The present invention relates to AC generators and, more particularly, to AC generators that are driven by an aircraft engine to provide a constant frequency output.
In many of today's electric power systems for aircraft, electrical generators are required to produce power at a constant frequency (e.g., 400 Hz). In some instances, constant frequency power may be produced by driving an AC generator at a constant rotational speed. For example, an auxiliary power unit (APU) may be employed to drive the AC generator. The APU may be controlled to rotate at one particular speed because its speed of operation may be independent of varying main engine power demands needed to control propulsion of the aircraft.
Alternatively some aircraft designs employ a hydromechanical transmission interposed between a variable speed engine and a generator. The transmission may be controlled so that rotational speed of the generator may remain relatively constant even though the engine speed may vary to meet propulsion demands.
In still other aircraft power systems, constant frequency AC power may be produced by coupling a constant frequency generator (CFG) to a variable speed engine. In a typical CFG, an exciter generator may supply AC power to a main generator rotor. A controller may be employed to vary speed of rotation of rotor flux so that irrespective of physical rotation speed of the rotor, AC power at the desired constant frequency is produced. In some instances, the exciter generators may be large and heavy and may contribute substantially to overall weight and cost of a CFG.
As aircraft designs evolve there is a continuous recognition of the desirability of reducing weight and cost of components. Additionally there is a continuing effort to improve engine operating parameters to reduce fuel consumption.
As can be seen, there is a need for an aircraft electrical system that may produce constant frequency AC power without incurring weight and cost penalties associated with hydromechanical transmissions, or requirements for constant speed operation of an APU. Additionally there is a need for a CFG with an exciter generator that may be constructed with relatively low weight and cost.
In one aspect of the present invention, apparatus for generating and supplying electrical power to AC loads on an aircraft may comprise a prime mover; an exciter generator rotatably coupled to the prime mover; a main generator rotatably coupled to the prime mover, the main generator having a main generator rotor electrically coupled to the exciter generator to receive AC power from the exciter generator; and one or more capacitors electrically coupled to the main generator rotor to increase a power factor of the main generator rotor.
In another aspect of the present invention, a constant frequency generator (CFG) may comprise an exciter generator; a main generator; and one or more capacitors electrically coupled to a rotor of the main generator to alter a power factor of the said rotor.
In still another aspect of the present invention, a method for providing AC power to an AC load at a constant frequency with a variable speed prime mover may comprise the steps of: a) driving an exciter generator with the prime mover to provide controlled AC power to a rotor of a main generator of a constant frequency generator (CFG); b) electrically coupling capacitance to the rotor of the main generator to alter a power factor of said rotor; and c) driving the main generator rotor with the prime mover to the provide AC power at a constant frequency from a stator of the main generator.
These and other features, aspects and advantages of the present invention will become better understood with reference to the following drawings, description and claims.
The following detailed description is of the best currently contemplated modes of carrying out the invention. The description is not to be taken in a limiting sense, but is made merely for the purpose of illustrating the general principles of the invention, since the scope of the invention is best defined by the appended claims.
Various inventive features are described below that can each be used independently of one another or in combination with other features.
The present invention generally provides a system by which an aircraft electrical system can be supplied with constant frequency AC power. More particularly, the present invention provides a constant frequency generator (CFG) driven by a variable speed engine such as an aircraft main engine or an auxiliary power unit (APU) operated at a reduced speed. The CFG is provided with a system for limiting reactive power applied to a rotor of the CFG by an exciter generator so that size and weight of the exciter generator may be optimized.
Turning now to the description and with reference first to
In the depicted embodiment, a PMG rotor 112 of the PMG 110, an exciter rotor 124 of the exciter 120, and a main generator rotor 132 of the main generator 130 may be mounted on a common drive shaft 150. The drive shaft 150 may receive a rotational drive force from the prime mover 102, which may cause the PMG rotor 112, an exciter rotor 124, and a main generator rotor 132 to all rotate at the same rotational speed. In an exemplary embodiment of the system 100, the rotational speed of the prime mover 102, and thus these generator system components, may vary.
Regardless of the specific rotational speed range, it will be appreciated that as the PMG rotor 112 rotates, the PMG 110 may generate and supply AC power to the exciter controller 140 from a PMG stator 114. The exciter controller 140 may be electrically coupled to an exciter stator 122. The exciter controller 140 may produce control signals 104 to command the exciter generator 120 to supply AC power to the main generator rotor 132. As described in U.S. Pat. No. 8,085,004, the controller 140 may vary speed of rotation of rotor flux so that irrespective of physical rotation speed, AC power at the desired constant frequency is produced by the main generator 130.
The main generator rotor 132 may have a non-unity power factor. Thus the AC power provided to the main generator rotor 132 may include both active power and reactive power. To the extent that the exciter generator 120 supplies reactive power, the exciter generator 120 may be heavier and larger than it could otherwise be if required to deliver only active power to the main generator rotor.
In order to mitigate the undesirable effects of a low power factor of the main generator rotor 132, some inductive effects of the rotor 132 may be offset by introducing capacitance to the rotor 132. For example, as shown in
Referring now to
Referring now to
A total capacitance of the capacitor 206 (
Ct is the total capacitance;
Cd is a desired equivalent capacitance at the main generator rotor 132;
nr is the number of turns of the windings 210 of the main generator rotor 132; and
ns is the number of windings 208 of the main generator stator 134.
In a particular example of an application of the capacitors 206 to the stator 134, it has been found that a capacitor or bank of capacitors with a value of 1 milifarad and a weight of about 2-3 pounds may result in an improvement of power factor of the main generator rotor 132 from 0.5 to about 0.85. This may result in a 20-25 pound weight reduction of a 140 kVA CFG.
It may be noted that, in an exemplary embodiment, the prime mover 102 may be an aircraft auxiliary power unit (APU). In some pre-existing aircraft designs, an APU may be operated at a constant rotational speed. In such an operating mode, constant frequency AC power may be produced without employing a CFG. However, it has now been found desirable to operate APU's at varying speeds in order to save fuel. In that context, attainment of constant frequency AC power may require use of a CFG.
Referring now to
It should be understood, of course, that the foregoing relates to exemplary embodiments of the invention and that modifications may be made without departing from the spirit and scope of the invention as set forth in the following claims.
Number | Name | Date | Kind |
---|---|---|---|
5770909 | Rosen | Jun 1998 | A |
5801460 | Diemer et al. | Sep 1998 | A |
6838860 | Huggett | Jan 2005 | B2 |
6909263 | Xu et al. | Jun 2005 | B2 |
7355367 | Sarlioglu | Apr 2008 | B2 |
7915869 | Xu et al. | Mar 2011 | B2 |
7952331 | Anghel et al. | May 2011 | B2 |
8085004 | Xu | Dec 2011 | B2 |
8421423 | Nakada | Apr 2013 | B2 |
20050225303 | Xu | Oct 2005 | A1 |
20070194572 | Xu et al. | Aug 2007 | A1 |
20100308581 | Anghel | Dec 2010 | A1 |
Number | Date | Country | |
---|---|---|---|
20160190962 A1 | Jun 2016 | US |