1. Field of Invention
The present invention relates generally to a metering device to control the dispensing of fluids. More specifically, the present invention relates to a dispensing device that economically and reliably dispenses predetermined quantity of fluids accurately.
2. Description of Related Art
In many manufacturing processes, a predetermined quantity of fluid must be accurately transferred from bulk storage into small containers. For mass production, this transferring and dispensing of fluid must be performed quickly, economically, reliably, and accurately.
One of the commonly used dispensing device is a very precise electrical valve that accurately releases a predetermined quantity of fluids under pressure from a bulk container. Fluids are fed from a bulk container under pressure to an electrical valve. The electrical valve opens for a short moment to release a predetermined amount of fluid. The main control is the very expensive electrical valve. The electrical valve is expensive to maintain and replace. Furthermore, the electrical valve has a relatively short operating life.
An objective of the present invention is to provide an economical and reliably dispensing device that can accurately dispense fluid from a source to a destination. A further objective of the present invention is to provide a mechanical means for accurately dispensing fluid for mass production process. Yet another objective of the present invention is to provide a low maintenance controlled dispensing device that can reliably and accurately dispense a predetermine quantity of fluid.
The present invention is a dispensing device that can economically and reliably dispenses predetermined quantity of fluids accurately. The controlled dispensing device comprises of an elongated rod with one or more through holes formed perpendicularly through its axis defining one or more fluid flow paths. Adjacent to each through hole is an angular fluid flow path with one section generally parallel to the through hole and another section generally perpendicular to the through hole. In the preferred embodiment, the through holes and the angular fluid flow paths are positioned alternately through most of the length of the elongated rod. The elongated rod slides within a base component that has corresponding openings to enable accurate and reliable dispensing of predetermined quantity of fluids through the controlled dispensing device.
The following description and figures are meant to be illustrative only and not limiting. Other embodiments of this invention will be apparent to those of ordinary skill in the art in view of this description.
As shown in
As shown in
A pump may be utilized to withdraw fluids from its source, such as a bulk container, through the angular fluid flow path 3. After a predetermined quantity of fluid is withdrawn, the elongated solid rod 1 is slid to its second position wherein the two openings 7, 8 in the base component 6 that correspond with the two open ends of the through hole 2 are in fluid connection as shown in
Another embodiment of the present invention utilizes a circular solid rod that slides in a circular channel in a base component. The circular solid rod has multiple through holes formed at regular intervals perpendicularly through its circular axis defining one or more fluid flow paths through the circular solid rod. Adjacent to each hole is an angular fluid flow path with half of the angular flow path generally parallel to the through hole and the other half of the angular fluid flow path generally perpendicular to the through hole. The two halves of the angular flow path are in fluid connection generally at the circular axis of the circular solid rod. The multiple through holes and the angular fluid flow paths are positioned alternately through the circumference of the circular solid rod. The circular solid rod may also have a circular groove between each of the through hole and the adjacent angular fluid flow path so that an O-ring may be disposed in each of the circular groove to provide sealing.
The circular solid rod is slidably disposed in a base component with two corresponding openings that correspond with the an open end of the through hole and the fluid flow path opening that is perpendicular to the through hole. The two openings are all positioned on the same plane perpendicular to the circular axis of the circular solid rod. As the circular solid rod is rotated within the channel in the base component, one of the openings will be blocked by the circular solid rod. A pump may be utilized to operate this alternate embodiment with the circular solid rod in a similar fashion to the elongated solid rod embodiment to reliably and accurately dispense a predetermine quantity of fluid.
The controlled dispensing device replaces the conventional expensive electrical valve with a mechanical device that is low cost, reliable, and meters an accurate quantity of fluids for mass production process. The controlled dispensing device of the present invention may be economically utilized for mass production to fill liquid filled cotton swabs or other similar small containers of fluids.
Although the invention has been described in terms of particular embodiments and applications, one of ordinary skill in the art, in light of this teaching, can generate additional embodiments and modifications without departing from the spirit of or exceeding the scope of the claimed invention. Accordingly, it is to be understood that the drawings and descriptions herein are proffered by way of example to facilitate comprehension of the invention and should not be construed to limit the scope thereof.
Number | Name | Date | Kind |
---|---|---|---|
2765962 | Perkins | Oct 1956 | A |
3072303 | Monk | Jan 1963 | A |
3442304 | Theys et al. | May 1969 | A |
4366918 | Naka | Jan 1983 | A |
4602657 | Anderson et al. | Jul 1986 | A |
4979639 | Hoover et al. | Dec 1990 | A |
7069963 | Friberg et al. | Jul 2006 | B2 |
7108024 | Navarro | Sep 2006 | B2 |
Number | Date | Country | |
---|---|---|---|
20060208006 A1 | Sep 2006 | US |