pressure (IVP). In the supine position, this reading is roughly equivalent to the IVP. In the upright position, this reading is the IVP plus the siphon pressure created by the shunt. By using the inclination sensor, it is possible to determine the actual IVP of the patient regardless of the inclination angle. In normal operation, the pressure sensor monitors the intraventricular pressure (IVP) not continuously, but periodically, for example, every 2-5 minutes. These readings can be stored in the device's memory. Using the telemetry capability of the CCIS device to download the information to the external programmer, the physician may review daily changes in IVP to diagnostic purposes. For example, the physician may choose to do this when a patient complains of headaches. The CCIS device can sample the pressure sensor at any time to determine the IVP, as measured at the input to the device.
The inclination sensor 23 is a gravity-detecting sensor that is used to determine the patient's inclination angle. It is used to control the multi mode CSF shunt system. This sensor also detects patient activity, such as when the patient is resting or moving about. Both the inclination and activity functions may be utilized to control the shunt bi-stable latching valve 24.
The shunt bi-stable latching valve 24 directs the CSF flow to the low resistance, supine mode path 27 when the inclination sensor 23 indicates that the patient is in a supine or substantially supine position; or the upright mode flow path 25 when the inclination sensor indicates that the patient is in an upright position.
The supine mode flow path 27 includes a supine flow resistance 28, which is designed to prevent against under-drainage and keep the IVP within the normal upper limit of 15 mm Hg. In this embodiment, the supine flow resistance is simply the resistance of the cannula in the supine mode flow path. The upright mode flow path 25 provides a variable high resistance flow path that is designed to prevent over-drainage. The variable high resistance flow path is provided by a variable check valve 26 whose cracking pressure is automatically adjusted based on the inclination angle.
Those skilled in the art will appreciate that the gravitational component of the valve assembly could be in fluid communication with a separate inlet from the inlet that the fixed component is in fluid communication with, in which case the gravitational component and fixed component would function in series.
These graphs can be generated using the preferred embodiment of the programmable cracking pressure valve described in
In addition to the elements described above, which are part of the flow paths, there is a microprocessor-based subsystem internal to the CCIS device. This subsystem preferably comprises a microprocessor, its associated memory, a Real Time Clock, a wireless transceiver and other essential electronics. An internal battery powers this subsystem. The microprocessor is responsible for monitoring and controlling many of the operations enumerated above, such as monitoring the inclination sensor, adjusting the check valve cracking pressure in response to changes in inclination, monitoring the pressure sensor, and controlling the infusion bi-stable latching valve. The microprocessor is also capable of receiving commands and returning status to the external programmer via the wireless transceiver. The memory is used to store data requested by the external programmer, such as pressure readings, inclination angle, and time. These data can be transmitted back to the external programmer as requested, via the wireless transceiver. The Real Time Clock is used to enable the device to perform certain diagnostics at specific times.
In conjunction with the CCIS device, there is an accompanying external programmer. This programmer is typically used by a physician, and is used to program critical parameters in the CCIS device, retrieve stored information from the device, and perform other types of communication with the CCIS device. The external programmer can also be used to perform a number of diagnostic procedures in conjunction with the CCIS device. The external programmer permits the physician to program the desired critical angle at which the CCIS device switches from supine to upright mode. The external programmer can also be used to preset the spring tension for the preferred embodiment of the variable cracking pressure valve, shown in
The lavage solution infusion daily time profiles are determined by the flow initiation times and the flow duration times during each 24-hour cycle. Using an accompanying programmer, the physician may program an average daily infusion volume to be distributed in a number of ways, such as in equal bolus volumes over each 24-hour period, or in a customized time profile over each 24-hour period.
The external programmer can take many different physical forms. It preferably comprises the following set of components:
The external programmer can be a custom developed apparatus, or can be an existing device, such as a Palm™ handheld or laptop computer. In the scenario where a Palm™ handheld is used, the criteria above are met as follows. The processor unit and internal memory are standard elements of the Palm™ handheld. The data input device is the touch screen of the device, or the optional keyboard. The data output device is also the touch screen. Lastly, the communication to the CCIS device is performed by an optional wireless module that can be connected to the Palm™ handheld.
Priority is claimed of Provisional Appln. Ser. Nos. 60/356,398 filed Feb. 13, 2002 and 60/358,648 filed Feb. 21, 2002, the disclosures of which are incorporated by reference.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US03/04099 | 2/12/2003 | WO |
Number | Date | Country | |
---|---|---|---|
60356398 | Feb 2002 | US | |
60358648 | Feb 2002 | US |