Controlled descent device

Information

  • Patent Grant
  • 6810997
  • Patent Number
    6,810,997
  • Date Filed
    Thursday, July 5, 2001
    23 years ago
  • Date Issued
    Tuesday, November 2, 2004
    20 years ago
Abstract
A controlled descent device for use in industrial or recreational settings for controlled descent of a user from an upper level to a lower level. The device comprises principally a steel housing, an internal spring-loaded drum on which a webbing line is wound, and an attachment to a harness worn by a user. A centrifugal brake mechanism which acts upon the drum to limit the rate of descent includes a manufactured one-way bearing. The line constituent provides increased shock absorbing capabilities and is field replaceable.
Description




FIELD OF THE INVENTION




The present invention relates generally to a controlled descent device intended for use in industrial or recreational settings. More particularly, in industrial settings, the present invention is used for emergency rescue or evacuation of personnel from a height by lowering them to safety at a controlled rate. In recreational settings, such as artificial rock climbing walls, it serves as a hands free belay device which lowers a climber to the ground at a controlled rate.




BACKGROUND OF THE INVENTION




Controlled descent devices of various types have been in use in general industry as a component in rescue and evacuation systems on buildings, bridges, towers, derricks, ladders, roofs and tanks and in a variety of settings including manufacturing, construction, oilfield, refinery and maintenance. An example of one such device is currently manufactured by Rose Manufacturing under the product name Dynescape® descender.




As shown in

FIGS. 1-3

, the Dynescape® descender is a controlled descent device


100


that consists principally of a steel housing


101


with an installation bracket


120


, an internal spring-loaded drum


103


on which a wire line


102


is wound, and a snaphook


105


on the line for attachment to a full body harness (not shown) worn by the user. Attached to the housing


101


is a centrifugal brake mechanism


107


which acts upon the drum


103


to limit the rate of descent. The wire line


102


passes around a pulley


123


and through a nozzle


104


before exiting the housing


101


.




During forced line extraction, line


102


which is wrapped around the drum


103


produces a moment, causing the drum


103


to rotate on its axle


108


. During line retraction, a constant force spring


106


biased in the direction of retraction acts on the drum


103


causing it to rotate in the direction that feeds line onto the drum


103


. A bull gear


109


rigidly fixed to the drum


103


rotates with the drum


103


. The bull gear


109


is meshed with a pinion gear


110


. The axis of rotation of the pinion gear


110


is aligned with the centrifugal brake mechanism


107


. The pinion gear


110


is linked to a pinion shaft


111


and is coupled in such a manner that when rotation is in the direction produced during line extraction, the two rotate together. During line retraction, the pinion shaft


111


and pinion gear


110


remain uncoupled, such that the pinion gear


110


spins freely on the pinion shaft


111


, and the pinion shaft


111


remains stationary. Through this interaction of the pinion gear


110


and pinion shaft


111


, the centrifugal brake mechanism is only engaged to rotate during line extraction.




The pinion shaft


111


is supported by two roller bearings


112


, and is rigidly linked to a brake hub


113


. Three dowel pin spokes


114


protrude axially from the hub, and engage with three brake shoes


115


. The brake shoes


115


are formed of arc shaped steel masses with a brake liner material


121


bonded to their outer surfaces. The end of each spoke


114


is situated within a bore


122


centered in the brake shoes


115


. The bore


122


is oversized with respect to the spoke diameter, providing a loose fit that permits both axial and rotational degrees of freedom of the brake shoe


115


within the confines of the brake housing


116


. The three brake shoes


115


are contained in a brake housing


116


with a cylindrical interior


117


. During braking, this cylindrical surface


117


mates with the curved brake shoe liner material


121


. During line extraction, the pinion gear


110


, pinion shaft


111


, hub


113


, spokes


114


and brake shoes


115


all rotate in unison within the housing. As the brake shoes


115


rotate with sufficient angular velocity, they are forced outward, along the axis of the spokes


114


, towards the brake housing


116


, due to centripetal acceleration. The centripetal acceleration acting on the brake shoe


115


forces the brake shoe


115


against the housing cylindrical surface


117


, producing friction that resists line extraction. The friction force is increased by the camming action of the brake shoes


115


. Because the bore


122


in the brake shoe is oversized with respect to the spoke


114


, the shoe


115


will tilt when in sliding contact with the brake housing


116


. This tilting cams the leading end of the shoe braking surface towards the housing


116


, increasing the braking friction force.




As mentioned previously, the mechanism linking the pinion shaft


111


to the pinion gear


110


permits relative rotation between these two components in one direction only. The pinion shaft


111


has a rectangular slot (see

FIG. 3

) cut perpendicular to its axis. This slot contains a double ended sliding key


118


. The key interacts with an internal cam profile


119


cut into the shoulder of the pinion gear. The cam profile


119


is a one-way ratchet shape with three high points, three low points, and three steps. This shape produces forced engagement of the sliding key


118


against the ratchet step when rotation of the pinion is in the direction of line extraction. The high point of the profile pushes one end of the sliding key


118


, such that the opposite end is forced into the low point and against the ratchet step on the opposite side of the cam profile. During line retraction, a relief angle on the key


118


and cam profile


119


allow the key


118


to flutter back and forth in the slot without engaging against the step of the cam profile


119


. The pinion gear


110


is thereby free to rotate about the pinion shaft


111


during line retraction, keeping the brake mechanism uncoupled from the drum


103


. During line extraction, the pinion gear


110


remains rotationally fixed to the pinion shaft


111


, keeping the brake mechanism engaged to rotate as the drum


103


rotates.




As the Dynescape® descender is intended for emergency use it typically is not subject to prolonged use. During prolonged use, components of the Dynescape® descender may need to be replaced due to increased wear. The sliding key


118


may become worn by the cam profile during prolonged use. The sliding key


118


may also become bent or deformed when subject to impact loading. Impact loading can occur in recreational applications when a climber attempts to jump for a hold that is out of reach, and free-falls on the line. Such prolonged use or abuse will eventually lead to compromised performance of the braking mechanism, which may engage during both line retraction and extraction.




A need exists, therefore, for a more robust design that will withstand repeated use and impact loading and whose components are not susceptible to wear during prolonged use.




Another feature of the Dynescape® device is that the line


102


is a wire rope. Over prolonged use this wire rope line


102


is prone to bird-caging (unraveling or kinking). Bird-caging is felt to be a result of the line material and the manner in which the line is layered onto the drum. Because the line is not stacked in consecutive layers and can cross itself, it can bind with itself and rub against itself as it is reeled on and off the drum during line retraction and extraction. Additionally, because the wire line


102


is a stiff member it is not capable of absorbing considerable energy in the event that a user free-falls on a slack line.




Another need exists, therefore, to develop a line that is not prone to bird-caging and which is capable of serving as a shock absorber during a user fall. An additional need exists for a field-replaceable line which allows a worn or deteriorated line to be replaced by a new line without having to return the device to the factory.




SUMMARY OF THE INVENTION




The present invention comprises a controlled descent device for use in industrial or recreational settings for lowering a user to the ground at a controlled rate.




Like the Dynescape® descender device, the controlled descent device of the present invention includes a steel housing containing a line wound on a spring loaded drum. The line feeds out of the housing through a nozzle. A snap hook or carabiner on the free end of the line is used to attach to a full-body harness worn by the user. A constant force retraction spring acts on the drum to retract the line into the housing as the user ascends or when the line is released. A centrifugal brake mechanism engages the drum to produce a resisting force when the line is extracted. This brake mechanism slows a user's descent rate by paying out extracted line at a controlled rate.




The braking mechanism of the present invention is similar in function to that of the Dynescape® device, however, the pinion, pinion shaft, and brake hub have each been modified. The pinion gear, slider key, and pinion shaft have been replaced by a single pinion gear with shaft. The brake hub is no longer rigidly linked to the shaft. Instead the hub is supported on the shaft by a one-way roller bearing. The one-way roller bearing connecting the shaft to the hub permits engagement of the brake mechanism only during cable extraction. During retraction, the pinion with shaft will rotate freely, while the hub, spokes and brake shoes remain stationary. The pinion with shaft and one way roller bearing are not as susceptible to wear during prolonged use.




The line of the present invention is preferably constructed from a flat webbed material such as nylon which is wrapped onto the drum in consecutive layers. Other suitable materials include polyester or any webbing with similar elastic properties having a minimum 20% elongation at break. The use of webbing in this configuration has several advantages over wire line. Because nylon webbing or the like will stretch under load, the webbing serves as a shock absorber in the event that a climber free-falls on a slack line. The manner in which the webbing is wrapped onto the drum in consecutive layers also serves as a shock absorbing mechanism. During free-fall arrest, tension on the line pulls the wraps of the webbing tighter around the drum. Friction between consecutive layers of webbing absorbs the energy of a fall. In this manner, the webbing on the drum acts as an efficient shock absorber when the line is fully paid out or when the line is fully retracted. When fully paid out, the stretch of the extracted line under load absorbs the energy of a fall. When fully retracted, the wraps of webbing about the drum absorbs the energy of a fall.




Because the webbed line of the present invention is susceptible to abrasion and wear, the present invention may preferably incorporate a linkage that allows a worn or deteriorated line to be detached, and a new line be reattached in the field by the user. This avoids having to return the device to the factory to have the line replaced.




Thus, it may be seen that an improved controlled descent device is provided whose braking components are less prone to wear, and whose line provides increased shock absorbing capabilities and is field replaceable.











BRIEF DESCRIPTION OF THE DRAWING




An illustrative and presently preferred embodiment of the invention is shown in the accompanying drawings in which:





FIG. 1

is front view, partially in section of the prior art Dynescape® descender;





FIG. 2

is cross-sectional view through line C—C of

FIG. 1

;





FIG. 3

is a partial cross-sectional view through line B—B of

FIG. 2

;





FIG. 4

is a front view shown partially in section of the present invention;





FIG. 5

is a cross-sectional view through line C—C of

FIG. 4

;





FIG. 6

is a cross-sectional view through line D—D of

FIG. 5

showing a sprag type one-way bearing;





FIG. 7

is a cross-sectional view through line D—D of

FIG. 5

showing a roller ramp type one-way bearing;





FIG. 8

is a front view of the present invention showing the preferred embodiment of the field replaceable feature;





FIG. 9

is a front view of the present invention showing a second embodiment of the field replaceable feature; and





FIG. 10

is a front view of the present invention showing a third embodiment of the field replaceable feature.











DETAILED DESCRIPTION OF THE INVENTION




The controlled descent device


10


of the present invention shown in

FIGS. 4-10

comprises a steel housing


1


containing a line


23


having a carabiner


5


or the like on one end wound on a drum


24


. A constant force retraction spring


6


provides a force on the drum


24


to retract the line


23


into the housing


1


. A centrifugal brake mechanism


7


like the braking mechanism of the Dynescape® descender is attached to the housing and engages the drum to produce a resisting force when the line is extracted. The preferred embodiment of the braking mechanism


7


includes a brake hub


13


, three spokes


14


, brake shoes


15


and brake housing


16


similar in form and function to the Dynescape® descender. A pinion gear with shaft


29


is supported on the brake housing


16


by two roller bearings


12


. The brake hub


13


is supported on the shaft by a one-way roller bear


21


and an additional bearing


12




a.






This one-way bearing


21


may be one of several types of manufactured mechanisms such as those commercially available from Morse and Formsprag®, that produce a rotational motion in one direction and a fixed motion in the opposite direction such as back stopping, clutch or indexing bearings, roller-ramp type bearings or sprag clutches and sprag clutch/roller bearing combinations. Specifically, the one-way bearing permits rotation of its inner raceway relative to its outer raceway in one direction. When rotated in the opposite direction, the two raceways remain fixed with respect to one another, rotating in unison.




The sprag type bearing


35


illustrated in

FIG. 6

contains a series of spring loaded sprags


36


that reside between, and are in contact with the inner


37


and outer


38


bearing raceways. When rotation of the outer raceway


38


, relative to the inner raceway


37


, is in one direction, these sprags


36


cam, locking the inner raceway


37


to the outer raceway


38


. When rotation is in the opposite direction, the sprags


36


uncam, permitting the inner raceway


37


to rotate relative to the outer raceway


38


. Sprag type bearings


35


frequently have a set of rollers


42


situated next to the sprags as shown in FIG.


5


. These rollers provide concentricity and produce smooth rolling motion between the raceways.




The roller-ramp type bearing


40


illustrated in

FIG. 7

contains an array of balls or rollers


41


that reside between, and are in contact with the inner


37


and outer


38


raceways. The surface of the inner raceway


37


is ramped


39


, such that the balls or rollers


41


roll up the ramps


39


during rotation in one direction, and down the ramps


39


in the opposite direction. As the balls or rollers


41


roll up the ramps, they wedge between the inner


37


and outer


38


raceway, preventing relative rotation of the inner


37


and outer


38


raceways. As the balls or rollers rolls down the ramps


39


, they unwedge and provide clearance for the outer raceway


37


to roll relative to the inner raceway


37


, like a standard roller bearing. The one-way roller bearing


21


connecting the shaft


29


to the hub


13


permits engagement of the brake mechanism only during line extraction. During line retraction, the pinion with shaft


29


will rotate freely, while the hub


13


, spokes


14


and brake shoes


15


remain stationary.




The line


23


of the present invention is formed from flat webbing, preferably of nylon material. The drum


24


on which the line


23


is wrapped has side walls spaced slightly wider than the webbing width, such that when line


23


is wrapped on the drum


24


the line


23


will stack in consecutive layers. The line


23


passes through a nozzle


25


as it leaves the housing


1


. The nozzle opening is dimensioned slightly larger than the webbing cross-section. This shape is designed to direct the webbing onto the drum


24


in consecutive layers. The webbing also passes across a cylindrical roller


26


between the nozzle


25


and drum


24


. The roller


26


helps redirect the webbing


23


and lay it flat on the drum


24


.




The line


23


of the present invention may also be field replaceable as shown in

FIGS. 8-10

. The field replaceable line comprises an internal portion of line


27


that is permanently attached to the drum, and a distal portion of line


28


that extracts from the housing and is replaceable. The ends of each portion are joined by a linkage. The ends of the webbing are sewn in loops


29


. In the preferred embodiment shown in

FIG. 8

, the loops


29


each contain a steel cylinder


30


, oriented with their diameters supporting the webbing. A bolt


31


passes through a hole formed in the top of each loop


29


and through each cylinder. The linkage, including the two cylinders


30


, has a width identical to the width of the webbing. The shape of the linkage facilitates it fitting inside the drum, and laying flat and neatly on the drum beneath the other layers of webbing. To replace the line, a user removes the nozzle


25


, and extracts all of the line from the housing until the linkage is external to the housing. The user then disconnects the replaceable portion of line by removing the bolt


31


connecting the cylinders. A new nozzle


25


, line


23


, cylinders


30


and bolt


31


is then connected, replacing the worn components. The line


23


is then returned to the housing and the new nozzle


25


is re-attached.




It is contemplated that any means of joining two portions of webbing that are attached using loops that contain hardware joined by a screw, bolt or other means or two loops attached using a screw lock link could be substituted for the above-described arrangement. Alternate linkage mechanisms are illustrated in

FIGS. 9 and 10

. In a second alternate embodiment illustrated in

FIG. 9

, a steel plate


32


is threaded through each loop


29


. At least one screw


33


and preferably two screws pass through the loops


29


and plates


33


to anchor the two portions of webbing together.

FIG. 10

depicts a third alternate embodiment in which a screw lock link


34


is threaded through loops


29


.




If not otherwise stated herein, it may be assumed that all components and/or processes described heretofore may, if appropriate, be considered to be interchangeable with similar components and/or processes disclosed elsewhere in the specification, unless an indication is made to the contrary.




It should be appreciated that the apparatus and methods of the present invention may be configured and conducted as appropriate for the application. The embodiments described above are to be considered in all respects only as illustrative and not restrictive. The scope of the invention is defined by the following claims rather than by the foregoing description. All changes which come within the meaning and range of equivalency of the claims are to be embraced within their scope.



Claims
  • 1. A controlled descent device comprising:a housing; a rotatable drum supported within said housing; a line constructed of flat webbing wound around said drum adapted for extraction and retraction from said housing; a brake mechanism for engaging said drum to produce a resisting force during line extraction wherein said brake mechanism includes a pinion gear with a shaft supported on said housing, and a brake hub supported on said shaft by said one-way bearing; and a manufactured mechanism linking said brake mechanism to said drum for producing a rotational motion in one direction and fixed motion in the opposite direction.
  • 2. The controlled descent device of claim 1 wherein said manufactured mechanism is a one-way bearing.
  • 3. The controlled descent device of claim 2 wherein said one-way bearing is selected from the group consisting of roller, sprag clutches and sprag clutch with roller combinations.
  • 4. The controlled descent device of claim 1 wherein said flat webbing is composed of a material having minimum 20% elongation at break.
  • 5. The controlled descent device of claim 1 wherein said drum has side walls spaced slightly wider than the webbing width, whereby said line is adapted to be wound on said drum in consecutive layers.
  • 6. The controlled descent device of claim 5 further including a nozzle supported by said housing through which said line is extracted, said nozzle including an opening slightly larger than the webbing width, whereby said line is directed onto said drum in consecutive layers.
  • 7. The controlled descent device of claim 6 further including a cylindrically shaped roller supported by said housing for directing said line onto and off of said drum.
  • 8. In a controlled descent device including a housing, a rotatable drum supported within said housing, a line wound around said drum adapted for extraction and retraction from said housing, a brake mechanism for engaging said drum to produce a resisting force during line extraction; wherein the improvement comprises a manufactured mechanism linking said brake mechanism to said drum for producing a rotational motion in one direction and fixed motion in the opposite direction and wherein said line further comprising a flat webbing having an internal permanent portion and a distal replaceable portion, said permanent portion and said replaceable portion having ends joined by a linkage, whereby said replaceable portion is adapted to be replaced when worn.
  • 9. The controlled descent device of claim 8 wherein each of said joined ends has a loop wherein said linkage comprises a cylinder supported within each loop, and a bolt passing through holes formed in each loop and through each cylinder.
  • 10. The controlled descent device of claim 8 wherein each of said joined ends has a loop, wherein said linkage comprises a screw lock link passing through the loops.
  • 11. The controlled descent device of claim 8 wherein each of said joined ends has a loop, wherein said linkage comprises a plate supported within each said loop, and at least one screw passing through the loops and plates.
  • 12. The controlled descent device of claim 8 wherein said one-way bearing is selected from the group consisting of roller, sprag clutches and sprag clutch with roller combinations.
  • 13. A controlled descent device comprising:a housing; a rotatable drum supported within said housing; a line constructed of flat webbing wound around said drum adapted for extraction and retraction from said housing; and wherein said line further comprises an internal permanent portion and a distal replaceable portion, said permanent portion and said replaceable portion having ends joined by a linkage, whereby said replaceable portion is adapted to be replaced when worn.
  • 14. The controlled descent device of claim 13 wherein each of said joined ends has a loop wherein said linkage comprises a cylinder supported within each loop, and a bolt passing through holes formed in each loop and through each cylinder.
  • 15. The controlled descent device of claim 13 wherein each of said joined ends has a loop, wherein said linkage comprises a screw lock link passing through the loops.
  • 16. The controlled descent device of claim 13 wherein each of said joined ends has a loop, wherein said linkage comprises a plate supported within each said loop, and at least one screw passing through the loops and plates.
  • 17. A controlled descent device comprising:a housing; a rotatable drum supported within said housing; a line wound around said drum adapted for extraction and retraction from said housing; a brake mechanism for engaging said drum to produce a resisting force during line extraction wherein said brake mechanism includes a pinion gear with a shaft supported on said housing, and a brake hub supported on said shaft by said one-way bearing; and a manufactured mechanism linking said brake mechanism to said drum for producing a rotational motion in one direction and fixed motion in the opposite direction, and wherein said manufactured mechanism is a one-way bearing.
  • 18. The controlled descent device of claim 17 wherein said one-way bearing is selected from the group consisting of back-stopping, clutch, indexing roller, sprag clutches and sprag clutch with roller combinations.
  • 19. A controlled descent device comprising:a housing; a rotatable drum supported within said housing; a line wound around said drum adapted for extraction and retraction from said housing; wherein said line further comprises an internal permanent portion and a distal replaceable portion, said permanent portion and said replaceable portion having ends joined by a linkage, whereby said replaceable portion is adapted to be replaced when worn; wherein each of said joined ends has a loop; and wherein said linkage comprises one of the following: a cylinder supported within each loop and a bolt passing through holes formed in each loop and through each cylinder; a screw lock link passing through the loops; and a plate supported within each said loop, and at least one screw passing through the loops and plates.
Parent Case Info

This application claims the benefit of Provisional Application No. 60/216,110, filed Jul. 6, 2000.

US Referenced Citations (10)
Number Name Date Kind
3188052 Longworth Jun 1965 A
4359139 Bloder Nov 1982 A
4372433 Mitchell et al. Feb 1983 A
4480716 Soubry et al. Nov 1984 A
4487292 Smith et al. Dec 1984 A
4655327 Tomioka et al. Apr 1987 A
4674599 Nelson Jun 1987 A
4722422 Hiraoka Feb 1988 A
4877110 Wolner Oct 1989 A
5351906 Feathers Oct 1994 A
Foreign Referenced Citations (4)
Number Date Country
GB 375 210 Jun 1932 FR
1 270 109 Aug 1961 FR
1 488 544 Jul 1967 FR
2256413 Sep 1992 GB
Provisional Applications (1)
Number Date Country
60/216110 Jul 2000 US