Controlled ferroresonant constant current source

Information

  • Patent Grant
  • 6426610
  • Patent Number
    6,426,610
  • Date Filed
    Friday, July 13, 2001
    24 years ago
  • Date Issued
    Tuesday, July 30, 2002
    23 years ago
Abstract
A controlled ferroresonant constant current source includes a ferromagnetic core accommodating the below-mentioned inductors. An input coil is to be connected to an alternating voltage source. An output coil is inductively coupled to the input coil, and is to be connected to a load. A control coil is inductively coupled to the output coil, and is to be connected to a switch for regulating the current output of the constant current source. A first capacitor coil is inductively coupled to the output coil, and is to be connected to a capacitor to provide a first resonant sub-circuit having maximum gain. A second capacitor coil is inductively coupled to the control inductor, and is to be connected to the capacitor to provide a second resonant sub-circuit to control resonant gain.
Description




FIELD OF THE INVENTION




This invention relates generally to a ferroresonant transformer, and more particularly to a controlled ferroresonant transformer employed as a constant current source.




BACKGROUND OF THE INVENTION




Ferroresonant transformers are employed as constant current sources. In general, the operation of ferroresonant transformers are well known. For example, see my U.S. Pat. Nos. 5,886,507 and 5,939,838, the disclosures of which are herein incorporated by reference. Linear inductors as part of the transformer include a steel core, a coil and an air gap. The inductance is determined by the core cross-sectional area, the number of turns, and the length of the air gap. As the power rating of a controlled ferroresonant current source increases, the resonant capacitance, capacitive current, and control inductive current increase, which requires the control inductor to have a lower value. To reduce the inductance of an inductor, the turns need to be reduced or the air gap increased. The cross-sectional area need to be adjusted to maintain an acceptable maximum flux density. A large air gap poses serious thermal problems because of fringing flux, which cuts through the core laminations and the magnet wire at a high loss angle, producing eddy currents that overheat the inductor and reduce efficiency. Increasing the size of the magnet wire will further reduce efficiency.




Accordingly, it is an object of the present invention to provide a ferroresonant transformer employed as a constant current source which overcomes the above-identified drawbacks associated with high power ratings.




SUMMARY OF THE INVENTION




In a first aspect of the present invention, a controlled ferroresonant constant current source includes a ferromagnetic core. An input coil is disposed about the core, and the input coil is to be connected to an alternating voltage source. An output coil is disposed about the core and is inductively coupled to the input coil. The output coil is to be connected to a load. A control coil is disposed about the core and is inductively coupled to the output coil. The control coil is to be connected to a switch for regulating the current output of the constant current source. A first capacitor coil is disposed about the core and is inductively coupled to the output coil. The first capacitor coil is to be connected to a capacitor to provide a first resonant sub-circuit having maximum gain. A second capacitor coil is disposed about the core and is inductively coupled to the control coil. The second capacitor coil is to be connected to the capacitor to provide a second resonant sub-circuit to control resonant gain.




In a second aspect of the present invention, a controlled ferroresonant constant current source includes a ferromagnetic core. An input coil is disposed about the core, and the input coil is to be connected to an alternating voltage source. An output coil is disposed about the core and is inductively coupled to the input coil. The output coil is to be connected to a load. A control coil is disposed about the core and is inductively coupled to the output coil. The control coil is connected to a switch for regulating the current output of the constant current source. A first capacitor coil is disposed about the core and is inductively coupled to the output coil. A second capacitor coil is disposed about the core and is inductively coupled to the control coil. A capacitor is connected to the first capacitor coil for providing a first resonant sub-circuit to generate maximum gain, and the capacitor is connected to the second capacitor coil for providing a second resonant sub-circuit to control resonant gain.




An advantage of the present invention is that the output and control inductors may be integrated onto the transformer core.




A second advantage is that two separate resonant sub-circuits may be implemented which both provide maximum gain and control resonant gain.




A third advantage is that low inductance, high current chokes are no longer a limiting factor to increasing the power rating of the current source.




A fourth advantage is simplified wiring between the transformer core and external components.




These and other advantages of the present invention will become more apparent in the light of the following detailed description and accompanying figures.











BRIEF DESCRIPTION OF THE DRAWINGS





FIG. 1



a


schematically illustrates a controlled ferroresonant transformer.





FIG. 1



b


is an equivalent electrical circuit of the controlled ferroresonant transformer of

FIG. 1



a.







FIG. 2



a


schematically illustrates a controlled ferroresonant transformer employed as a current source.





FIG. 2



b


is an equivalent electrical circuit of the current source of

FIG. 2



a.







FIG. 3



a


schematically illustrates a ferroresonant transformer with the output inductor incorporated into the core of the transformer.





FIG. 3



b


is an equivalent electrical circuit of the ferroresonant transformer of

FIG. 3



a.







FIG. 4

is a graph illustrating various signals of the controlled ferroresonant transformer of

FIGS. 1



a


and


1




b.







FIG. 5



a


schematically illustrates a controlled ferroresonant constant current source showing a relationship between the output and control coils and shunts.





FIG. 5



b


is an equivalent electrical circuit of the constant current source of

FIG. 5



a.







FIG. 6



a


schematically illustrates a controlled ferroresonant constant current source showing a relationship between the control and output coils and shunts.





FIG. 6



b


is an equivalent electrical circuit of the constant current source of

FIG. 6



a.







FIG. 7



a


schematically illustrates a controlled ferroresonant constant current source having two separate resonant circuits.





FIG. 7



b


is an equivalent electrical circuit of the constant current source of

FIG. 7



a.







FIG. 8

is a modification of the electrical circuit of

FIG. 7



b


to simplify circuit analysis.





FIG. 9



a


graphically illustrates various waveforms of the constant current source of

FIG. 8

during no load (short circuit), maximum output current condition.





FIG. 9



b


graphically illustrates various waveforms of the constant current source of

FIG. 8

during no load (short circuit), reduced output current condition.





FIG. 9



c


graphically illustrates various waveforms of the constant current source of

FIG. 8

during full load, maximum output current condition.





FIG. 9



d


graphically illustrates various waveforms of the constant current source of

FIG. 8

during full load, reduced output current condition.





FIG. 10

schematically illustrates a variation of the electrical circuit of

FIG. 8

showing the capacitor coil separated into several windings.





FIG. 11

schematically illustrates a variation of the electrical circuits of

FIGS. 8 and 10

showing the connection of parallel capacitor windings across a capacitor bank.











DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT




A controlled ferroresonant constant current source in accordance with the present invention can best be understood by first explaining its development by the inventor. In explaining the invention in the following figures, like elements are labeled with like reference numbers.




With reference to

FIGS. 1



a


and


1




b


, a controlled ferroresonant transformer


10


includes a ferromagnetic core


11


, an input coil


12


connected to an alternating voltage source V


in


, a capacitor coil


14


having an output voltage V


O


coupled across a resonant capacitor


16


, and a control coil


18


. A switch


20


places a short circuit across the control coil


18


so as to force all the flux to pass through shunt X


IND


which results in having an inductor or reactance X


IND


in parallel with the capacitor coil


14


, in order for the transformer


10


to regulate the output voltage V


O


(see FIG.


4


).




As shown in

FIGS. 2



a


and


2




b,


a ferroresonant current source


100


may be achieved by placing an output inductor


102


such as the linear inductor X


O


connected to a load


104


, in series with the voltage output V


O


, and by feeding back the output current instead of the output voltage.




As shown in

FIGS. 3



a


and


3




b,


a ferroresonant transformer


200


may be made to function as a constant current source by incorporating an output inductor, such as an output coil


202


and shunt X


O


into the core


11


of the ferroresonant transformer. In this instance, a control inductor


204


is employed externally of the transformer core


11


.




Several factors were considered in developing an improved controlled ferroresonant constant current source. As previously mentioned, a linear inductor includes a steel core, a coil and an air gap. The inductance is determined by the core cross-sectional area, the number of turns, and the length of the air gap. As the power rating of a controlled ferroresonant current source increases, the resonant capacitance, capacitive current, and control inductive current increase, which requires the control inductor to have a lower value. To reduce the inductance of an inductor, the turns need to be reduced or the air gap increased. The cross-sectional area needs to be adjusted to maintain an acceptable maximum flux density. A large air gap poses serious thermal problems because of fringing flux, which cuts through the core laminations and the magnet wire at a high loss angle, producing eddy currents that overheat the inductor and reduce efficiency. Increasing the size of the magnet wire will further increase the magnitude of eddy currents and reduce efficiency.




Integrating the control inductor into the core of the ferroresonant transformer using magnetic shunts significantly reduces the gap loss heating effect. The air gap of the shunts is more effective in determining inductance and can be easily distributed into multiple air gaps of shorter lengths. If the control inductor is integrated with the transformer core, and the output inductor is external to the transformer core, then the inductor is subjected to the load voltage which may be extremely high in magnitude (i.e., 1000-5000V). A high voltage inductor requires a large number of turns with high electrical insulation between turns and layers. A large number of turns will also increase the resistive losses and reduce the efficiency.




The inventor has discovered that the controlled ferroresonant constant current source may be improved by integrating both the output inductor


102


and the control inductor


204


onto the core of the ferroresonant transformer while using standard EI laminations. In order for the controlled ferroresonant constant current source to operate, the control inductor must interface with the capacitor sub-circuit such that the currents are in phase. For example, as shown in

FIG. 4

, the capacitor inductor voltage V


C


and the capacitor inductor current I


C


are 90° out of phase with respect to each other, and the capacitor current I


C


and the output inductor current I


IND


are in phase with respect to each other.




A difficulty in integrating the output inductor


102


and the control inductor


204


onto the transformer core


11


is encountered when the control inductor shunts X


IND


are placed before the output inductor shunts X


O


as shown in the current source


300


illustrated in

FIGS. 5



a


and


5




b.


In this case, each time the control switch


20


closes, the inductor diverts all of the flux away from the output circuit and hence reduces the output voltage and current to zero.




Alternatively, if the control inductor shunts X


IND


are placed after the output inductor shunts X


O


as shown in the constant current source


400


illustrated in

FIGS. 6



a


and


6




b,


then closing the switch


20


places the control reactance X


IND


in parallel with the load


104


. The control inductor current is limited by the leakage reactance X


O


. The load current is distorted by the switching effect of the control inductor switch


20


.




Turning now to

FIGS. 7



a


and


7




b,


a controlled constant current source


500


embodying the present invention will now be described. The inventor has determined that the above-mentioned drawbacks in integrating the output inductor and the control inductor are solved by creating two separate resonant sub-circuits-one to interface with the load inductor including the output coil


102


and the shunt X


O


to provide maximum gain, and another to interface with the control inductor, including the control coil


18


and the shunt X


IND


to control the resonant gain.




More specifically, the current source


500


has a ferromagnetic core


11


about which the transformer coils are disposed. An input coil


12


is preferably disposed about a central longitudinal portion of the core


11


. A first capacitor coil


502


is adjacent to one side of and inductively coupled to the input coil


12


. A second capacitor coil


504


is adjacent to an opposite side of and inductively coupled to the input coil


12


. An output coil


102


is adjacent to and inductively coupled to the first capacitor coil


502


. A control coil


18


is adjacent to and inductively coupled to the second capacitor coil


504


. As shown in

FIG. 7



a,


the coils are preferably arranged along a length of the core


11


in the following sequence: the control coil


18


, the second capacitor coil


504


, the input coil


12


, the first capacitor coil


502


and the output coil


102


.




With reference to

FIG. 7



b,


the leakage reactance X


S


is split into two parts, each being twice the value of the leakage inductance of the circuits shown in

FIGS. 5



b


and


6




b.


The effect of connecting the two capacitor sub-circuits in parallel is the same as combining the individual energy storage capability of each, with the control sub-circuit controlling both resonant sub-circuits. The total capacitor current is not split equally between the two capacitor sub-circuits, since each sub-circuit has a different load. The integration of the output inductor


102


and the control inductor


204


into the main transformer core requires more window area which can be easily obtained by replacing EI laminations with two E laminations. Strip steel or UI laminations may be employed as well.




The benefits of incorporating both the control inductor and the output inductor onto the transformer core are 1) complete isolation between all circuits; 2) simplified wiring between the transformer core and external components; 3) low inductance, high current chokes no longer a limiting factor to increasing the power rating of the current source since shunts have a wider inductance range; and 4) permits the use of standard laminations which simplifies the assembly process.




A modification of the circuit of

FIG. 7



b


is shown in

FIG. 8

to simplify circuit analysis. All magnetizing and resistive losses are assumed to be negligible, and all turns ratios of ideal transformers, T


1


-T


5


are assumed to be 1:1. The circuit of

FIG. 8

differs from that of

FIG. 7



b


in that first and second output capacitors


501


and


503


are equally split between the first and second capacitor coils, each carrying a current I


C








{right arrow over (


I





O1


+L )}={right arrow over (


I





1


+L )}+


j


{right arrow over (


I





O1


+L )}′,{right arrow over (


I





O2


+L )}={right arrow over (


I





2


+L )}+


j


{right arrow over (


I





O2


+L )}′,{right arrow over (


I





O


+L )}={right arrow over (


I





O1


+L )}+{right arrow over (


I





O2


+L )}=({right arrow over (


I





1





+I





2


+L )})+


j


({right arrow over (


I





O1





′+I





O2


+L ′)})  (1)






The control inductor draws a current (


2


) X I


IND


. The resonant current in the second capacitor coil is:






{right arrow over (


I





RES


+L )}={right arrow over (


I





C


+L )}−{right arrow over (


I





IND


+L )}−{right arrow over (


I





O2


+L ′)}={right arrow over ((


I





C





+I





IND





+I





O2


+L ′))}  (2)






where I


C


is capacitive while I


IND


and I


O2


′ are inductive, and therefore I


C


is opposite to I


IND


and I


O2


′.




The circuit of

FIG. 8

is further different from that of

FIG. 7



b


in the way the capacitor coils


502


,


504


are linked together. As shown in

FIG. 8

, the circuit includes a coupling sub-circuit including two coupling windings


506


,


508


connected in parallel and respectively inductively coupled to the first and second capacitor coils


502


,


504


. The main purpose of the coupling windings is to link together the first and second capacitor coils


502


,


504


. Since the two coupling windings


506


,


508


are connected in parallel, the first and second capacitor coils


502


,


504


have the same voltage, and therefore the first capacitor coil carries the same resonant current as that of the second capacitor coil:






{right arrow over (


I





RES


+L )}={right arrow over (


I





C


+L )}−{right arrow over (


I





IND


+L )}−{right arrow over (


I





O1


+L ′)}={right arrow over ((


I





C





+I





IND





+I





O1


+L ′))}  (3)






(see, for example,

FIGS. 4

,


9




a


and


9




b


).




The coupling winding carries I


IND


to the first capacitor coil


502


.




The load draws a current I


O


. During short circuit (no load) condition, I


O


is purely inductive:






{right arrow over (


I





O


+L )}=


j


({right arrow over (


I





O1





′+I





O2


+L ′)})  (4)






I


O2


is supplied to the load by the bottom circuit through the second coupling winding


508


:






{right arrow over (


I





CPL


+L )}={right arrow over (


I





O2


+L )}−{right arrow over (


I





IND


+L )}=({right arrow over (


I





O2





−I





IND


+L )})  (5)






In this case, I


O2


and I


IND


are both inductive and therefore in phase (see, for example,

FIGS. 9



a


and


9




b


).




During short circuit condition (no load):






{right arrow over (


I


+L )}={right arrow over (


I





1


+L )}={right arrow over (


I





2


+L )}=0


, I




1




=I




2


=0  (5)






and the purely inductive current I


O


is supplied by the resonant circuits of the first capacitor coil


502


(I


O1


′) and the second capacitor coil


504


(I


O2


′).




As the load increases, the real component of I


O


, (I


1


and I


2


) increases to meet the load demand. The increase in the real component of I


O


results in a phase shift in I


O


and I


CPL


relative to I


RES


and I


IND


(see, for example,

FIGS. 9



c


and


9




d


).




The advantage of using the modified circuit of

FIG. 8

over that of

FIG. 7



b


and

FIG. 11

is that the modified circuit allows the capacitor coil to be separated into several windings, each connected to a lower capacitance without the risk of circulating currents, as is the case in

FIG. 11

described hereinbelow. As shown in

FIG. 10

, for example, the first capacitor coil


502


of

FIG. 8

is separated into capacitor windings


510


and


512


that are respectively associated with capacitors


514


and


516


. Likewise, the second capacitor coil


504


of

FIG. 8

is divided into capacitor windings


518


and


520


that are respectively associated with capacitors


522


and


524


. This is especially useful with a high power constant current source where the total resonant capacitive current is too large for being accommodated by a single magnet wire.




Alternatively as shown in

FIG. 11

, the circuit of

FIG. 7



b


may be modified such that the capacitor


16


may be substituted with a plurality of capacitors such as the four capacitors


526


,


528


,


530


and


532


. Further, the first capacitor coil


502


of

FIG. 7



b


may be substituted with a plurality of parallel capacitor windings, such as the two capacitor windings


534


and


536


. Similarly, the second capacitor coil


504


of

FIG. 7



b


may be substituted with a plurality of parallel capacitor windings, such as the two capacitor windings


538


and


540


to increase current carrying capacity of the capacitor coil. A drawback with connecting parallel capacitor windings to increase current carrying capacity of the capacitor coil results in circulating current between the windings which may be several times larger than the current which may be otherwise carried by a single winding. This is due to a difference of induced voltage (V


1


−V


2


, V


3


−V


4


) between the windings. One way to overcome this is to transpose the wires during coil winding. While transposing wires in bifilar winding is straightforward, the task becomes increasingly complicated with high current coils employing more than two windings in parallel. However, transposing the wires and employing more than two wires in parallel is not a practical remedy. These weaknesses are overcome by the circuit previously shown and described with respect to FIG.


10


.




Although the invention has been shown and described in preferred embodiments, it should be understood that numerous modifications can be made without departing from the spirit and scope of the present invention. Accordingly, the present invention has been shown and described by way of illustration rather than limitation.



Claims
  • 1. A controlled ferroresonant constant current source, comprising:a ferromagnetic core; an input coil disposed about the core, the input coil to be connected to an alternating voltage source; an output coil disposed about the core and inductively coupled to the input coil, the output coil to be connected to a load; a control coil disposed about the core and inductively coupled to the output coil, the control coil to be connected to a switch for regulating the current output of the constant current source; a first capacitor coil disposed about the core and inductively coupled to the output coil, the first capacitor coil to be connected to a capacitor to provide a first resonant sub-circuit having maximum gain; and a second capacitor coil disposed about the core and inductively coupled to the control coil, the second capacitor coil to be connected to a capacitor to provide a second resonant sub-circuit to control resonant gain.
  • 2. A controlled ferroresonant constant current source as defined in claim 1, wherein the coils are arranged along a length of the core in the following sequence: control coil, second capacitor coil, input coil, first capacitor coil and output coil.
  • 3. A controlled ferroresonant constant current source as defined in claim 1, wherein each of the first and second capacitor coils includes a plurality of windings disposed about the core.
  • 4. A controlled ferroresonant constant current source as defined in claim 1, wherein the ferromagnetic core includes EI laminations.
  • 5. A controlled ferroresonant constant current source as defined in claim 1, wherein the ferromagnetic core includes two E laminations.
  • 6. A controlled ferroresonant constant current source as defined in claim 1, wherein the ferromagnetic core includes strip steel.
  • 7. A controlled ferroresonant constant current source as defined in claim 1, wherein the ferromagnetic core includes UI laminations.
  • 8. A controlled ferroresonant constant current source, comprising:a ferromagnetic core; an input coil disposed about the core, the input coil to be connected to an alternating voltage source; an output coil disposed about the core and inductively coupled to the input coil, the output coil to be connected to a load; a control coil disposed about the core and inductively coupled to the output coil, the control coil connected to a switch for regulating the current output of the constant current source; a first capacitor coil connected to a capacitor, and disposed about the core and inductively coupled to the output coil; and a second capacitor coil connected to a capacitor, and disposed about the core and inductively coupled to the control coil, the first capacitor coil for providing a first resonant sub-circuit to generate maximum gain, and the second capacitor coil for providing a second resonant sub-circuit to control resonant gain.
  • 9. A controlled ferroresonant constant current source as defined in claim 8, wherein the coils are arranged along a length of the core in the following sequence: control coil, second capacitor coil, input coil, first capacitor coil and output coil.
  • 10. A controlled ferroresonant constant current source as defined in claim 8, wherein each of the first and second capacitor coils includes a plurality of windings disposed about the core and to be connected to an associated capacitor.
  • 11. A controlled ferroresonant constant current source as defined in claim 8, wherein the capacitor associated with the first capacitor coil includes a plurality of capacitors coupled in parallel with one another, and the capacitor associated with the second capacitor coil includes a plurality of capacitors coupled in parallel with one another.
  • 12. A controlled ferroresonant constant current source as defined in claim 8, wherein the ferromagnetic core includes EI laminations.
  • 13. A controlled ferroresonant constant current source as defined in claim 8, wherein the ferromagnetic core includes two E laminations.
  • 14. A controlled ferroresonant constant current source as defined in claim 8, wherein the ferromagnetic core includes strip steel.
  • 15. A controlled ferroresonant constant current source as defined in claim 8, wherein the ferromagnetic core includes UI laminations.
US Referenced Citations (7)
Number Name Date Kind
3914685 Van Gilder Oct 1975 A
4142141 Hase Feb 1979 A
4156175 Nissan May 1979 A
4439722 Budnik Mar 1984 A
4833338 Bartlett et al. May 1989 A
5886507 Jnik Mar 1999 A
5939838 Janik Aug 1999 A