Controlled growth of microorganisms

Information

  • Patent Grant
  • 11427800
  • Patent Number
    11,427,800
  • Date Filed
    Thursday, December 20, 2018
    5 years ago
  • Date Issued
    Tuesday, August 30, 2022
    a year ago
Abstract
It can be useful to regulate the growth of microbial cells. Some embodiments herein provide genetically engineered microbial cells that can produce bacteriocins to control the growth of microbial cells. In some embodiments, microbial cells are contained within a desired environment. In some embodiments, contaminating microbial cells are neutralized. In some embodiments, a first microbial cell type regulates the growth of a second microbial cell type so as to maintain a desired ratio of the two cell types.
Description
REFERENCE TO SEQUENCE LISTING

The present application is being filed along with a Sequence Listing in electronic format. The Sequence Listing is provided as a file entitled SEQUENCESYNG001A.TXT, created and last saved on Aug. 11, 2014, which is 380,081 bytes in size, and updated by a file entitled SYNG001C1REPLACEMENT.TXT, created and last saved on Mar. 11, 2019, which is 383,499 bytes in size. The information in the electronic format of the Sequence Listing is incorporated herein by reference in its entirety.


BACKGROUND

Humans have used microbial organisms to generate products since the beginning of human history, for example in processing foods such as cheese, beer, and wine. During the centuries, microbial organism-mediated processes have been studied and scaled-up, often by controlling fermentation conditions or identification of phenotypic characteristics of microbial organisms.


Presently, many products are produced using a process that involves microbial organisms. In laboratories, and in some pharmaceutical manufacturing processes, microbial organisms, including genetically engineered microbial organisms, can be cultured in sterile, controlled environments. On the other hand, feedstocks used for various industrial processes involving microorganisms are not sterile, and may contain a variety of strains and species of microorganisms. As such, genetically engineered microorganisms for laboratory and pharmaceutical processes are not necessarily suited for processes, such as industrial processes, which involve using feedstocks or which are exposed to other microorganisms in the environment which could potentially contaminate the culture and which may also involve, changing environmental conditions. Herein microorganisms which have been engineered to control their own growth and the growth of other microorganisms and/or to respond to changes in their environment are described. Such microorganisms are suitable for growth in non-sterile, less rigidly controlled feedstocks. Such microorganisms can be useful for robust, consistent production of a desired product across a range of different feedstocks and environments.


FIELD

Embodiments herein relate generally to the control of growth of microorganisms. More particularly, some embodiments herein relate to microorganisms engineered for regulated growth in response to other microorganisms and/or conditions of the culture environment, and methods of making and using such engineered microorganisms.


SUMMARY

One embodiment disclosed herein includes a first microbial cell comprising a nucleic acid encoding a secreted bacteriocin which controls the growth of a second microbial cell and a nucleic acid which confers resistance to the secreted bacteriocin is provided, in which the first microbial cell has been genetically engineered to allow the expression or activity of the nucleic acid which confers resistance to the bacteriocin to be regulated. According to some aspects of this embodiment, the expression or activity of the nucleic acid which confers resistance to the bacteriocin is reduced to a level which causes the first microbial cell to be neutralized by the bacteriocin if the first microbial cell is released from a desired growth environment. According to some aspects of this embodiment, the first microbial cell has been genetically engineered to make a desired product. According to some aspects of this embodiment, the secreted bacteriocin further has been selected to maintain at least one condition within a culture in which the first microbial cell is producing the desired product. According to some aspects of this embodiment, the culture comprises at least one invading microbial organism. According to some aspects of this embodiment, the at least one condition of the culture comprises controlling the growth of the second microbial cell, wherein the second microbial cell is a common contaminate of the culture. According to some aspects of this embodiment, the second microbial cell is a different strain, species or genus than the first microbial cell. According to some aspects of this embodiment, the microbial cell further comprises a nucleic acid encoding a second secreted bacteriocin which controls the growth of a third microbial cell and a nucleic acid which confers resistance to the secreted second bacteriocin, and also the first microbial cell has been genetically engineered to allow the expression or activity of the nucleic acid which confers resistance to the bacteriocin to be regulated. According to some aspects of this embodiment, the bacteriocin kills the second microbial cell. According to some aspects of this embodiment, the bacteriocin reduces the growth rate of the second microbial cell. According to some aspects of this embodiment, the bacteriocin arrests the growth of the second microbial cell. According to some aspects of this embodiment, the transcription of the nucleic acid conferring resistance to the bacteriocin is under the control of a regulatable promoter. According to some aspects of this embodiment, the activity of a polypeptide encoded by the nucleic acid conferring resistance to the bacteriocin is regulatable. According to some aspects of this embodiment, the nucleic acid encoding the bacteriocin is on a chromosome of the microbial cell. According to some aspects of this embodiment, the nucleic acid conferring resistance to the bacteriocin is on a plasmid. According to some aspects of this embodiment, the nucleic acid encoding the bacteriocin is on a chromosome of the microbial cell, and the nucleic acid conferring resistance to the bacteriocin is on a plasmid. According to some aspects of this embodiment, the nucleic acid encoding the bacteriocin and the nucleic acid conferring resistance to the bacteriocin are on one or more plasmids. According to some aspects of this embodiment, the first microbial cell is selected from the group consisting of bacteria, yeast, and algae, for example photosynthetic microalgae.


Another embodiment disclosed herein includes a method of controlling the growth of a second microbial cell in a culture medium, in which the method includes comprising culturing a first microbial cell as described herein in a culture medium comprising the second microbial cell under conditions in which the first microbial cell produces a bacteriocin at a level sufficient to control the growth of the second microbial cell. According to some aspects of this embodiment, the culture is maintained continually for at least 30 days, for example at least 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200, 250, 300, 350, 400, 450, or 500 days. According to some aspects of this embodiment, the method further includes detecting at least one change in the culture medium, the change comprising a presence or increase in the levels or activity of a third microbial cell, and reengineering the first microbial cell in response to the change to produce a second bacteriocin at a level sufficient to control the growth of the third microbial cell.


Another embodiment disclosed herein includes a method of detecting a presence, absence, or amount of a molecule in a culture is provided. The method can comprise culturing a first genetically engineered microbial cell comprising a bacteriocin under the control of a genetically regulatable promoter, such that the regulatable promoter is regulated by the molecule so that either (a) the regulatable promoter drives transcription in the presence of the molecule, but not in the absence of the molecule; or (b) the regulatable promoter drives transcription in the absence of the molecule, but not in the presence of the molecule. The method can comprise isolating an amount of genomic nucleic acid of the first microbial cell from the culture. The method can comprise detecting from the amount of genomic nucleic acid, a presence, absence, or quantity of a nucleic acid sequence characteristic of the first microbial cell. According to some aspects of this embodiment, the method further includes comparing the quantity of the nucleic acid sequence characteristic of the first microbial cell to a quantity of a reference nucleic acid sequence.


Another embodiment disclosed herein includes a genetically engineered vector comprising a nucleic acid conferring resistance to a bacteriocin, in which the expression or activity of the nucleic acid is configured to change in response to the presence, level or absence of a component of a feedstock. According to some aspects of this embodiment, the vector further comprises a nucleic acid encoding the bacteriocin. According to some aspects of this embodiment, the vector further comprises a nucleic acid which encodes a desired product.


Another embodiment disclosed herein includes a kit, which can includes a plurality of strains of a genetically engineered microbial organism, in which each strain has been genetically engineered to allow the expression or activity of a nucleic acid which confers resistance to a different bacteriocin to be regulated.


Another embodiment disclosed herein includes a method of identifying at least one bacteriocin which modulates the growth of at least one microbial cell in an industrial culture medium, in which the method includes contacting the industrial culture medium with a medium or composition comprising the at least one bacteriocin; and determining whether the at least one bacteriocin has a desired effect on the growth of the at least one microbial cell. According to some aspects of this embodiment, the method includes contacting the industrial culture medium with at least one bacteriocin produced by a first microbial cell as described herein. According to some aspects of this embodiment, the at least one bacteriocin produced by the first microbial cell is in a supernatant obtained from a culture comprising the first microbial cell. According to some aspects of this embodiment, the method further includes constructing a genetically engineered microbial cell to produce at least one bacteriocin which has been determined to have a desired effect on the growth of the at least one microbial cell. According to some aspects of this embodiment, the at least one microbial cell is an organism which is a common invader of the industrial culture medium. According to some aspects of this embodiment, the at least one microbial cell is an organism which has newly invaded an existing industrial culture.


Another embodiment disclosed herein includes a system for neutralizing undesired microbial organisms in a culture medium. The system can comprise a first environment comprising a culture medium, and a second environment comprising a second microbial organism that secretes two or more different bacteriocins, in which the second microbial organism comprises immunity modulators for each of the two or more different bacteriocins, in which the second environment is in fluid communication with the first environment, in which the second environment is physically separated from the first environment so that the second microbial organism cannot move from the second environment to the first environment, and in which the secreted two or more different bacteriocins enter the culture medium of the first environment. According to some aspects of this embodiment, the system further comprises a first microbial organism in the culture medium, in which the first microbial organism does not secrete the two or more different bacteriocins, and in which the first microbial organism is not neutralized by any of the two or more different bacteriocins. According to some aspects of this embodiment, the first microbial organism is non-GMO. According to some aspects of this embodiment, the first microbial organism ferments a component of the culture medium. According to some aspects of this embodiment, the first microbial organism decontaminates the culture medium. According to some aspects of this embodiment, the first microbial organism conducts photosynthesis, and the photosynthesis comprises a substrate comprised by the culture medium. According to some aspects of this embodiment, the second environment is separated from the first environment by at least one of a membrane, a mesh, a filter, or a valve that is permeable to the two or more different bacteriocins, but is not permeable to the second microbial organisms. According to some aspects of this embodiment, the second microbial organism secretes at least 3 bacteriocins, for example at least 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, or 20 bacteriocins. According to some aspects of this embodiment, the second environment comprises at least a third microbial organism that is different from the second microbial organism, and also secretes bacteriocins. According to some aspects of this embodiment, the third microbial organism secretes at least 2 bacteriocins, for example at least 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, or 20 bacteriocins. Another embodiment disclosed herein includes a method of storing a feedstock. The method can comprise providing a feedstock, providing a first microbial organism, in which the first microbial organism secretes two or more different bacteriocins, contacting the feedstock with the bacteriocins, and storing the feedstock for a desired period of time. According to some aspects of this embodiment, contacting the feedstock with the bacteriocins comprises contacting the feedstock with the microbial organism. According to some aspects of this embodiment, contacting the feedstock with the bacteriocins comprises placing the microbial organism in fluid communication with the feedstock, while maintaining physical separation between the microbial organism and the feedstock, so that the bacteriocins contact the feedstock, but the microbial organism does not directly contact the feedstock. According to some aspects of this embodiment, the separation is maintained by at least one or more of a membrane, a mesh, a filter, or a valve that is permeable to the two or more different bacteriocins, but is not permeable to the first microbial organism. According to some aspects of this embodiment, the method further comprises fermenting the feedstock with a second microbial organism prior to or concurrently with contacting the feedstock with the bacteriocins. According to some aspects of this embodiment, the fermentation comprises at least one of producing a desired component in the feedstock or removing an undesired component from the feedstock. According to some aspects of this embodiment, the desired period of time comprises at least one month, for example at least one, two, three, four, five, six, seven, eight, nine, ten, eleven, or twelve months. According to some aspects of this embodiment, the desired period of time comprises at least six months, for example six, seven, eight nine, ten, eleven, or twelve months. According to some aspects of this embodiment, the first microbial organism secretes at least 3 bacteriocins, for example at least 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, or 20 bacteriocins.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a flow diagram depicting options for configuring a microbial cell to control the growth of a second microbial cell according to some of the embodiments herein.



FIG. 2A is a schematic diagram illustrating a first microbial cell controlling the growth of other microbial cells according to some of the embodiments herein.



FIG. 2B is a schematic diagram illustrating control of the growth of a first microbial cell when the first microbial cell is no longer in a desired growth environment according to some of the embodiments herein.



FIG. 3 is a schematic diagram illustrating a first microbial cell controlling growth of a second microbial cell and neutralizing an invading cell in a desired environment according to some of the embodiments herein.



FIG. 4 is a schematic diagram illustrating a first microbial cell neutralizing a first invading cell with a first bacteriocin and second invading cells with a second bacteriocin in a desired environment according to some of the embodiments herein.



FIG. 5 is a flow diagram illustrating methods of controlling the growth of at least a second microbial cell in culture according to some embodiments herein.



FIG. 6 is a schematic diagram illustrating a system comprising a genetic guard in accordance with some embodiments herein.



FIG. 7 is a schematic diagram illustrating a genetic guard system that can be useful for photosynthetic production in accordance with some embodiments herein.



FIG. 8 is a flow diagram illustrating methods of producing and using bacteriocins in accordance with some embodiments herein.





DETAILED DESCRIPTION

According to some of the embodiments herein, genetically engineered microbial organisms are provided. In some embodiments, the microbial organisms are engineered to control the growth of the microbial population in an environment such as those employing a feedstock. As used herein, “neutralizing” activity (and variations of the same root word) of bacteriocins can refer to either arrest of microbial reproduction, or cytotoxicity. Microbial organisms can be engineered to produce bacteriocins, which are secreted polypeptides that can neutralize microorganisms. However, microbial organisms that produce bacteriocin immunity modulators can resist certain bacteriocins. Thus, in some embodiments, a first microbial organism is engineered to secrete bacteriocins. In some embodiments, the particular bacteriocins are selected based on the type of microbial cell, the types of microbial cells being regulated, the composition of the culture medium, or geographic location (for example, to target particular contaminating microbial organisms associated with a particular type of culture medium and/or geographical location). Other microbial organisms that possess desired characteristics for a particular environment can produce bacteriocin immunity modulators (and thus survive in the presence of bacteriocins), while undesired other microbial organisms (for example contaminants, microbial organisms that have lost a desired characteristic or organisms which are involved in an industrial process but whose growth or production of a particular product is not desired under the prevailing conditions) fail to produce bacteriocin immunity modulators, and are thus neutralized by the bacteriocins.


Microbial Organisms


According to some aspects, genetically engineered microorganisms are provided. As used herein, genetically engineered “microbial organism,” “microorganism,” and variations of these root terms (such as pluralizations and the like), encompasses genetic modification of any naturally-occurring species or fully synthetic prokaryotic or eukaryotic unicellular organism, as well as Archae species. Thus, this expression can refer to cells of bacterial species, fungal species, and algae.


Exemplary microorganisms that can be used in accordance with embodiments herein include, but are not limited to, bacteria, yeast, and algae, for example photosynthetic microalgae. Furthermore, fully synthetic microorganism genomes can be synthesized and transplanted into single microbial cells, to produce synthetic microorganisms capable of continuous self-replication (see Gibson et al. (2010), “Creation of a Bacterial Cell Controlled by a Chemically Synthesized Genome,” Science 329: 52-56, hereby incorporated by reference in its entirety). As such, in some embodiments, the microorganism is fully synthetic. A desired combination of genetic elements, including elements that regulate gene expression, and elements encoding gene products (for example bacteriocins, immunity modulators, poison, antidote, and industrially useful molecules) can be assembled on a desired chassis into a partially or fully synthetic microorganism. Description of genetically engineered microbial organisms for industrial applications can also be found in Wright, et al. (2013) “Building-in biosafety for synthetic biology” Microbiology 159: 1221-1235.


A variety of bacterial species and strains can be used in accordance with embodiments herein, and genetically modified variants, or synthetic bacteria based on a “chassis” of a known species can be provided. Exemplary bacteria with industrially applicable characteristics, which can be used in accordance with embodiments herein include, but are not limited to, Bacillus species (for example Bacillus coagulans, Bacillus subtilis, and Bacillus licheniformis), Paenibacillus species, Streptomyces species, Micrococcus species, Corynebacterium species, Acetobacter species, Cyanobacteria species, Salmonella species, Rhodococcus species, Pseudomonas species, Lactobacillus species, Enterococcus species, Alcaligenes species, Klebsiella species, Paenibacillus species, Arthrobacter species, Corynebacterium species, Brevibacterium species, Thermus aquaticus, Pseudomonas stutzeri, Clostridium thermocellus, and Escherichia coli.


A variety of yeast species and strains can be used in accordance with embodiments herein, and genetically modified variants, or synthetic yeast based on a “chassis” of a known species can be provided. Exemplary yeast with industrially applicable characteristics, which can be used in accordance with embodiments herein include, but are not limited to Saccharomyces species (for example, Saccharomyces cerevisiae, Saccharomyces bayanus, Saccharomyces boulardii), Candida species (for example, Candida utilis, Candida krusei), Schizosaccharomyces species (for example Schizosaccharomyces pombe, Schizosaccharomyces japonicas), Pichia or Hansenula species (for example, Pichia pastoris or Hansenula polymorpha) species, and Brettanomyces species (for example, Brettanomyces claussenii).


A variety of algae species and strains can be used in accordance with embodiments herein, and genetically modified variants, or synthetic algae based on a “chassis” of a known species can be created. In some embodiments, the algae comprises photosynthetic microalgae. Exemplary algae species that can be useful for biofuels, and can be used in accordance with embodiments herein, include Botryococcus braunii, Chlorella species, Dunaliella tertiolecta, Gracilaria species, Pleurochrysis carterae, and Sargassum species. Additionally, many algaes can be useful for food products, fertilizer products, waste neutralization, environmental remediation, and carbohydrate manufacturing (for example, biofuels).


Bacteriocins


As used herein, “bacteriocin,” and variations of this root term, refers to a polypeptide that is secreted by a host cell and can neutralize at least one cell other than the individual host cell in which the polypeptide is made, including cells clonally related to the host cell and other microbial cells. As used herein, “bacteriocin” also encompasses a cell-free or chemically synthesized version of such a polypeptide. A cell that expresses a particular “immunity modulator” (discussed in more detail herein) is immune to the neutralizing effects of a particular bacteriocin or group of bacteriocins. As such, bacteriocins can neutralize a cell producing the bacteriocin and/or other microbial cells, so long as these cells do not produce an appropriate immunity modulator. As such, a host cell can exert cytotoxic or growth-inhibiting effects on a plurality of other microbial organisms by secreting bacteriocins. In some embodiments, a bacteriocin is produced by the translational machinery (e.g. a ribosome, etc.) of a microbial cell. In some embodiments, a bacteriocin is chemically synthesized. Some bacteriocins can be derived from a polypeptide precursor. The polypeptide precursor can undergo cleavage (for example processing by a protease) to yield the polypeptide of the bacteriocin itself. As such, in some embodiments, a bacteriocin is produced from a precursor polypeptide. In some embodiments, a bacteriocin comprises a polypeptide that has undergone post-translational modifications, for example cleavage, or the addition of one or more functional groups.


“Antibiotic,” and variations of this root term, refers to a metabolite, or an intermediate of a metabolic pathway which can kill or arrest the growth of at least one microbial cell. Some antibiotics can be produced by microbial cells, for example bacteria. Some antibiotics can be synthesized chemically. It is understood that bacteriocins are distinct from antibiotics, at least in that bacteriocins refer to gene products (which, in some embodiments, undergo additional post-translational processing) or synthetic analogs of the same, while antibiotics refer to intermediates or products of metabolic pathways or synthetic analogs of the same.


Neutralizing activity of bacteriocins can include arrest of microbial reproduction, or cytotoxicity. Some bacteriocins have cytotoxic activity (e.g. “bacteriocide” effects), and thus can kill microbial organisms, for example bacteria, yeast, algae, synthetic micoorganisms, and the like. Some bacteriocins can inhibit the reproduction of microbial organisms (e.g. “bacteriostatic” effects), for example bacteria, yeast, algae, synthetic micoorganisms, and the like, for example by arresting the cell cycle.


It is noted that non-bacteriocin approaches have been proposed to target various microbial organisms. For example, KAMORAN™ chemical has been proposed to target Lactic Acid Bacteria (LAB) family bacteria (see Union Nationale des Groupements de Distillateurs D'Alcool, (2005) “Kamoran”). It is noted that phage has also been proposed to target LAB family bacteria (see U.S. Pub. No. 2010/0330041). It is noted that pesticides have been proposed to target various contaminating microbial organisms (see McBride et al., “Contamination Management in Low Cost Open Algae Ponds for Biofuels Production” Industrial Biotechnology 10: 221-227 (2014)). However, bacteriocins can provide numerous advantages over chemicals, pesticides, or phages. For example, bacteriocins can avoid potentially toxic runoff or byproduct in a feedstock. For example, bacteriocins can have higher efficacy against particular undesired microbial organisms than phages, chemicals, or pesticides. For example, bacteriocins can be produced by microbial organisms that undergo logarithmic growth, and thus can readily be scaled-up or scaled down, whereas the scalability of phages or chemical/pesticide systems can be more limited. For example, bacteriocins can allow for precise control over which organisms are neutralized and which are not, for example to avoid neutralization of industrially useful microbial organisms in the culture medium. For example, phages can be difficult to produce at an industrial scale, and also can be difficult to control, in that phages can be infectious, can raise questions of gene control, and in that conservation of phages can be difficult. On the other hand, bacteriocins in accordance with some embodiments herein can comprise part of an industrial process and thus can be involved in gene containment and/or control a fermentation process via bacteriostatic activity. Additionally, the susceptibility of the microbial organisms involved in the industrial process can be tuned via immunity control. Additionally, bacteriocins typically have a low level of toxicity for industrial applications such as human or animal food, and it is contemplated that bacteriocins in accordance with some embodiments herein are suitable for use as a food preservative, such as an additive.


In some embodiments, a particular neutralizing activity (e.g. cytoxicity or arrest of microbial reproduction) is selected based on the type of microbial regulation that is desired. As such in some embodiments, microbial cells are engineered to express particular bacteriocins or combination of bacteriocins. For example, in some embodiments, microbial cells are engineered to express particular bacteriocins based on the cells being regulated. In some embodiments, for example if contaminating cells are to be killed at least one cytotoxic bacteriocin is provided. In some embodiments, a bacteriocin or combination of bacteriocins which is effective against contaminants which commonly occur in a particular culture, or a particular geographic location, or a particular type of culture grown in a particular geographic location are selected. In some embodiments, for example embodiments in which reversible regulation of microbial cell ratios is desired, a bacteriocin that inhibits microbial reproduction is provided. Without being limited by any particular theory, many bacteriocins can have neutralizing activity against microbial organisms that typically occupy the same ecological niche as the species that produces the bacteriocin. As such, in some embodiments, when a particular spectrum of bacteriocin activity is desired, a bacteriocin is selected from a host species that occupies the same (or similar) ecological niche as the microbial organism or organisms targeted by the bacteriocin.


In some embodiments, one or more bacteriocin activities are selected in advance of culture growth, and one or more microbial organisms are engineered to generate a desired culture environment. In some embodiments, bacteriocins may be selected based on their ability to neutralize one or more invading organisms which are likely to attempt to grow in a particular culture. In another embodiment, in an industrial environment in which strain A makes intermediate A, and strain B converts intermediate A into intermediate B, strains A and B can be engineered so that an abundance of intermediate A shifts the equilibrium to favor strain B by generating a bacteriocin activity profile such that growth of strain A is inhibited or prevented under these conditions, while a lack of intermediate A shifts the equilibrium to favor strain A by generating a bacteriocin activity profile such that growth of strain B is inhibited or prevented. In some embodiments, one or more bacteriocin activities are selected based on one or more conditions of an existing culture environment. For example, if particular invaders are identified in a culture environment, “neutralizer” microorganisms can be engineered to produce bacteriocins to neutralize the identified invaders. In some embodiments, genetically engineered cells that produce bacteriocins are added to an existing culture to re-equilibrate the culture, for example if a growth of a particular microbial cell type in the microbial cell culture is too high. In some embodiments, genetically engineered cells that produce bacteriocins are added to an existing culture to neutralize all or substantially all of the microbial cells in a culture, for example to eliminate an industrial culture in a culture environment so that a new industrial culture can be introduced to the culture environment.


For example, in some embodiments, an anti-fungal activity (such as anti-yeast activity) is desired. A number of bacteriocins with anti-fungal activity have been identified. For example, bacteriocins from Bacillus have been shown to have neutralizing activity against yeast strains (see Adetunji and Olaoye (2013) Malaysian Journal of Microbiology 9: 130-13, hereby incorporated by reference in its entirety), an Enterococcus faecalis peptide (WLPPAGLLGRCGRWFRPWLLWLQ SGAQY KWLGNLFGLGPK, SEQ ID NO: 1) has been shown to have neutralizing activity against Candida species (see Shekh and Roy (2012) BMC Microbiology 12: 132, hereby incorporated by reference in its entirety), and bacteriocins from Pseudomonas have been shown to have neutralizing activity against fungi such as Curvularia lunata, Fusarium species, Helminthosporium species, and Biopolaris species (Shalani and Srivastava (2008) The Internet Journal of Microbiology. Volume 5 Number 2. DOI: 10.5580/27dd—accessible on the worldwide web at archive.ispub.com/journal/the-internet-journal-of-microbiology/volume-5-number-2/screening-for-antifungal-activity-of-pseudomonas-fluorescens-against-phytopathogenic-fungi.html#sthash.d0Ys03UO.1DKuT1US.dpuf, hereby incorporated by reference in its entirety). By way of example, botrycidin AJ1316 (see Zuber, P et al. (1993) Peptide Antibiotics. In Bacillus subtilis and Other Gram-Positive Bacteria: Biochemistry, Physiology, and Molecular Genetics ed Sonenshein et al., pp. 897-916, American Society for Microbiology, hereby incorporated by reference in its entirety) and alirin B1 (see Shenin et al. (1995) Antibiot Khimioter 50: 3-7, hereby incorporated by reference in its entirety) from B. subtilis have been shown to have antifungal activities. As such, in some embodiments, for example embodiments in which neutralization of a fungal microbial organism is desired, a bacteriocin comprises at least one of botrycidin AJ1316 or alirin B1.


For example, in some embodiments, bacteriocin activity in a culture of cyanobacteria is desirable. In some embodiments, bacteriocins are provided to neutralize cyanobacteria. In some embodiments, bacteriocins are provided to neutralize invading microbial organisms typically found in a cyanobacteria culture environment. Clusters of conserved bacteriocin polypeptides have been identified in a wide variety of cyanobacteria species. For example, at least 145 putative bacteriocin gene clusters have been identified in at least 43 cyanobacteria species, as reported in Wang et al. (2011), Genome Mining Demonstrates the Widespread Occurrence of Gene Clusters Encoding Bacteriocins in Cyanobacteria. PLoS ONE 6(7): e22384, hereby incorporated by reference in its entirety. Exemplary cyanobacteria bacteriocins are shown in Table 1.2, as SEQ ID NO's 420, 422, 424, 426, 428, 30, 432, 434, 436, 438, 440, 442, 444, 446, 448, and 450.


In some embodiments, the host cell itself is a microbial cell. In some embodiments, bacteriocins neutralize cells of a different species or strain from the host cell. In some embodiments, bacteriocins neutralize cells of the same species or strain as the host cell if these cells lack an appropriate immunity modulator. As bacteriocins can mediate neutralization of both host and non-host microbial organisms, the skilled artisan will readily appreciate that a bacteriocin is distinct from poison-antidote systems (described in more detail herein), which involve an endogenous mechanism by which a host microorganism can neutralize only itself. In other words, bacteriocins can neutralize cells other than the cell in which they are produced (for example, bacteriocins can be selected and/or engineered to act as an ecological niche protector), while poison molecules kill only the individual cell in which they are produced (for example, to act as suicidal systems).


A number of bacteriocins have been identified and characterized. Without being limited by any particular theory, exemplary bacteriocins can be classified as “class I” bacteriocins, which typically undergo post-translational modification, and “class II” bacteriocins, which are typically unmodified. Additionally, exemplary bacteriocins in each class can be categorized into various subgroups, as summarized in Table 1.1, which is adapted from Cotter, P. D. et al. “Bacteriocins—a viable alternative to antibiotics” Nature Reviews Microbiology 11: 95-105, hereby incorporated by reference in its entirety.


Without being limited by any particular theory, bacteriocins can effect neutralization of a target microbial cell in a variety of ways. For example, a bacteriocin can permeablize a cell wall, thus depolarizing the cell wall and interfering with respiration.









TABLE 1.1







Classification of Exemplary Bacteriocins









Group
Distinctive feature
Examples










Class I (typically modified)









MccC7-
Is covalently attached
MccC7-C51


C51-type
to a carboxy-



bacteriocins
terminal aspartic acid



Lasso peptides
Have a lasso structure
MccJ25


Linear azole- or
Possess heterocycles
MccB17


azoline-containing
but not other



peptides
modifications



Lantibiotics
Possess lanthionine
Nisin,



bridges
planosporicin,




mersacidin,




actagardine,




mutacin 1140


Linaridins
Have a linear
Cypemycin



structure and contain




dehydrated amino acids



Proteusins
Contain multiple
Polytheonamide



hydroxylations,
A



epimerizations and




methylations



Sactibiotics
Contain sulphur-α-
Subtilosin A,



carbon linkages
thuricin CD


Patellamide-like
Possess heterocycles
Patellamide A


cyanobactins
and undergo




macrocyclization



Anacyclamide-
Cyclic peptides consisting
Anacyclamide


like
of proteinogenic amino
A10


cyanobactins
acids with prenyl




attachments



Thiopeptides
Contain a central pyridine,
Thiostrepton,



dihydropyridine or
nocathiacin



piperidine ring as
I, GE2270 A,



well as heterocycles
philipimycin


Bottromycins
Contain macrocyclic a
Bottromycin A2



midine, a decarboxylated




carboxy-terminal




thiazole and carbon-




methylated amino




acids



Glycocins
Contain S-linked
Sublancin 168



glycopeptides








Class II (typically unmodified or cyclic)









IIa peptides
Possess a conserved
Pediocin PA-1,


(pediocin
YGNGV motif
enterocin


PA-1-like
(in which N represents
CRL35,


bacteriocins)
any amino acid)
carnobacteriocin




BM1


IIb peptides
Two unmodified
ABP118,



peptides are required
lactacin F



for activity



IIc peptides
Cyclic peptides
Enterocin AS-48


IId peptides
Unmodified, linear,
MccV, MccS,



non-pediocin-like,
epidermicin NI01,



single-peptide bacteriocins
lactococcin A


IIe peptides
Contain a serine-rich
MccE492, MccM



carboxy-terminal




region with a non-ribosomal




siderophore-type modification









A number of bacteriocins can be used in accordance with embodiments herein. Exemplary bacteriocins are shown in Table 1.2. In some embodiments, at least one bacteriocin comprising a polypeptide sequence of Table 1.2 is provided. As shown in Table 1.2, some bacteriocins function as pairs of molecules. As such, it will be understood that unless explicitly stated otherwise, when a functional “bacteriocin” or “providing a bacteriocin,” or the like is discussed herein, functional bacteriocin pairs are included along with bacteriocins that function individually. With reference to Table 1.2, “organisms of origin” listed in parentheses indicate alternative names and/or strain information for organisms known the produce the indicated bacteriocin.


Embodiments herein also include peptides and proteins with identity to bacteriocins described in Table 1.2. The term “identity” is meant to include nucleic acid or protein sequence homology or three-dimensional homology. Several techniques exist to determine nucleic acid or polypeptide sequence homology and/or three-dimensional homology to polypeptides. These methods are routinely employed to discover the extent of identity that one sequence, domain, or model has to a target sequence, domain, or model. A vast range of functional bacteriocins can incorporate features of bacteriocins disclosed herein, thus providing for a vast degree of identity to the bacteriocins in Table 1.2. In some embodiments, a bacteriocin has at least about 50% identity, for example, at least about 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 61%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identity to any one of the polypeptides of Table 1.2. Percent identity may be determined using the BLAST software (Altschul, S. F., et al. (1990) “Basic local alignment search tool.” J. Mol. Biol. 215:403-410, accessible on the world wide web at blast.ncbi.nlm.nih.gov) with the default parameters.


In some embodiments, a polynucleotide encoding a bacteriocin as described herein is provided. In some embodiments, the polynucleotide is comprised within an expression vector. In some embodiments, the polynucleotide or expression vector is in a microbial cell. Exemplary polynucleotide sequences encoding the polypeptides of table 1.2 are indicated in table 1.2. SEQ ID NOs: 341 to 419 (odd SEQ ID numbers) represent exemplary polynucleotides based on the reverse translation of the respective polypeptide. The skilled artisan will readily understand that more than one polynucleotide can encode a particular polypeptide. For example, the genetic code is degenerate, and moreover, codon usage can vary based on the particular organism in which the gene product is being expressed. In some embodiments, a polynucleotide encoding a bacteriocin is selected based on the codon usage of the organism expressing the bacteriocin. In some embodiments, a polynucleotide encoding a bacteriocin is codon optimized based on the particular organism expressing the bacteriocin.


While the bacteriocins in Table 1.2 are naturally-occurring, the skilled artisan will appreciate that variants of the bacteriocins of Table 1.2, naturally-occurring bacteriocins other than the bacteriocins of Table 1.2 or variants thereof, or synthetic bacteriocins can be used according to some embodiments herein. In some embodiments, such variants have enhanced or decreased levels of cytotoxic or growth inhibition activity on the same or a different microorganism or species of microorganism relative to the wild type protein. Several motifs have been recognized as characteristic of bacteriocins. For example, the motif YGXGV (SEQ ID NO: 2), wherein X is any amino acid residue, is a N-terminal consensus sequence characteristic of class IIa bacteriocins. Accordingly, in some embodiments, a synthetic bacteriocin comprises an N-terminal sequence with at least about 50% identity to SEQ ID NO: 2, for example at least about 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 61%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identity to SEQ ID NO: 2. In some embodiments, a synthetic bacteriocin comprises a N-terminal sequence comprising SEQ ID NO: 2. Additionally, some class IIb bacteriocins comprise a GxxxG motif. Without being limited by any particular theory, it is believed that the GxxxG motif can mediate association between helical proteins in the cell membrane, for example to facilitate bacterioncin-mediated neutralization through cell membrane interactions. As such, in some embodiments, the bacteriocin comprises a motif that facilitates interactions with the cell membrane. In some embodiments, the bacteriocin comprises a GxxxG motif. Optionally, the bacteriocin comprising a GxxxG motif can comprise a helical structure. In addition to structures described herein, “bacteriocin” as used herein also encompasses structures that have substantially the same effect on microbial cells as any of the bacteriocins explicitly provided herein.


It has been shown that fusion polypeptides comprising two or more bacteriocins or portions thereof can have neutralizing activity against a broader range of microbial organisms than either individual bacteriocin. For example, it has been shown that a hybrid bacteriocin, Ent35-MccV (GKYYGNGVSCNKKGCSVDWGRAIGIIGNNSAANLATGGAAGWKSGGGASGRDIAM AIGTLSGQFVAGGIGAAAGGVAGGAIYDYASTHKPNPAMSPSGLGGTIKQKPEGIPSE AWNYAAGRLCNWSPNNLSDVCL, SEQ ID NO: 3), displays antimicrobial activity against pathogenic Gram-positive and Gram-negative bacteria (Acuña et al. (2012), FEBS Open Bio, 2: 12-19). It is noted that that Ent35-MccV fusion bacteriocin comprises, from N-terminus to C-terminus, an N-terminal glycine, Enterocin CRL35, a linker comprising three glycines, and a C-terminal Microcin V. It is contemplated herein that bacteriocins can comprise fusions of two or more polypeptides having bacteriocin activity. In some embodiments, a fusion polypeptide of two or more bacteriocins is provided. In some embodiments, the two or more bacteriocins comprise polypeptides from Table 1.2, or modifications thereof. In some embodiments, the fusion polypeptide comprising of two or more bacteriocins has a broader spectrum of activity than either individual bacteriocin, for example having neutralizing activity against more microbial organisms, neutralizing activity under a broader range of environmental conditions, and/or a higher efficiency of neutralization activity. In some embodiments, a fusion of two or more bacteriocins is provided, for example two, three, four, five, six, seven, eight, nine, or ten bacteriocins. In some embodiments, two or more bacteriocin polypeptides are fused to each other via a covalent bond, for example a peptide linkage. In some embodiments, a linker is positioned between the two bacteriocin polypeptides. In some embodiments, the linker comprises one or glycines, for example about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, or 20 glycines. In some embodiments, the linker is cleaved within the cell to produce the individual bacteriocins included in the fusion protein. In some embodiments, a bacteriocin as provided herein is modified to provide a desired spectrum of activity relative to the unmodified bacteriocin. For example, the modified bacteriocin may have enhanced or decreased activity agains the same organisms as the unmodified bacteriocin. Alternatively, the modified bacteriocin may have enhanced activity against an organism against which the unmodified bacteriocin has less activity or no activity.









TABLE 1.2







Exemplary Bacteriocins


















Poly-



Poly-




nucleotide


peptide




SEQ


SEQ ID


Polypeptide
Organism of
ID
Polynucleotide


NO:
Name
Class
Sequence
origin
NO:
Sequence
















4
Acidocin
Unclassified
MISSHQKTL

Lactobacillus

5
ATGATTTCATC



8912

TDKELALISG

acidophilus


TCATCAAAAA





GKTHYPTNA


ACGTTAACTG





WKSLWKGF


ATAAAGAATT





WESLRYTDGF


AGCATTAATTT








CTGGGGGGAA








AACGCACTAC








CCGACTAATG








CATGGAAAAG








TCTTTGGAAA








GGTTTCTGGG








AAAGCCTTCG








TTATACTGAC








GGTTTTTAG





6
Acidocin A
class
MISMISSHQ

Lactobacillus

7
ATGATTTCAAT




IIA/YG
KTLTDKELA

acidophilus


GATTTCATCTC




NGV
LISGGKTYY


ATCAAAAAAC





GTNGVHCTK


GTTAACTGAT





KSLWGKVRL


AAAGAATTAG





KNVIPGTLC


CATTAATTTCT





RKQSLPIKQ


GGGGGGAAAA





DLKILLGWA


CGTACTATGG





TGAFGKTFH


TACTAATGGT








GTGCATTGTA








CTAAAAAGAG








TCTTTGGGGT








AAAGTACGCT








TAAAAAACGT








GATTCCTGGA








ACTCTTTGTCG








TAAGCAATCG








TTGCCGATCA








AACAGGATTT








AAAAATTTTA








CTGGGCTGGG








CTACAGGTGC








TTTTGGCAAG








ACATTTCATTAA





8
Acidocin
Unclassified
MDKKTKILF

Lactobacillus

9
ATGGATAAGA



B (AcdB)

EVLYIICIIGP

acidophilus


AAACAAAAAT





QFILFVTAKN


ATTATTTGAA





NMYQLVGSF


GTATTATACAT





VGIVWFSYIF


CATCTGTATA





WYIFFKQHK


ATAGGCCCTC





KM


AATTTATATTA








TTTGTGACTGC








AAAAAACAAT








ATGTATCAGT








TGGTGGGTTC








GTTTGTTGGA








ATAGTATGGT








TTTCGTATATT








TTTTGGTATAT








TTTTTTCAAAC








AACATAAAAA








AATGTAG





10
Acidocin
Unclassified
MALKTLEKH

Lactobacillus

11
ATGGCTTTAA



LF221B

ELRNVMGG

gasseri


AAACATTAGA



(Gassericin

NKWGNAVI


AAAACATGAA



K7 B)

GAATGATRG


TTAAGAAATG





VSWCRGFGP


TAATGGGTGG





WGMTACAL


AAACAAGTGG





GGAAIGGYL


GGGAATGCTG





GYKSN


TAATAGGAGC








TGCTACGGGA








GCTACTCGCG








GAGTAAGTTG








GTGCAGAGGA








TTCGGACCAT








GGGGAATGAC








TGCCTGTGCG








TTAGGAGGTG








CTGCAATTGG








AGGATATCTG








GGATATAAGA








GTAATTAA





12
Aureocin
Unclassified
MSWLNFLK

Staphylococcus

13
ATGAGTTGGT



A53

YIAKYGKKA

aureus


TAAATTTTTTA





VSAAWKYK


AAATACATCG





GKVLEWLN


CTAAATATGG





VGPTLEWV


CAAAAAAGCG





WQKLKKIAGL


GTATCTGCTG








CTTGGAAGTA








CAAAGGTAAA








GTATTAGAAT








GGCTTAATGT








TGGTCCTACTC








TTGAATGGGT








ATGGCAAAAA








TTAAAGAAAA








TTGCTGGATT








ATAA





14
Avicin A
class
MTRSKKLNL

Enterococcus

15
ATGACAAGAT




IIA/YG
REMKNVVG

avium


CAAAAAAATT




NGV
GTYYGNGVS
(Streptococcus

AAATTTACGC





CNKKGCSVD

avium)


GAAATGAAGA





WGKAISIIGN


ATGTTGTTGG





NSAANLATG


TGGTACCTAC





GAAGWKS


TATGGAAATG








GTGTATCTTGT








AACAAGAAAG








GCTGTTCAGTT








GACTGGGGCA








AAGCCATCAG








TATTATAGGA








AATAATTCCG








CAGCAAACTT








AGCAACTGGT








GGTGCTGCTG








GTTGGAAGTC








ATAA





16
Bacteriocin
Unclassified
MKKKLVICG

Enterococcus

17
ATGAAAAAGA



31

IIGIGFTALG

faecalis


AATTAGTTATT





TNVEAATYY
(Streptococcus

TGTGGCATTA





GNGLYCNK

faecalis)


TTGGGATTGG





QKCWVDWN


TTTTACAGCAT





KASREIGKII


TAGGAACAAA





VNGWVQHG


TGTAGAAGCT





PWAPR


GCTACGTATT








ACGGAAATGG








TTTATATTGTA








ATAAGCAAAA








ATGTTGGGTA








GACTGGAATA








AAGCTTCAAG








GGAAATTGGA








AAAATTATTG








TTAATGGTTG








GGTACAACAT








GGCCCTTGGG








CTCCTAGATAG





18
Bacteriocin
Unclassified
MKEQNSFNL

Lactococcus

19
ATGAAAGAAC



J46

LQEVTESEL

lactis


AAAACTCTTTT





DLILGAKGG


AATCTTCTTCA





SGVIHTISHE


AGAAGTGACA





VIYNSWNFV


GAAAGTGAAT





FTCCS


TGGACCTTATT








TTAGGTGCAA








AAGGCGGCAG








TGGAGTTATT








CATACAATTTC








TCATGAAGTA








ATATATAATA








GCTGGAACTT








TGTATTTACTT








GCTGCTCTTAA





20
Bacteriocin
class IIa
MKKKVLKH

Enterococcus

21
ATGAAAAAGA



T8

CVILGILGTC

faecium


AAGTATTAAA





LAGIGTGIKV
(Streptococcus

ACATTGTGTT





DAATYYGN

faecium)


ATTCTAGGAA





GLYCNKEKC


TATTAGGAAC





WVDWNQAK


TTGTCTAGCTG





GEIGKIIVNG


GCATCGGTAC





WVNHGPWA


AGGAATAAAA





PRR


GTTGATGCAG








CTACTTACTAT








GGAAATGGTC








TTTATTGTAAC








AAAGAAAAAT








GTTGGGTAGA








TTGGAATCAA








GCTAAAGGAG








AAATTGGAAA








AATTATTGTTA








ATGGTTGGGT








TAATCATGGT








CCATGGGCAC








CTAGAAGGTAG





22
Boticin B
Unclassified
MQKPEIISAD

Clostridium

23
ATGCAAAAAC





LGLCAVNEF

botulinum


CAGAAATTAT





VALAAIPGG


TAGTGCTGAT





AATFAVCQ


TTAGGGCTTT





MPNLDEIVS


GTGCAGTTAA





NAAYV


TGAATTTGTA








GCTCTTGCTGC








CATTCCTGGT








GGTGCTGCTA








CATTTGCAGT








ATGCCAAATG








CCAAACTTGG








ATGAGATTGT








TAGTAATGCA








GCATATGTTT








AA





24
Bovicin
Lantibiotic
MMNATENQI

Streptococcus

25
ATGATGAATG



HJ50

FVETVSDQE

equinus


CTACTGAAAA





LEMLIGGAD
(Streptococcus

CCAAATTTTTG





RGWIKTLTK

bovis)


TTGAGACTGT





DCPNVISSIC


GAGTGACCAA





AGTIITACKN


GAATTAGAAA





CA


TGTTAATTGGT








GGTGCAGATC








GTGGATGGAT








TAAGACTTTA








ACAAAAGATT








GTCCAAATGT








AATTTCTTCAA








TTTGTGCAGG








TACAATTATTA








CAGCTTGTAA








AAATTGTGCT








TAA





26
Brochocin-c
Unclassified
MHKVKKLN

Brochothrix

27
ATGCACAAGG





NQELQQIVG

campestris


TAAAAAAATT





GYSSKDCLK


AAACAATCAA





DIGKGIGAG


GAGTTACAAC





TVAGAAGG


AGATCGTGGG





GLAAGLGAI


AGGTTACAGT





PGAFVGAHF


TCAAAAGATT





GVIGGSAACI


GTCTAAAAGA





GGLLGN


TATTGGTAAA








GGAATTGGTG








CTGGTACAGT








AGCTGGGGCA








GCCGGCGGTG








GCCTAGCTGC








AGGATTAGGT








GCTATCCCAG








GAGCATTCGT








TGGAGCACAT








TTTGGAGTAA








TCGGCGGATC








TGCCGCATGC








ATTGGTGGAT








TATTAGGTAA








CTAG





28
Butyrivibriocin
Unclassified
MSKKQIMSN

Butyrivibrio

29
ATGAGTAAAA



AR10

CISIALLIALI

fibrisolvens


AACAAATTAT





PNIYFIADKM


GAGTAACTGT





GIQLAPAWY


ATATCAATTG





QDIVNWVSA


CATTATTAATA





GGTLTTGFAI


GCACTAATTC





IVGVTVPAW


CTAATATCTAT





IAEAAAAFGI


TTTATTGCAG





ASA


ATAAAATGGG








AATTCAGTTA








GCACCTGCTT








GGTATCAAGA








TATTGTGAATT








GGGTATCTGC








TGGTGGAACA








CTTACTACTG








GTTTTGCGATT








ATTGTAGGAG








TTACAGTACC








GGCATGGATA








GCAGAAGCAG








CTGCAGCTTTT








GGTATAGCTT








CAGCATGA





30
Butyrivibriocin
Lantibiotic
MNKELNALT

Butyrivibrio

31
ATGAACAAAG



OR79

NPIDEKELEQ

fibrisolvens


AACTTAATGC





ILGGGNGVI


ACTTACAAAT





KTISHECHM


CCTATTGACG





NTWQFIFTC


AGAAGGAGCT





CS


TGAGCAGATC








CTCGGTGGTG








GCAATGGTGT








CATCAAGACA








ATCAGCCACG








AGTGCCACAT








GAACACATGG








CAGTTCATTTT








CACATGTTGC








TCTTAA





32
Carnobacteriocin
class
MNSVKELN

Carnobacterium

33
ATGAATAGCG



B2
IIA/YG
VKEMKQLH

maltaromaticum


TAAAAGAATT



(Carnocin
NGV
GGVNYGNG
(Carnobacterium

AAACGTGAAA



CP52)

VSCSKTKCS

piscicola)


GAAATGAAAC





VNWGQAFQ


AATTACACGG





ERYTAGINSF


TGGAGTAAAT





VSGVASGAG


TATGGTAATG





SIGRRP


GTGTTTCTTGC








AGTAAAACAA








AATGTTCAGT








TAACTGGGGA








CAAGCCTTTC








AAGAAAGATA








CACAGCTGGA








ATTAACTCATT








TGTAAGTGGA








GTCGCTTCTG








GGGCAGGATC








CATTGGTAGG








AGACCGTAA





34
Carnobacteriocin
class
MKSVKELNK

Carnobacterium

35
ATGAAAAGCG



BM1
IIA/YG
KEMQQINGG

maltaromaticum


TTAAAGAACT



(Carnobacteriocin
NGV
AISYGNGVY
(Carnobacterium

AAATAAAAAA



B1)

CNKEKCWV

piscicola)


GAAATGCAAC





NKAENKQAI


AAATTAATGG





TGIVIGGWA


TGGAGCTATC





SSLAGMGH


TCTTATGGCA








ATGGTGTTTAT








TGTAACAAAG








AGAAATGTTG








GGTAAACAAG








GCAGAAAACA








AACAAGCTAT








TACTGGAATA








GTTATCGGTG








GATGGGCTTC








TAGTTTAGCA








GGAATGGGAC








ATTAA





36
Carnobacteriocin-A
class IIc,
MNNVKELSI

Carnobacterium

37
ATGAATAATG



(Piscicolin-
non
KEMQQVTG

maltaromaticum


TAAAAGAGTT



61)
subgrouped
GDQMSDGV
(Carnobacterium

AAGTATTAAA




bacteriocins
NYGKGSSLS

piscicola)


GAAATGCAAC




(problematic)
KGGAKCGL


AAGTTACTGG





GIVGGLATIP


TGGAGACCAA





SGPLGWLAG


ATGTCAGATG





AAGVINSCMK


GTGTAAATTA








TGGAAAAGGC








TCTAGCTTATC








AAAAGGTGGT








GCCAAATGTG








GTTTAGGGAT








CGTCGGCGGA








TTAGCTACTAT








CCCTTCAGGT








CCTTTAGGCT








GGTTAGCCGG








AGCAGCAGGT








GTAATTAATA








GCTGTATGAA








ATAA





38
Carnocyclin-A
Unclassified
MLYELVAY

Carnobacterium

39
ATGTTATATG





GIAQGTAEK

maltaromaticum


AATTAGTTGC





VVSLINAGL
(Carnobacterium

ATATGGTATC





TVGSIISILG

piscicola)


GCACAAGGTA





GVTVGLSGV


CAGCTGAAAA





FTAVKAAIA


GGTTGTAAGT





KQGIKKAIQL


CTAATTAACG








CAGGTTTAAC








AGTAGGGTCT








ATTATTTCAAT








TTTGGGTGGG








GTCACAGTCG








GTTTATCAGG








TGTCTTCACA








GCAGTTAAAG








CAGCAATTGC








TAAACAAGGA








ATAAAAAAAG








CAATTCAATT








ATAA





40
Carocin D
Unclassified
MIKYRLYAP

Pectobacterium

41
ATGATTAAAT





NDGDTMTV

carotovorum


ACCGTTTATAT





SGGGGWVS
subsp.

GCTCCAAATG





NDDRKGGN

carotovorum


ATGGAGACAC





DRDNGKGG
(Erwinia

CATGACAGTG





SAVDFSKNP

carotovora


AGTGGTGGTG





EKQAIVNPY
subsp.

GTGGTTGGGT





LAIAIPMPVY

carotovora)


TTCAAACGAT





PLYGKLGFTI


GATCGCAAAG





NTTAIETELA


GTGGTAATGA





NVRAAINTK


CAGGGACAAT





LATLSAVIGR


GGCAAAGGTG





SLPVVGRVF


GTTCTGCCGTT





GVTAAGMW


GATTTTAGTA





PSSTAPSSLD


AAAATCCAGA





SIYNQAHQQ


AAAGCAGGCT





ALAQLAAQQ


ATCGTTAATCC





GVLNKGYN


CTATTTGGCA





VTAMPAGFV


ATCGCGATAC





SSLPVSEIKS


CGATGCCGGT





LPTAPASLLA


CTACCCTCTTT





QSVINTELSQ


ATGGAAAGCT





RQLALTQPT


AGGGTTCACA





TNAPVANIP


ATAAATACGA





VVKAEKTA


CGGCAATTGA





MPGVYSAKI


GACTGAACTC





IAGEPAFQIK


GCAAATGTCA





VDNTKPALA


GAGCAGCAAT





QNPPKVKDD


TAACACTAAA





IQVSSFLSSP


CTTGCAACAC





VADTHHAFI


TCAGTGCAGT





DFGSDHEPV


GATTGGCAGA





YVSLSKIVT


TCACTTCCGGT





AEEEKKQVE


CGTTGGGCGG





EAKRREQEW


GTATTTGGTG





LLRHPITAAE


TTACTGCCGC





RKLTEIRQVI


CGGAATGTGG





SFAQQLKES


CCTTCTAGTAC





SVATISEKTK


CGCTCCCAGT





TVAVYQEQ


AGTCTCGATT





VNTAAKNR


CTATATACAA





DNFYNQNR


TCAAGCACAT





GLLSAGITG


CAGCAGGCTT





GPGYPIYLA


TAGCCCAGTT





LWQTMNNF


AGCTGCTCAA





HQAYFRANN


CAGGGAGTAT





ALEQESHVL


TAAATAAAGG





NLARSDLAK


GTATAACGTT





AEQLLAENN


ACAGCAATGC





RLQVETERT


CTGCAGGTTT





LAEEKEIKR


CGTCAGCAGT





NRVNVSTFG


TTGCCTGTTAG





TVQTQLSKL


TGAAATCAAA





LSDFYAVTS


TCATTGCCAA





LSQSVPSGA


CAGCTCCCGC





LASFSYNPQ


CAGTTTACTG





GMIGSGKIV


GCACAAAGTG





GKDVDVLFS


TGATTAATAC





IPVKDIPGYK


CGAACTTTCCC





SPINLDDLAK


AGCGTCAACT





KNGSLDLPIR


GGCTCTTACTC





LAFSDENGE


AGCCCACGAC





RVLRAFKAD


GAATGCACCA





SLRIPSSVRG


GTCGCGAATA





VAGSYDKNT


TTCCCGTAGTT





GIFSAEIDGV


AAAGCAGAGA





SSRLVLENP


AAACAGCAAT





AFPPTGNVG


GCCAGGTGTG





NTGNTAPDY


TATTCAGCGA





KALLNTGVD


AAATTATTGCT





VKPVDKITV


GGTGAGCCTG





TVTPVADPV


CATTCCAAAT





DIDDYIIWLP


CAAGGTCGAT





TASGSGVEPI


AATACCAAAC





YVVFNSNPY


CTGCTTTGGC





GGTEKGKYS


ACAGAATCCG





KRYYNPDKA


CCGAAAGTAA





GGPILELDW


AAGATGATAT





KNVKIDHAG


TCAGGTATCTT





VDNVKLHT


CTTTCCTTTCC





GRFKASVEN


TCGCCAGTAG





KVMIERLENI


CTGATACGCA





LNGQITATD


CCATGCATTTA





TDKRFYTHE


TTGATTTTGGC





LRELNRYRN


AGCGATCATG





LGIKDGEVP


AACCGGTATA





SSIQEESAV


CGTGTCTCTTT





WNDTHTAT


CAAAGATCGT





LEDYKINEK


GACAGCCGAG





EQPLYTDAA


GAGGAGAAAA





LQAAYEQEL


AACAGGTTGA





KDALGGKHG


AGAGGCCAAG








CGCCGTGAGC








AGGAGTGGTT








GTTGCGTCAT








CCAATTACAG








CTGCGGAGCG








AAAATTAACT








GAAATCCGCC








AAGTGATCTC








TTTTGCTCAAC








AGCTAAAAGA








AAGCTCTGTC








GCAACCATTT








CAGAAAAAAC








TAAAACTGTT








GCGGTTTACC








AAGAACAGGT








GAATACCGCT








GCAAAAAATC








GCGACAATTT








TTATAATCAA








AATAGAGGTC








TGTTAAGTGC








GGGTATAACT








GGGGGACCGG








GATATCCTATT








TATCTTGCTTT








ATGGCAAACG








ATGAATAACT








TTCATCAGGC








TTATTTCAGA








GCAAATAATG








CATTGGAACA








AGAGAGTCAT








GTTCTGAACC








TGGCTCGTTCT








GATCTGGCTA








AGGCTGAGCA








ATTGCTTGCTG








AGAATAATCG








ACTTCAGGTT








GAAACGGAGC








GAACGCTTGC








CGAAGAAAAA








GAGATAAAAC








GCAACAGGGT








TAATGTATCA








ACATTTGGCA








CAGTGCAAAC








TCAACTTAGT








AAATTGCTGT








CAGATTTTTAT








GCTGTTACAT








CACTTTCCCAA








AGTGTTCCTTC








GGGGGCATTA








GCCTCTTTTTC








ATATAATCCA








CAAGGGATGA








TTGGCAGCGG








TAAGATTGTT








GGGAAGGATG








TCGATGTTTTA








TTTTCCATCCC








AGTAAAAGAT








ATTCCGGGAT








ATAAATCTCCT








ATTAACTTGG








ACGATTTAGC








CAAGAAAAAT








GGAAGTCTGG








ATCTTCCCATT








CGTCTGGCAT








TTTCTGATGA








GAATGGAGAA








AGGGTTCTTC








GGGCATTCAA








AGCGGATAGT








CTGCGAATCC








CTTCGAGTGT








CAGAGGTGTA








GCGGGCAGTT








ATGACAAAAA








TACGGGTATT








TTTAGTGCAG








AAATTGATGG








TGTTTCATCTC








GCCTTGTACT








GGAAAACCCA








GCGTTTCCTCC








GACCGGAAAT








GTCGGTAATA








CGGGTAATAC








TGCACCTGAC








TATAAAGCAT








TACTGAATAC








TGGTGTTGAT








GTTAAACCTG








TTGATAAAAT








CACAGTTACG








GTAACACCAG








TTGCTGATCC








AGTGGATATT








GATGACTATA








TAATCTGGTT








GCCAACTGCG








TCTGGTTCTG








GCGTGGAACC








CATTTATGTCG








TGTTTAACAG








TAATCCGTAT








GGTGGGACGG








AAAAAGGAAA








ATATAGCAAA








CGTTATTATAA








TCCAGATAAG








GCAGGCGGTC








CGATCTTGGA








GCTGGATTGG








AAAAACGTTA








AGATTGACCA








TGCAGGTGTG








GACAATGTTA








AATTACACAC








AGGGCGTTTC








AAAGCGTCGG








TTGAAAACAA








AGTGATGATT








GAACGTTTGG








AAAACATACT








GAATGGTCAA








ATCACGGCCA








CGGATACTGA








CAAGCGATTC








TATACGCATG








AATTAAGAGA








GTTAAACCGC








TACAGAAATT








TAGGCATCAA








AGACGGTGAA








GTGCCTAGTA








GCATTCAAGA








AGAAAGCGCT








GTTTGGAACG








ACACACACAC








AGCGACGCTT








GAAGACTACA








AAATTAATGA








GAAAGAGCAA








CCGTTGTACA








CTGATGCTGC








TTTGCAGGCA








GCCTACGAAC








AGGAACTCAA








AGACGCATTA








GGAGGGAAAC








ATGGCTAA





42
Cerein 7B
Unclassified
MENLQMLT

Bacillus

43
ATGGAAAACT





EEELMEIEG

cereus


TACAAATGTT





GGWWNSWG


AACTGAAGAA





KCVAGTIGG


GAATTAATGG





AGTGGLGGA


AAATTGAAGG





AAGSAVPVI


TGGAGGCTGG





GTGIGGAIG


TGGAATAGCT





GVSGGLTGA


GGGGTAAATG





ATFC


TGTTGCTGGA








ACTATCGGTG








GAGCTGGAAC








TGGTGGTTTA








GGTGGAGCTG








CTGCAGGTTC








AGCTGTTCCG








GTTATTGGTA








CTGGTATTGG








TGGCGCTATT








GGTGGAGTTA








GCGGTGGCCT








TACAGGTGCA








GCTACTTTTTG








CTAA





44
Cinnamycin
Lantibiotic
MTASILQQS

Streptoverticillium

45
ATGACCGCTT



(Lanthiopeptin)

VVDADFRAA

griseoverticillatum


CCATTCTTCAG





LLENPAAFG


CAGTCCGTCG





ASAAALPTP


TGGACGCCGA





VEAQDQASL


CTTCCGCGCG





DFWTKDIAA


GCGCTGCTTG





TEAFACRQS


AGAACCCCGC





CSFGPFTFVC


CGCCTTCGGC





DGNTK


GCTTCCGCCG








CGGCCCTGCC








CACGCCCGTC








GAGGCCCAGG








ACCAGGCGTC








CCTTGACTTCT








GGACCAAGGA








CATCGCCGCC








ACGGAAGCCT








TCGCCTGCCG








CCAGAGCTGC








AGCTTCGGCC








CGTTCACCTTC








GTGTGCGACG








GCAACACCAA








GTAA





46
Circularin A
Unclassified
MSLLALVAG

Geobacillus

47
ATGAGTTTGC





TLGVSQSIAT

kaustophilus


TGGCGCTTGT





TVVSIVLTGS
(strain

TGCCGGGACG





TLISIILGITAI
HTA426)

CTCGGCGTGT





LSGGVDAIL


CACAGTCAAT





EIGWSAFVA


CGCGACGACG





TVKKIVAER


GTTGTTTCGAT





GKAAAIAW


TGTGTTGACC








GGCTCCACTC








TCATTTCTATT








ATTCTTGGGA








TCACCGCTATT








TTGTCAGGTG








GAGTCGACGC








CATTTTGGAA








ATTGGGTGGT








CAGCTTTTGTC








GCGACGGTGA








AAAAAATAGT








GGCGGAACGA








GGAAAAGCGG








CAGCGATTGC








ATGGTAA





48
Closticin
Unclassified
MRKVFLRSII

Clostridium

49
TTGAGAAAAG



574

STLVMCAFV

tyrobutyricum


TATTTTTAAGA





SSSFSVNAD


TCAATAATTTC





ESKPNDEKII


AACATTAGTT





NNIENVTTT


ATGTGTGCAT





KDIVKSNKN


TTGTTTCAAGC





NIVYLDEGV


AGCTTTTCAGT





MSIPLSGRKP


AAATGCGGAT





IAIKDDNNK


GAAAGCAAAC





EDLTVTLPIK


CAAATGATGA





NTGDISKISS


AAAAATAATT





NGTILYKNN


AATAACATAG





SSNSSNIALQ


AAAACGTTAC





PKNDGFKAL


TACTACTAAA





ININDKLAN


GATATTGTAA





KEYEFTFNL


AAAGTAATAA





PKNSKLISAA


AAATAATATT





TYLGKEYDT


GTATATTTAG





KEVFVVDKN


ATGAAGGTGT





NIITSIISPAW


AATGAGTATT





AKDANGHN


CCATTGTCTG





VSTYYKIVS


GGAGAAAACC





NNKLVQVV


CATTGCTATTA





EFTENTAFP


AAGATGATAA





VVADPNWT


TAATAAAGAA





KIGKCAGSIA


GATTTAACTG





WAIGSGLFG


TTACATTACCT





GAKLIKIKKY


ATTAAGAATA





IAELGGLQK


CTGGAGATAT





AAKLLVGAT


ATCTAAAATT





TWEEKLHAG


AGTAGTAATG





GYALINLAA


GTACTATTCTG





ELTGVAGIQ


TATAAAAATA





ANCF


ATAGTAGTAA








TTCATCTAATA








TAGCTTTACA








ACCTAAAAAT








GATGGATTTA








AGGCTTTAAT








AAATATTAAT








GATAAGTTAG








CTAATAAAGA








ATATGAATTT








ACATTTAATTT








ACCCAAAAAC








AGTAAATTAA








TTAGTGCTGC








CACATATTTG








GGTAAAGAAT








ATGATACAAA








AGAAGTATTT








GTAGTAGACA








AAAATAATAT








AATTACGAGT








ATTATTAGTCC








AGCTTGGGCT








AAAGATGCAA








ATGGACATAA








TGTTTCTACTT








ATTATAAGAT








AGTATCGAAT








AATAAATTAG








TACAAGTTGT








TGAATTCACA








GAAAATACTG








CATTCCCGGT








GGTAGCTGAT








CCTAATTGGA








CTAAAATTGG








GAAATGCGCT








GGGTCAATAG








CATGGGCTAT








AGGTTCTGGC








CTTTTTGGTGG








AGCAAAGCTA








ATTAAAATAA








AAAAATATAT








AGCAGAGCTT








GGAGGACTTC








AAAAAGCAGC








TAAATTATTA








GTTGGTGCAA








CCACTTGGGA








AGAAAAATTA








CACGCAGGCG








GTTATGCATT








AATTAACTTA








GCTGCTGAGC








TAACAGGTGT








AGCAGGTATA








CAAGCAAATT








GTTTTTAA





50
Coagulin A
Unclassified
MKKIEKLTE

Bacillus

51
ATGAAAAAAA





KEMANIIGG

coagulans


TTGAAAAATT





KYYGNGVT


AACTGAAAAA





CGKHSCSVD


GAAATGGCCA





WGKATTCII


ATATCATTGG





NNGAMAWA


TGGTAAATAC





TGGHQGTH


TACGGTAATG





KC


GGGTTACTTG








TGGCAAACAT








TCCTGCTCTGT








TGACTGGGGT








AAGGCTACCA








CCTGCATAAT








CAATAATGGA








GCTATGGCAT








GGGCTACTGG








TGGACATCAA








GGTACTCATA








AATGCTAG





52
Colicin-10
Unclassified
MDKVTDNSP

Escherichia

53
ATGGATAAAG





DVESTESTE

coli


TCACTGATAA





GSFPTVGVD


TTCTCCAGAT





TGDTITATL


GTGGAGAGCA





ATGTENVGG


CAGAATCTAC





GGGAFGGAS


TGAGGGGTCA





ESSAAIHATA


TTCCCAACTGT





KWSTAQLKK


TGGGGTTGAT





HQAEQAAR


ACTGGCGATA





AAAAEAALA


CGATTACAGC





KAKSQRDAL


GACGCTTGCA





TQRLKDIVN


ACTGGAACTG





DALRANAAR


AAAATGTTGG





SPSVTDLAH


TGGAGGCGGT





ANNMAMQA


GGAGCATTTG





EAERLRLAK


GTGGGGCCAG





AEQKAREEA


TGAAAGTTCT





EAAEKALRE


GCTGCGATAC





AERQRDEIA


ATGCAACCGC





RQQAETAHL


TAAATGGTCT





LAMAEAAEA


ACCGCGCAGT





EKNRQDSLD


TGAAAAAACA





EEHRAVEVA


TCAGGCTGAA





EKKLAEAKA


CAGGCTGCCC





ELAKAESDV


GTGCTGCTGC





QSKQAIVSR


GGCTGAGGCA





VAGELENAQ


GCATTGGCAA





KSVDVKVTG


AAGCGAAATC





FPGWRDVQ


TCAGCGTGAT





KKLERQLQD


GCCCTGACTC





KKNEYSSVT


AACGTCTCAA





NALNSAVSI


GGATATTGTT





RDAKKTEVQ


AATGACGCTT





NAEIKLKEA


TACGTGCTAA





KDALEKSQV


TGCCGCTCGT





KDSVDTMV


AGTCCATCAG





GFYQYITEQ


TAACTGACCTT





YGEKYSRIA


GCTCATGCCA





QDLAEKAKG


ATAATATGGC





SKFNSVDEA


AATGCAGGCA





LAAFEKYKN


GAGGCTGAGC





VLDKKFSKV


GTTTGCGCCTT





DRDDIFNAL


GCGAAGGCAG





ESITYDEWA


AGCAAAAAGC





KHLEKISRAL


CCGTGAAGAA





KVTGYLSFG


GCTGAAGCAG





YDVWDGTL


CAGAAAAAGC





KGLKTGDW


GCTCCGGGAA





KPLFVTLEKS


GCAGAACGCC





AVDFGVAKI


AACGTGATGA





VALMFSFIV


GATTGCCCGC





GAPLGFWGI


CAACAGGCTG





AIITGIVSSYI


AAACCGCGCA





GDDELNKLN


TTTGTTAGCA





ELLGI


ATGGCGGAGG








CAGCAGAGGC








TGAGAAAAAT








CGACAGGATT








CTCTTGATGA








AGAGCATCGG








GCTGTGGAAG








TGGCAGAGAA








GAAGCTGGCT








GAGGCTAAAG








CTGAACTGGC








GAAGGCCGAA








AGCGATGTAC








AGAGTAAGCA








AGCGATTGTT








TCCAGAGTTG








CAGGGGAGCT








TGAAAACGCT








CAAAAAAGTG








TTGATGTGAA








GGTTACCGGA








TTTCCTGGATG








GCGTGATGTT








CAGAAAAAAC








TGGAGAGACA








ATTGCAGGAT








AAGAAGAATG








AATATTCGTC








AGTGACGAAT








GCTCTTAATTC








TGCTGTTAGC








ATTAGAGATG








CTAAAAAAAC








AGAAGTTCAG








AATGCTGAGA








TAAAATTAAA








AGAAGCTAAG








GATGCTCTTG








AGAAGAGTCA








GGTAAAAGAC








TCTGTTGATAC








TATGGTTGGG








TTTTATCAATA








TATAACCGAA








CAATATGGGG








AAAAATATTC








CAGAATAGCT








CAGGATTTAG








CTGAAAAGGC








GAAGGGTAGT








AAATTTAATA








GTGTTGATGA








AGCACTTGCT








GCATTTGAAA








AGTATAAAAA








TGTACTGGAT








AAGAAATTCA








GTAAGGTTGA








TAGGGATGAT








ATTTTTAATGC








TTTAGAGTCT








ATTACTTATGA








TGAGTGGGCC








AAGCATCTAG








AAAAGATCTC








TAGGGCTCTT








AAGGTTACTG








GATATTTGTCT








TTCGGGTATG








ATGTATGGGA








TGGTACCCTA








AAGGGATTAA








AAACAGGAGA








CTGGAAGCCT








TTATTTGTCAC








TCTGGAGAAG








AGCGCGGTAG








ATTTCGGCGT








GGCAAAAATT








GTGGCATTAA








TGTTTAGTTTT








ATTGTTGGTG








CGCCTCTTGG








CTTCTGGGGA








ATTGCAATTAT








CACAGGTATT








GTTTCTTCTTA








CATAGGGGAT








GATGAGTTGA








ACAAGCTTAA








TGAATTACTA








GGTATTTAA





54
Colicin-
Unclassified
METAVAYY

Escherichia

55
ATGGAAACCG



E1

KDGVPYDD

coli


CGGTAGCGTA





KGQVIITLLN


CTATAAAGAT





GTPDGSGSG


GGTGTTCCTTA





GGGGKGGS


TGATGATAAG





KSESSAAIHA


GGACAGGTAA





TAKWSTAQL


TTATTACTCTT





KKTQAEQAA


TTGAATGGTA





RAKAAAEAQ


CTCCTGACGG





AKAKANRD


GAGTGGCTCT





ALTQRLKDI


GGCGGCGGAG





VNEALRHNA


GTGGAAAAGG





SRTPSATELA


AGGCAGTAAA





HANNAAMQ


AGTGAAAGTT





AEDERLRLA


CTGCAGCTAT





KAEEKARKE


TCATGCAACT





AEAAEKAFQ


GCTAAATGGT





EAEQRRKEI


CTACTGCTCA





EREKAETER


ATTAAAGAAA





QLKLAEAEE


ACACAGGCAG





KRLAALSEE


AGCAGGCTGC





AKAVEIAQK


CCGGGCAAAA





KLSAAQSEV


GCTGCAGCGG





VKMDGEIKT


AAGCACAGGC





LNSRLSSSIH


GAAAGCAAAG





ARDAEMKTL


GCAAACAGGG





AGKRNELAQ


ATGCGCTGAC





ASAKYKELD


TCAGCGCCTG





ELVKKLSPR


AAGGATATCG





ANDPLQNRP


TGAATGAGGC





FFEATRRRV


TCTTCGTCACA





GAGKIREEK


ATGCCTCACG





QKQVTASET


TACGCCTTCA





RINRINADIT


GCAACAGAGC





QIQKAISQVS


TTGCTCATGCT





NNRNAGIAR


AATAATGCAG





VHEAEENLK


CTATGCAGGC





KAQNNLLNS


GGAAGACGAG





QIKDAVDAT


CGTTTGCGCCT





VSFYQTLTE


TGCGAAAGCA





KYGEKYSK


GAAGAAAAAG





MAQELADKS


CCCGTAAAGA





KGKKIGNVN


AGCGGAAGCA





EALAAFEKY


GCAGAAAAGG





KDVLNKKFS


CTTTTCAGGA





KADRDAIFN


AGCAGAACAA





ALASVKYDD


CGACGTAAAG





WAKHLDQF


AGATTGAACG





AKYLKITGH


GGAGAAGGCT





VSFGYDVVS


GAAACAGAAC





DILKIKDTGD


GCCAGTTGAA





WKPLFLTLE


ACTGGCTGAA





KKAADAGVS


GCTGAAGAGA





YVVALLFSL


AACGACTGGC





LAGTTLGIW


TGCATTGAGT





GIAIVTGILC


GAAGAAGCTA





SYIDKNKLN


AAGCTGTTGA





TINEVLGI


GATCGCCCAA








AAAAAACTTT








CTGCTGCACA








ATCTGAAGTG








GTGAAAATGG








ATGGAGAGAT








TAAGACTCTC








AATTCTCGTTT








AAGCTCCAGT








ATCCATGCCC








GTGATGCAGA








AATGAAAACG








CTCGCTGGAA








AACGAAATGA








ACTGGCTCAG








GCATCCGCTA








AATATAAAGA








ACTGGATGAG








CTGGTCAAAA








AACTATCACC








AAGAGCCAAT








GATCCGCTTC








AGAACCGTCC








TTTTTTTGAAG








CAACCAGACG








ACGGGTTGGG








GCCGGTAAGA








TTAGAGAAGA








AAAACAAAAA








CAGGTAACAG








CATCAGAAAC








ACGTATTAAC








CGGATAAATG








CTGATATAAC








TCAGATCCAG








AAGGCTATTT








CTCAGGTCAG








TAATAATCGT








AATGCCGGTA








TCGCTCGTGTT








CATGAAGCTG








AAGAAAATTT








GAAAAAAGCA








CAGAATAATC








TCCTTAATTCA








CAGATTAAGG








ATGCTGTTGA








TGCAACAGTT








AGCTTTTATCA








AACGCTGACT








GAAAAATATG








GTGAAAAATA








TTCGAAAATG








GCACAGGAAC








TTGCTGATAA








GTCTAAAGGT








AAGAAAATCG








GCAATGTGAA








TGAAGCTCTC








GCTGCTTTTGA








AAAATACAAG








GATGTTTTAA








ATAAGAAATT








CAGCAAAGCC








GATCGTGATG








CTATTTTTAAT








GCGTTGGCAT








CGGTGAAGTA








TGATGACTGG








GCTAAACATT








TAGATCAGTT








TGCCAAGTAC








TTGAAGATTA








CGGGGCATGT








TTCTTTTGGAT








ATGATGTGGT








ATCTGATATCC








TAAAAATTAA








GGATACAGGT








GACTGGAAGC








CACTATTTCTT








ACATTAGAGA








AGAAAGCTGC








AGATGCAGGG








GTGAGTTATG








TTGTTGCTTTA








CTTTTTAGCTT








GCTTGCTGGA








ACTACATTAG








GTATTTGGGG








TATTGCTATTG








TTACAGGAAT








TCTATGCTCCT








ATATTGATAA








GAATAAACTT








AATACTATAA








ATGAGGTGTT








AGGGATTTAA





56
Colicin-Ia
Unclassified
MSDPVRITN

Escherichia

57
ATGTCTGACC





PGAESLGYD

coli


CTGTACGTATT





SDGHEIMAV


ACAAATCCCG





DIYVNPPRV


GTGCAGAATC





DVFHGTPPA


GCTGGGGTAT





WSSFGNKTI


GATTCAGATG





WGGNEWVD


GCCATGAAAT





DSPTRSDIEK


TATGGCCGTT





RDKEITAYK


GATATTTATGT





NTLSAQQKE


AAACCCTCCA





NENKRTEAG


CGTGTCGATG





KRLSAAIAA


TCTTTCATGGT





REKDENTLK


ACCCCGCCTG





TLRAGNADA


CATGGAGTTC





ADITRQEFRL


CTTCGGGAAC





LQAELREYG


AAAACCATCT





FRTEIAGYD


GGGGCGGAAA





ALRLHTESR


CGAGTGGGTT





MLFADADSL


GATGATTCCC





RISPREARSL


CAACCCGAAG





IEQAEKRQK


TGATATCGAA





DAQNADKK


AAAAGGGACA





AADMLAEY


AGGAAATCAC





ERRKGILDT


AGCGTACAAA





RLSELEKNG


AACACGCTCA





GAALAVLDA


GCGCGCAGCA





QQARLLGQQ


GAAAGAGAAT





TRNDRAISE


GAGAATAAGC





ARNKLSSVT


GTACTGAAGC





ESLNTARNA


CGGAAAACGC





LTRAEQQLT


CTCTCTGCGG





QQKNTPDGK


CGATTGCTGC





TIVSPEKFPG


AAGGGAAAAA





RSSTNHSIVV


GATGAAAACA





SGDPRFAGTI


CACTGAAAAC





KITTSAVIDN


ACTCCGTGCC





RANLNYLLS


GGAAACGCAG





HSGLDYKRN


ATGCCGCTGA





ILNDRNPVV


TATTACACGA





TEDVEGDKK


CAGGAGTTCA





IYNAEVAEW


GACTCCTGCA





DKLRQRLLD


GGCAGAGCTG





ARNKITSAES


AGAGAATACG





AVNSARNNL


GATTCCGTAC





SARTNEQKH


TGAAATCGCC





ANDALNALL


GGATATGACG





KEKENIRNQ


CCCTCCGGCT





LSGINQKIAE


GCATACAGAG





EKRKQDELK


AGCCGGATGC





ATKDAINFT


TGTTTGCTGAT





TEFLKSVSE


GCTGATTCTCT





KYGAKAEQL


TCGTATATCTC





AREMAGQA


CCCGGGAGGC





KGKKIRNVE


CAGGTCGTTA





EALKTYEKY


ATCGAACAGG





RADINKKIN


CTGAAAAACG





AKDRAAIAA


GCAGAAGGAT





ALESVKLSDI


GCGCAGAACG





SSNLNRFSR


CAGACAAGAA





GLGYAGKFT


GGCCGCTGAT





SLADWITEF


ATGCTTGCTG





GKAVRTEN


AATACGAGCG





WRPLFVKTE


CAGAAAAGGT





TIIAGNAATA


ATTCTGGACA





LVALVFSILT


CCCGGTTGTC





GSALGIIGYG


AGAGCTGGAA





LLMAVTGAL


AAAAATGGCG





IDESLVEKA


GGGCAGCCCT





NKFWGI


TGCCGTTCTTG








ATGCACAACA








GGCCCGTCTG








CTCGGGCAGC








AGACACGGAA








TGACAGGGCC








ATTTCAGAGG








CCCGGAATAA








ACTCAGTTCA








GTGACGGAAT








CGCTTAACAC








GGCCCGTAAT








GCATTAACCA








GAGCTGAACA








ACAGCTGACG








CAACAGAAAA








ACACGCCTGA








CGGCAAAACG








ATAGTTTCCCC








TGAAAAATTC








CCGGGGCGTT








CATCAACAAA








TGATTCTATTG








TTGTGAGCGG








TGATCCGAGA








TTTGCCGGTA








CGATAAAAAT








CACAACCAGC








GCAGTCATCG








ATAACCGTGC








AAACCTGAAT








TATCTTCTGAG








CCATTCCGGT








CTGGACTATA








AACGCAATAT








TCTGAATGAC








CGGAATCCGG








TGGTGACAGA








GGATGTGGAA








GGTGACAAGA








AAATTTATAA








TGCTGAAGTT








GCTGAATGGG








ATAAGTTACG








GCAAAGATTG








CTTGATGCCA








GAAATAAAAT








CACCTCTGCT








GAATCTGCGG








TAAATTCGGC








GAGAAATAAC








CTCAGTGCCA








GAACAAATGA








GCAAAAGCAT








GCAAATGACG








CTCTTAATGCC








CTGTTGAAGG








AAAAAGAGAA








TATCCGTAAC








CAGCTTTCCG








GCATCAATCA








GAAGATAGCG








GAAGAGAAAA








GAAAACAGGA








TGAACTGAAG








GCAACGAAAG








ACGCAATTAA








TTTCACAACA








GAGTTCCTGA








AATCAGTTTC








AGAAAAATAT








GGTGCAAAAG








CTGAGCAGTT








AGCCAGAGAG








ATGGCCGGGC








AGGCTAAAGG








GAAGAAAATA








CGTAATGTTG








AAGAGGCATT








AAAAACGTAT








GAAAAGTACC








GGGCTGACAT








TAACAAAAAA








ATTAATGCAA








AAGATCGTGC








AGCGATTGCC








GCAGCCCTTG








AGTCTGTGAA








GCTGTCTGAT








ATATCGTCTA








ATCTGAACAG








ATTCAGTCGG








GGACTGGGAT








ATGCAGGAAA








ATTTACAAGT








CTTGCTGACT








GGATCACTGA








GTTTGGTAAG








GCTGTCCGGA








CAGAGAACTG








GCGTCCTCTTT








TTGTTAAAAC








AGAAACCATC








ATAGCAGGCA








ATGCCGCAAC








GGCTCTTGTG








GCACTGGTCT








TCAGTATTCTT








ACCGGAAGCG








CTTTAGGCATT








ATCGGGTATG








GTTTACTGAT








GGCTGTCACC








GGTGCGCTGA








TTGATGAATC








GCTTGTGGAA








AAAGCGAATA








AGTTCTGGGG








TATTTAA





58
Colicin-Ib
Unclassified
MSDPVRITN

Escherichia

59
ATGTCTGACC





PGAESLGYD

coli


CTGTACGTATT





SDGHEIMAV


ACAAATCCCG





DIYVNPPRV


GTGCAGAATC





DVFHGTPPA


GCTGGGATAT





WSSFGNKTI


GATTCAGATG





WGGNEWVD


GCCATGAAAT





DSPTRSDIEK


TATGGCCGTT





RDKEITAYK


GATATTTATGT





NTLSAQQKE


AAACCCTCCA





NENKRTEAG


CGTGTCGATG





KRLSAAIAA


TCTTTCATGGT





REKDENTLK


ACCCCGCCTG





TLRAGNADA


CATGGAGTTC





ADITRQEFRL


CTTCGGGAAC





LQAELREYG


AAAACCATCT





FRTEIAGYD


GGGGTGGAAA





ALRLHTESR


CGAGTGGGTC





MLFADADSL


GATGATTCCC





RISPREARSL


CAACCCGAAG





IEQAEKRQK


TGATATCGAA





DAQNADKK


AAAAGGGACA





AADMLAEY


AGGAAATCAC





ERRKGILDT


AGCGTACAAA





RLSELEKNG


AACACGCTCA





GAALAVLDA


GCGCGCAGCA





QQARLLGQQ


GAAAGAGAAT





TRNDRAISE


GAGAATAAGC





ARNKLSSVT


GTACTGAAGC





ESLKTARNA


TGGAAAACGC





LTRAEQQLT


CTTTCTGCGGC





QQKNTPDGK


AATTGCTGCA





TIVSPEKFPG


AGGGAAAAAG





RSSTNHSIVV


ATGAAAACAC





SGDPRFAGTI


ACTGAAAACA





KITTSAVIDN


CTCCGTGCCG





RANLNYLLT


GAAACGCAGA





HSGLDYKRN


TGCCGCTGAT





ILNDRNPVV


ATTACACGAC





TEDVEGDKK


AGGAGTTCAG





IYNAEVAEW


ACTCCTGCAG





DKLRQRLLD


GCAGAGCTGA





ARNKITSAES


GAGAATACGG





AINSARNNV


ATTCCGTACT





SARTNEQKH


GAAATCGCCG





ANDALNALL


GATATGATGC





KEKENIRSQ


CCTCCGGCTG





LADINQKIAE


CATACAGAGA





EKRKRDEIN


GCCGGATGCT





MVKDAIKLT


GTTTGCTGAT





SDFYRTIYDE


GCTGATTCTCT





FGKQASELA


TCGTATATCTC





KELASVSQG


CCCGCGAGGC





KQIKSVDDA


CAGGTCGTTA





LNAFDKFRN


ATCGAACAGG





NLNKKYNIQ


CTGAAAAACG





DRMAISKAL


GCAGAAGGAT





EAINQVHMA


GCGCAGAACG





ENFKLFSKAF


CAGACAAGAA





GFTGKVIER


GGCCGCTGAT





YDVAVELQK


ATGCTTGCTG





AVKTDNWR


AATACGAGCG





PFFVKLESLA


CAGAAAAGGT





AGRAASAVT


ATTCTGGACA





AWAFSVML


CGCGGTTGTC





GTPVGILGF


AGAGCTGGAA





AIIMAAVSA


AAAAATGGCG





LVNDKFIEQ


GGGCAGCCCT





VNKLIGI


TGCCGTTCTTG








ATGCACAACA








GGCCCGTCTG








CTCGGGCAGC








AGACACGGAA








TGACAGGGCC








ATTTCAGAGG








CCCGGAATAA








ACTCAGTTCG








GTGACGGAAT








CGCTTAAGAC








GGCCCGTAAT








GCATTAACCA








GAGCTGAACA








ACAGCTGACG








CAACAGAAAA








ACACGCCTGA








CGGCAAAACG








ATAGTTTCCCC








TGAAAAATTC








CCGGGGCGTT








CATCAACAAA








TCATTCTATTG








TTGTGAGTGG








TGATCCGAGG








TTTGCCGGTA








CGATAAAAAT








CACAACCAGC








GCGGTCATCG








ATAACCGTGC








AAACCTGAAT








TATCTTCTGAC








CCATTCCGGT








CTGGACTATA








AACGCAATAT








TCTGAATGAC








CGGAATCCGG








TGGTGACAGA








GGATGTGGAA








GGTGACAAGA








AAATTTATAA








TGCTGAAGTT








GCTGAATGGG








ATAAGTTACG








GCAACGATTG








CTTGATGCCA








GAAATAAAAT








CACCTCTGCT








GAATCTGCGA








TAAATTCGGC








GAGAAATAAC








GTCAGTGCCA








GAACAAATGA








ACAAAAGCAT








GCAAATGACG








CTCTTAATGCC








CTGTTGAAGG








AAAAAGAGAA








TATCCGTAGC








CAGCTTGCTG








ACATCAATCA








GAAAATAGCT








GAAGAGAAAA








GAAAAAGGGA








TGAAATAAAT








ATGGTAAAGG








ATGCCATAAA








ACTCACCTCTG








ATTTCTACAG








AACGATATAT








GATGAGTTCG








GTAAACAAGC








ATCCGAACTT








GCTAAGGAGC








TGGCTTCTGTA








TCTCAAGGGA








AACAGATTAA








GAGTGTGGAT








GATGCACTGA








ACGCTTTTGAT








AAATTCCGTA








ATAATCTGAA








CAAGAAATAT








AACATACAAG








ATCGCATGGC








CATTTCTAAA








GCCCTGGAAG








CTATTAATCA








GGTCCATATG








GCGGAGAATT








TTAAGCTGTTC








AGTAAGGCAT








TTGGTTTTACC








GGAAAAGTTA








TTGAACGTTA








TGATGTTGCT








GTGGAGTTAC








AAAAGGCTGT








AAAAACGGAC








AACTGGCGTC








CATTTTTTGTA








AAACTTGAAT








CACTGGCAGC








AGGAAGAGCT








GCTTCAGCAG








TTACAGCATG








GGCGTTTTCC








GTCATGCTGG








GAACCCCTGT








AGGTATTCTG








GGTTTTGCAA








TTATTATGGC








GGCTGTGAGT








GCGCTTGTTA








ATGATAAGTT








TATTGAGCAG








GTCAATAAAC








TTATTGGTATC








TGA





60
Colicin-M
Unclassified
METLTVHAP

Escherichia

61
ATGGAAACCT





SPSTNLPSYG

coli


TAACTGTTCAT





NGAFSLSAP


GCACCATCAC





HVPGAGPLL


CATCAACTAA





VQVVYSFFQ


CTTACCAAGTT





SPNMCLQAL


ATGGCAATGG





TQLEDYIKK


TGCATTTTCTC





HGASNPLTL


TTTCAGCACC





QIISTNIGYF


ACATGTGCCT





CNADRNLVL


GGTGCTGGCC





HPGISVYDA


CTCTTTTAGTC





YHFAKPAPS


CAGGTTGTTT





QYDYRSMN


ATAGTTTTTTC





MKQMSGNV


CAGAGTCCAA





TTPIVALAH


ACATGTGTCTT





YLWGNGAE


CAGGCTTTAA





RSVNIANIGL


CTCAACTTGA





KISPMKINQI


GGATTACATC





KDIIKSGVV


AAAAAACATG





GTFPVSTKFT


GGGCCAGCAA





HATGDYNVI


CCCTCTCACAT





TGAYLGNIT


TGCAGATCAT





LKTEGTLTIS


ATCGACAAAT





ANGSWTYN


ATTGGTTACTT





GVVRSYDD


CTGTAACGCC





KYDFNASTH


GACCGAAATC





RGIIGESLTR


TGGTTCTTCAC





LGAMFSGKE


CCTGGAATAA





YQILLPGEIH


GCGTTTATGA





IKESGKR


CGCTTACCACT








TCGCAAAACC








AGCGCCAAGT








CAATATGACT








ATCGCTCAAT








GAATATGAAA








CAAATGAGCG








GTAATGTCAC








TACACCAATT








GTGGCGCTTG








CTCACTATTTA








TGGGGTAATG








GCGCTGAAAG








GAGCGTTAAT








ATCGCCAACA








TTGGTCTTAA








AATTTCCCCTA








TGAAAATTAA








TCAGATAAAA








GACATTATAA








AATCTGGTGT








AGTAGGCACA








TTCCCTGTTTC








TACAAAGTTC








ACACATGCCA








CTGGTGATTA








TAATGTTATTA








CCGGTGCATA








TCTTGGTAAT








ATCACACTGA








AAACAGAAGG








TACTTTAACTA








TCTCTGCCAAT








GGCTCCTGGA








CTTACAATGG








CGTTGTTCGTT








CATATGATGA








TAAATACGAT








TTTAACGCCA








GCACTCACCG








TGGCATTATC








GGAGAGTCGC








TCACAAGGCT








CGGGGCGATG








TTTTCTGGTAA








AGAGTACCAG








ATACTGCTTCC








TGGTGAAATT








CACATTAAAG








AAAGTGGTAA








GCGATAA





62
Colicin-N
Unclassified
MGSNGADN

Escherichia

63
GCAAATCGAG





AHNNAFGG

coli


TTTCGAATATA





GKNPGIGNT


AATAACATTA





SGAGSNGSA


TATCTAGTGTT





SSNRGNSNG


ATTCGATGA





WSWSNKPH





KNDGFHSDG





SYHITFHGD





NNSKPKPGG





NSGNRGNN





GDGASAKV





GEITITPDNS





KPGRYISSNP





EYSLLAKLID





AESIKGTEV





YTFHTRKGQ





YVKVTVPDS





NIDKMRVDY





VNWKGPKY





NNKLVKRFV





SQFLLFRKEE





KEKNEKEAL





LKASELVSG





MGDKLGEY





LGVKYKNV





AKEVANDIK





NFHGRNIRS





YNEAMASLN





KVLANPKM





KVNKSDKD





AIVNAWKQ





VNAKDMAN





KIGNLGKAF





KVADLAIKV





EKIREKSIEG





YNTGNWGP





LLLEVESWII





GGVVAGVAI





SLFGAVLSFL





PISGLAVTAL





GVIGIMTISY





LSSFIDANRV





SNINNIISSVIR





64
Colicin-V
Unclassified
MRTLTLNEL

Escherichia

65
ATGAGAACTC



(Microcin-

DSVSGGASG

coli


TGACTCTAAA



V)

RDIAMAIGT


TGAATTAGAT





LSGQFVAGG


TCTGTTTCTGG





IGAAAGGVA


TGGTGCTTCA





GGAIYDYAS


GGGCGTGATA





THKPNPAMS


TTGCGATGGC





PSGLGGTIK


TATAGGAACA





QKPEGIPSEA


CTATCCGGAC





WNYAAGRL


AATTTGTTGC





CNWSPNNLS


AGGAGGAATT





DVCL


GGAGCAGCTG








CTGGGGGTGT








GGCTGGAGGT








GCAATATATG








ACTATGCATC








CACTCACAAA








CCTAATCCTGC








AATGTCTCCAT








CCGGTTTAGG








AGGAACAATT








AAGCAAAAAC








CCGAAGGGAT








ACCTTCAGAA








GCATGGAACT








ATGCTGCGGG








AAGATTGTGT








AATTGGAGTC








CAAATAATCT








TAGTGATGTTT








GTTTATAA





66
Columbicin A
Lantibiotic
MMNATENQI

Enterococcus

67
ATGATGAATG





FVETVSDQE

columbae


CTACTGAAAA





LEMLIGGAG


CCAAATTTTTG





RGWIKTLTK


TTGAGACTGT





DCPNVISSIC


GAGTGACCAA





AGTIITACKN


GAATTAGAAA





CA


TGTTAATTGGT








GGTGCAGGTC








GTGGATGGAT








TAAGACTTTA








ACAAAAGATT








GTCCAAATGT








GATTTCTTCAA








TTTGTGCAGG








TACAATTATTA








CAGCTTGTAA








AAATTGTGCT








TAA





68
Curvacin-A
class
MNNVKELS

Lactobacillus

69
ATGAATAATG




IIA/YG
MTELQTITG

curvatus


TAAAAGAATT




NGV
GARSYGNG


AAGTATGACA





VYCNNKKC


GAATTACAAA





WVNRGEAT


CAATTACCGG





QSIIGGMISG


CGGTGCTAGA





WASGLAGM


TCATATGGCA








ACGGTGTTTA








CTGTAATAAT








AAAAAATGTT








GGGTAAATCG








GGGTGAAGCA








ACGCAAAGTA








TTATTGGTGG








TATGATTAGC








GGCTGGGCTA








GTGGTTTAGC








TGGAATGTAA





70
Cypemycin
Unclassified
MRSEMTLTS

Streptomyces

71
GTGCGATCTG





TNSAEALAA
sp.

AGATGACTCT





QDFANTVLS


TACGAGCACG





AAAPGFHAD


AATTCCGCTG





CETPAMATP


AGGCTCTGGC





ATPTVAQFV


GGCGCAGGAC





IQGSTICLVC


TTTGCGAACA








CCGTTCTCAG








CGCGGCGGCC








CCGGGCTTCC








ACGCGGACTG








CGAGACGCCG








GCCATGGCCA








CCCCGGCCAC








GCCGACCGTC








GCCCAGTTCG








TGATCCAGGG








CAGCACGATC








TGCCTGGTCT








GCTGA





72
Cytolysin
Lantibiotic
MVNSKDLR

Bacillus

73
ATGGTAAATT





NPEFRKAQG

halodurans


CAAAAGATTT





LQFVDEVNE
(strain ATCC

GCGTAATCCT





KELSSLAGS
BAA-125/

GAATTCCGCA





GDVHAQTT
DSM 18197/

AAGCCCAAGG





WPCATVGVS
FERM 7344/

TCTACAATTCG





VALCPTTKC
JCM 9153/

TTGACGAGGT





TSQC
C-125)

GAACGAGAAG








GAACTTTCGT








CTCTAGCTGG








TTCAGGAGAT








GTGCATGCAC








AAACAACTTG








GCCTTGCGCT








ACAGTTGGTG








TCTCCGTAGC








CTTGTGCCCA








ACTACAAAGT








GTACAAGCCA








GTGCTAA





74
Divercin
class
MKNLKEGSY

Carnobacterium

75
ATGAAAAACT



V41
IIa/YGN
TAVNTDELK

divergens


TAAAAGAAGG




GV
SINGGTKYY
(Lactobacillus

TTCATACACTG





GNGVYCNS

divergens)


CTGTTAATACT





KKCWVDWG


GATGAATTAA





QASGCIGQT


AAAGTATCAA





VVGGWLGG


TGGTGGAACA





AIPGKC


AAATATTATG








GGAATGGCGT








TTATTGCAATT








CTAAAAAATG








TTGGGTAGAT








TGGGGACAAG








CTTCAGGTTGT








ATCGGTCAAA








CTGTTGTTGG








CGGATGGCTA








GGCGGAGCTA








TACCAGGTAA








ATGCTAA





76
Divergicin
Unclassified
MIKREKNRT

Carnobacterium

77
ATGATTAAAA



750

ISSLGYEEIS

divergens


GAGAAAAGAA





NHKLQEIQG
(Lactobacillus

CAGAACAATT





GKGILGKLG

divergens)


TCTTCCCTTGG





VVQAGVDF


TTATGAAGAA





VSGVWAGIK


ATTTCTAATCA





QSAKDHPNA


TAAATTGCAA








GAAATACAAG








GTGGAAAAGG








AATTCTTGGT








AAACTAGGAG








TAGTACAGGC








AGGAGTGGAT








TTTGTATCAG








GAGTGTGGGC








TGGAATAAAA








CAGTCTGCCA








AAGATCATCC








TAATGCGTAA





78
Divergicin A
Class IIc
MKKQILKGL

Carnobacterium

79
ATGAAAAAAC





VIVVCLSGA

divergens


AAATTTTAAA





TFFSTPQQAS
(Lactobacillus

AGGGTTGGTT





AAAPKITQK

divergens)


ATAGTTGTTTG





QKNCVNGQ


TTTATCTGGG





LGGMLAGA


GCAACATTTTT





LGGPGGVVL


CTCAACACCA





GGIGGAIAG


CAACAAGCTT





GCFN


CTGCTGCTGC








ACCGAAAATT








ACTCAAAAAC








AAAAAAATTG








TGTTAATGGA








CAATTAGGTG








GAATGCTTGC








TGGAGCTTTG








GGTGGACCTG








GCGGAGTTGT








GTTAGGTGGT








ATAGGTGGTG








CAATAGCAGG








AGGTTGTTTTA








ATTAA





80
Durancin Q
Unclassified
MQTIKELNT

Enterococcus

81
ATGCAAACGA





MELQEIIGGE

durans


TCAAAGAATT





NDHRMPYEL


GAACACGATG





NRPNNLSKG


GAATTACAAG





GAKCAAGIL


AAATAATTGG





GAGLGAVG


AGGTGAAAAT





GGPGGFISA


GACCATCGGA





GISAVLGCM


TGCCTTACGA








ATTGAACCGT








CCAAATAATT








TATCCAAAGG








TGGGGCTAAG








TGTGCTGCTG








GAATACTTGG








CGCTGGACTA








GGCGCAGTAG








GCGGTGGACC








TGGCGGATTT








ATTAGTGCCG








GAATCAGTGC








TGTTCTTGGTT








GTATGTAA





82
Durancin
Unclassified
MQTIKELNT

Enterococcus

83
ATGCAAACGA



TW-49M

MELQKIIGG

durans


TCAAAGAATT





ENDHRMPYE


GAACACGATG





LNRPNNLSK


GAATTACAAA





GGAKCAAGI


AAATAATTGG





LGAGLGAVG


AGGTGAAAAT





GGPGGFISA


GACCATCGGA





GISAVLGCM


TGCCTTACGA








ATTGAACCGT








CCAAATAATT








TATCCAAAGG








TGGAGCTAAG








TGCGCTGCCG








GAATACTTGG








TGCTGGATTA








GGCGCAGTAG








GCGGTGGACC








TGGCGGATTT








ATTAGTGCCG








GAATCAGTGC








TGTTCTTGGTT








GTATGTAA





84
Dysgalacticin
Unclassified
MKKLKRLVI

Streptococcus

85
ATGAAAAAAT





SLVTSLLVIS

dysgalactiae


TAAAACGTCT





STVPALVYA
subsp.

TGTTATCTCTC





NETNNFAET

equisimilis


TTGTTACTTCA





QKEITTNSEA
(Streptococcus

TTACTAGTAAT





TLTNEDYTK

equisimilis)


TTCAAGTACA





LTSEVKTIYT


GTTCCAGCAC





NLIQYDQTK


TTGTTTACGCT





NKFYVDEDK


AATGAAACAA





TEQYYNYD


ATAACTTTGC





DESIKGVYL


AGAAACTCAA





MKDSLNDEL


AAAGAAATTA





NNNNSSNYS


CAACAAATTC





EIINQKISEID


AGAAGCAACA





YVLQGNDIN


TTAACCAATG





NLIPSNTRVK


AAGACTACAC





RSADFSWIQ


TAAATTAACTT





RCLEEAWGY


CCGAAGTAAA





AISLVTLKGI


AACAATTTAT





INLFKAGKFE


ACAAATCTGA





AAAAKLASA


TTCAATACGA





TAGRIAGMA


CCAAACAAAA





ALFAFVATC


AACAAATTTT





GATTVS


ACGTCGATGA








AGACAAAACT








GAACAATATT








ATAACTACGA








TGATGAAAGT








ATAAAAGGGG








TTTATCTCATG








AAAGATAGTT








TGAACGATGA








GTTAAACAAT








AATAACTCTTC








AAACTATTCT








GAAATAATTA








ATCAAAAAAT








CTCTGAAATT








GACTATGTCC








TTCAAGGAAA








CGATATAAAT








AATTTAATTCC








TAGCAATACC








AGAGTAAAAA








GATCAGCAGA








TTTTTCTTGGA








TTCAAAGATG








TCTAGAAGAA








GCATGGGGAT








ATGCTATTAG








TCTAGTTACTC








TAAAAGGAAT








AATCAATCTA








TTTAAAGCAG








GAAAATTTGA








AGCTGCTGCT








GCTAAATTAG








CTTCTGCTACA








GCAGGTAGAA








TCGCTGGAAT








GGCTGCCTTA








TTTGCTTTCGT








AGCAACTTGC








GGTGCGACAA








CTGTATCATAA





86
Enterocin
Unclassified
MKQYKVLN

Enterococcus

87
ATGAAGCAAT



1071A

EKEMKKPIG

faecalis


ATAAAGTATT





GESVFSKIGN
(Streptococcus

GAATGAAAAA





AVGPAAYWI

faecalis)


GAAATGAAAA





LKGLGNMSD


AACCTATTGG





VNQADRINR


GGGAGAGTCG





KKH


GTTTTTAGTAA








AATAGGTAAT








GCTGTAGGTC








CAGCTGCTTA








TTGGATTTTAA








AAGGATTAGG








TAATATGAGT








GATGTAAACC








AAGCTGATAG








AATTAATAGA








AAGAAACATT








AA





88
Enterocin
bacteriocins
MGAIAKLVA

Enterococcus

89
ATGGGAGCAA



7A
without
KFGWPIVKK

faecalis


TCGCAAAATT



(Enterocin
sequence
YYKQIMQFI
(Streptococcus

AGTAGCAAAG



L50A)
leader
GEGWAINKII

faecalis)


TTTGGATGGC





DWIKKHI


CAATTGTTAA








AAAGTATTAC








AAACAAATTA








TGCAATTTATT








GGAGAAGGAT








GGGCAATTAA








CAAAATTATT








GATTGGATCA








AAAAACATAT








TTAA





90
Enterocin
Unclassified
MGAIAKLVA

Enterococcus

91
ATGGGAGCAA



7B

KFGWPFIKK

faecalis


TCGCAAAATT





FYKQIMQFIG
(Streptococcus

AGTAGCAAAG





QGWTIDQIE

faecalis)


TTTGGATGGC





KWLKRH


CATTTATTAAA








AAATTCTACA








AACAAATTAT








GCAGTTTATC








GGACAAGGAT








GGACAATAGA








TCAAATTGAA








AAATGGTTAA








AAAGACATTGA





92
Enterocin
Class II
MLNKKLLEN

Enterococcus

93
ATGTTAAATA



96

GVVNAVTID

faecalis


AAAAATTATT





ELDAQFGGM
(strain ATCC

AGAAAATGGT





SKRDCNLMK
700802/

GTAGTAAATG





ACCAGQAVT
V583)

CTGTAACAAT





YAIHSLLNRL


TGATGAACTT





GGDSSDPAG


GATGCTCAAT





CNDIVRKYCK


TTGGTGGAAT








GAGCAAACGT








GATTGTAACT








TGATGAAGGC








GTGTTGTGCT








GGACAAGCAG








TAACATATGC








TATTCATAGTC








TTTTAAATCGA








TTAGGTGGAG








ACTCTAGTGA








TCCAGCTGGT








TGTAATGATA








TTGTAAGAAA








ATATTGTAAA








TAA





94
Enterocin A
Class
MKHLKILSIK

Enterococcus

95
ATGAAACATT




IIa, IIc
ETQLIYGGT

faecium


TAAAAATTTT




(problematic)
THSGKYYGN
(Streptococcus

GTCTATTAAA





GVYCTKNKC

faecium)


GAGACACAAC





TVDWAKAT


TTATCTATGG





TCIAGMSIG


GGGTACCACT





GFLGGAIPG


CATAGTGGAA





KC


AATATTATGG








AAATGGAGTG








TATTGCACTA








AAAATAAATG








TACGGTCGAT








TGGGCCAAGG








CAACTACTTGT








ATTGCAGGAA








TGTCTATAGG








TGGTTTTTTAG








GTGGAGCAAT








TCCAGGGAAG








TGC





96
Enterocin
Unclassified
MVKENKFSK

Enterococcus

97
ATGGTTAAAG



AS-48

IFILMALSFL

faecalis


AAAATAAATT



(BACTERIOCINAS-

GLALFSASL
(Streptococcus

TTCTAAGATTT



48)

QFLPIAHMA

faecalis)


TTATTTTAATG





KEFGIPAAV


GCTTTGAGTTT





AGTVLNVVE


TTTGGGGTTA





AGGWVTTIV


GCCTTGTTTAG





SILTAVGSG


TGCAAGTCTT





GLSLLAAAG


CAGTTTTTGCC





RESIKAYLK


CATTGCACAT





KEIKKKGKR


ATGGCTAAAG





AVIAW


AGTTCGGTAT








ACCAGCAGCA








GTTGCAGGAA








CTGTGCTTAAT








GTAGTTGAAG








CTGGTGGATG








GGTCACTACT








ATTGTATCAAT








TCTTACTGCTG








TAGGTAGCGG








AGGTCTTTCTT








TACTCGCTGC








AGCAGGAAGA








GAGTCAATTA








AAGCATACCT








TAAGAAAGAA








ATTAAGAAAA








AAGGAAAAAG








AGCAGTTATT








GCTTGGTAA





98
Enterocin B
class IIc,
MQNVKELST

Enterococcus

99
ATGCAAAATG




non
KEMKQIIGG

faecium


TAAAAGAATT




subgrouped
ENDHRMPNE
(Streptococcus

AAGTACGAAA




bacteriocins
LNRPNNLSK

faecium)


GAGATGAAAC




(problematic)
GGAKCGAAI


AAATTATCGG





AGGLFGIPK


TGGAGAAAAT





GPLAWAAGL


GATCACAGAA





ANVYSKCN


TGCCTAATGA








GTTAAATAGA








CCTAACAACT








TATCTAAAGG








TGGAGCAAAA








TGTGGTGCTG








CAATTGCTGG








GGGATTATTT








GGAATCCCAA








AAGGACCACT








AGCATGGGCT








GCTGGGTTAG








CAAATGTATA








CTCTAAATGC








AACTAA





100
Enterocin
Class IIa
MKKLTSKE

Enterococcus

101
TTGAAGAAAT



CRL35

MAQVVGGK

mundtii


TAACATCAAA



(Mundticin

YYGNGVSC


AGAAATGGCA



KS)

NKKGCSVD


CAAGTAGTAG





WGKAIGIIGN


GTGGAAAATA





NSAANLATG


CTACGGTAAT





GAAGWKS


GGAGTCTCAT








GTAATAAAAA








AGGGTGCAGT








GTTGATTGGG








GAAAAGCTAT








TGGCATTATT








GGAAATAATT








CTGCTGCGAA








TTTAGCTACTG








GTGGAGCAGC








TGGTTGGAAA








AGTTAA





102
Enterocin
Unclassified
MLAKIKAMI

Enterococcus

103
ATGTTAGCAA



EJ97

KKFPNPYTL

faecalis


AAATTAAAGC





AAKLTTYEI
(Streptococcus

GATGATTAAG





NWYKQQYG

faecalis)


AAGTTTCCGA





RYPWERPVA


ACCCTTATACT








TTAGCAGCTA








AGCTAACGAC








TTACGAAATT








AATTGGTATA








AACAACAATA








CGGTCGTTAT








CCTTGGGAGC








GCCCTGTAGC








ATAA





104
Enterocin P
Class
MRKKLFSLA

Enterococcus

105
ATGAGAAAAA




IIa, IIb
LIGIFGLVVT

faecium


AATTATTTAGT




and IIc
NFGTKVDAA
(Streptococcus

TTAGCTCTTAT




(problematic)
TRSYGNGVY

faecium)


TGGAATATTT





CNNSKCWV


GGGTTAGTTG





NWGEAKENI


TGACAAATTTT





AGIVISGWA


GGTACAAAAG





SGLAGMGH


TTGATGCAGC








TACGCGTTCA








TATGGTAATG








GTGTTTATTGT








AATAATAGTA








AATGCTGGGT








TAACTGGGGA








GAAGCTAAAG








AGAATATTGC








AGGAATCGTT








ATTAGTGGCT








GGGCTTCTGG








TTTGGCAGGT








ATGGGACATT








AA





106
Enterocin Q
Class IIc
MNFLKNGIA

Enterococcus

107
ATGAATTTTCT





KWMTGAEL

faecium


TAAAAATGGT





QAYKKKYG
(Streptococcus

ATCGCAAAAT





CLPWEKISC

faecium)


GGATGACCGG








TGCTGAATTG








CAAGCGTATA








AAAAGAAATA








TGGATGCTTG








CCATGGGAAA








AAATTTCTTGT








TAA





108
Enterocin
Class IIa
MKKKLVKG

Enterococcus

109
ATGAAAAAGA



SE-K4

LVICGMIGIG

faecalis


AATTAGTTAA





FTALGTNVE
(Streptococcus

AGGCTTAGTT





AATYYGNG

faecalis)


ATTTGTGGCA





VYCNKQKC


TGATTGGGAT





WVDWSRAR


TGGTTTTACA





SEIIDRGVKA


GCATTAGGAA





YVNGFTKVL


CAAATGTAGA





GGIGGR


AGCCGCCACG








TATTACGGAA








ATGGTGTCTA








TTGCAATAAG








CAAAAATGTT








GGGTAGATTG








GAGTAGAGCA








CGTTCTGAAA








TTATAGACAG








AGGCGTAAAA








GCATACGTCA








ATGGATTTAC








GAAAGTGTTA








GGTGGTATAG








GTGGAAGATAA





110
Enterocin
Class IIb
MKKEELVG

Enterococcus

111
ATGAAAAAAG



W alfa

MAKEDFLNV

faecalis


AAGAATTAGT





ICENDNKLE
(Streptococcus

AGGAATGGCT





NSGAKCPW

faecalis)


AAGGAAGACT





WNLSCHLGN


TTTTAAATGTT





DGKICTYSH


ATTTGTGAAA





ECTAGCNA


ATGACAACAA








ACTAGAAAAT








AGTGGAGCAA








AATGTCCTTG








GTGGAATCTT








TCTTGTCATTT








AGGCAATGAT








GGTAAAATTT








GCACTTATTCA








CATGAATGTA








CCGCAGGTTG








TAATGCATAA





112
Enterocin
Class IIb
MTELNKRLQ

Enterococcus

113
ATGACTGAAC



W beta

LKRDVSTEN

faecalis


TTAACAAAAG





SLKKISNTDE
(Streptococcus

ATTACAATTA





THGGVTTSIP

faecalis)


AAAAGAGATG





CTVMVSAA


TTTCAACAGA





VCPTLVCSN


AAATAGTTTG





KCGGRG


AAAAAAATTT








CTAATACTGA








TGAAACACAT








GGGGGAGTTA








CTACATCAATT








CCATGTACAG








TAATGGTTAG








TGCGGCAGTA








TGTCCTACCCT








TGTTTGCTCGA








ATAAATGTGG








CGGTAGAGGC








TAG





114
Enterocin
Class IIb
MQNVKEVS

Enterococcus

115
ATGCAAAATG



Xalpha

VKEMKQIIG

faecium


TAAAAGAAGT





GSNDSLWY
(Streptococcus

TTCTGTAAAA





GVGQFMGK

faecium)


GAGATGAAAC





QANCITNHP


AAATTATCGG





VKHMIIPGY


TGGTTCTAAT





CLSKILG


GATAGTCTTT








GGTATGGTGT








AGGACAATTT








ATGGGTAAAC








AAGCAAACTG








TATAACAAAC








CATCCTGTTAA








ACACATGATA








ATTCCTGGAT








ATTGTTTATCG








AAAATTTTAG








GGTAA





116
Enterocin
Class IIb
MKKYNELSK

Enterococcus

117
ATGAAAAAAT



Xbeta

KELLQIQGGI

faecium


ATAATGAGTT





APIIVAGLGY
(Streptococcus

ATCTAAAAAA





LVKDAWDH

faecium)


GAACTTCTAC





SDQIISGFKK


AGATTCAAGG





GWNGGRRK


AGGAATAGCA








CCTATTATAGT








TGCTGGCCTT








GGCTATTTAG








TAAAAGATGC








ATGGGATCAC








TCAGATCAAA








TAATCTCAGG








ATTTAAAAAA








GGTTGGAATG








GTGGACGTAG








AAAATAA





118
Enterolysin A
class III
MKNILLSILG

Enterococcus

119
ATGAAAAATA





VLSIVVSLAF

faecalis


TTTTACTTTCT





SSYSVNAAS
(Streptococcus

ATTCTAGGGG





NEWSWPLG

faecalis)


TATTATCTATC





KPYAGRYEE


GTTGTTTCTTT





GQQFGNTAF


GGCGTTTTCTT





NRGGTYFHD


CTTATTCTGTC





GFDFGSAIY


AACGCAGCTT





GNGSVYAV


CTAATGAGTG





HDGKILYAG


GTCGTGGCCA





WDPVGGGS


CTGGGCAAAC





LGAFIVLQA


CATATGCGGG





GNTNVIYQE


AAGATATGAA





FSRNVGDIK


GAAGGACAAC





VSTGQTVKK


AATTCGGGAA





GQLIGKFTSS


CACTGCATTTA





HLHLGMTK


ACCGAGGAGG





KEWRSAHSS


TACTTATTTCC





WNKDDGTW


ATGATGGGTT





FNPIPILQGG


TGACTTTGGTT





STPTPPNPGP


CTGCTATTTAT





KNFTTNVRY


GGAAATGGCA





GLRVLGGSW


GTGTGTATGC





LPEVTNFNN


TGTGCATGAT





TNDGFAGYP


GGTAAAATTT





NRQHDMLYI


TATATGCTGG





KVDKGQMK


TTGGGATCCT





YRVHTAQSG


GTAGGTGGAG





WLPWVSKG


GCTCATTAGG





DKSDTVNGA


TGCATTTATTG





AGMPGQAID


TACTACAAGC





GVQLNYITP


GGGAAACACA





KGEKLSQAY


AATGTGATTT





YRSQTTKRS


ATCAAGAATT





GWLKVSAD


TAGCCGAAAT





NGSIPGLDSY


GTTGGAGATA





AGIFGEPLDR


TTAAAGTTAG





LQIGISQSNPF


CACTGGACAA








ACTGTTAAAA








AAGGACAGCT








GATAGGAAAG








TTTACTTCTAG








TCATTTACATT








TAGGAATGAC








AAAAAAAGAA








TGGCGTTCTG








CTCATTCTTCT








TGGAATAAAG








ATGATGGCAC








TTGGTTTAACC








CAATTCCTATA








CTTCAAGGAG








GATCTACGCC








TACGCCTCCA








AATCCAGGAC








CAAAAAATTT








CACAACAAAT








GTTCGTTACG








GATTGCGGGT








CCTCGGAGGT








TCATGGTTAC








CAGAAGTAAC








CAACTTTAAC








AATACCAATG








ATGGTTTCGC








AGGTTACCCT








AATCGTCAAC








ATGATATGCT








TTATATAAAG








GTAGATAAAG








GGCAAATGAA








ATATCGTGTTC








ACACGGCTCA








AAGTGGATGG








TTGCCTTGGG








TAAGTAAAGG








GGATAAGAGC








GATACAGTAA








ATGGAGCGGC








AGGTATGCCT








GGACAAGCAA








TTGATGGTGT








TCAGCTAAAC








TATATAACTCC








TAAGGGAGAA








AAATTATCAC








AGGCTTACTA








TCGTTCACAA








ACTACGAAAC








GATCAGGCTG








GTTAAAAGTA








AGTGCAGATA








ATGGTTCTATT








CCTGGACTAG








ACAGTTATGC








AGGAATCTTT








GGAGAACCGT








TGGATCGCTT








GCAAATAGGT








ATTTCACAGTC








AAATCCATTTT








AA





120
Epicidin
Lantibiotic
MENKKDLFD

Staphylococcus

121
ATGGAAAACA



280

LEIKKDNME

epidermidis


AAAAAGATTT





NNNELEAQS


ATTTGATTTAG





LGPAIKATR


AAATCAAAAA





QVCPKATRF


AGATAATATG





VTVSCKKSD


GAAAATAATA





CQ


ATGAATTAGA








AGCTCAATCT








CTTGGTCCTGC








AATTAAGGCA








ACTAGACAGG








TATGTCCTAA








AGCAACACGT








TTTGTTACAGT








TTCTTGTAAAA








AAAGTGATTG








TCAATAG





122
Epidermicin
Unclassified
MAAFMKLIQ

Staphylococcus

123
ATGGCAGCAT



NI01

FLATKGQKY

epidermidis


TTATGAAGTT





VSLAWKHK


AATTCAGTTCT





GTILKWINA


TAGCAACTAA





GQSFEWIYK


AGGTCAAAAG





QIKKLWA


TATGTTTCACT








TGCATGGAAA








CATAAAGGTA








CTATTTTAAAA








TGGATTAACG








CCGGTCAAAG








TTTTGAATGG








ATTTATAAAC








AAATCAAAAA








ATTATGGGCA








TAA





124
Epidermin
Lantibiotic
MEAVKEKN

Staphylococcus

125
ATGGAAGCAG





DLFNLDVKV

epidermidis


TAAAAGAAAA





NAKESNDSG


AAATGATCTTT





AEPRIASKFI


TTAATCTTGAT





CTPGCAKTG


GTTAAAGTTA





SFNSYCC


ATGCAAAAGA








ATCTAACGAT








TCAGGAGCTG








AACCAAGAAT








TGCTAGTAAA








TTTATATGTAC








TCCTGGATGT








GCAAAAACAG








GTAGTTTTAA








CAGTTATTGTT








GTTAA





126
Epilancin
Lantibiotic
MNNSLFDLN

Staphylococcus

127
ATGAATAACT



K7

LNKGVETQK

epidermidis


CATTATTCGAT





SDLSPQSAS


TTAAACCTAA





VLKTSIKVSK


ACAAAGGTGT





KYCKGVTLT


AGAAACTCAA





CGCNITGGK


AAGAGTGATT








TAAGTCCGCA








ATCTGCTAGT








GTCTTGAAGA








CTTCTATTAAA








GTATCTAAAA








AATATTGTAA








AGGTGTTACT








TTAACATGCG








GTTGCAATAT








TACTGGTGGT








AAATAA





128
Gallidermin
Lantibiotic
MEAVKEKN

Staphylococcus

129
ATGGAAGCAG





ELFDLDVKV

gallinarum


TAAAAGAGAA





NAKESNDSG


AAATGAACTT





AEPRIASKFL


TTTGATCTTGA





CTPGCAKTG


CGTTAAAGTA





SFNSYCC


AATGCAAAAG








AGTCTAATGA








TTCAGGCGCA








GAACCACGAA








TTGCTAGTAA








ATTTTTATGTA








CTCCTGGATG








TGCCAAAACA








GGTAGCTTCA








ATAGCTACTG








TTGTTAA





130
Garvicin A
IId
MENNNYTV

Lactococcus

131
ATGGAAAACA





LSDEELQKID

garvieae


ACAATTACAC





GGIGGALGN


AGTACTTTCA





ALNGLGTW


GATGAAGAAC





ANMMNGGG


TACAAAAAAT





FVNQWQVY


TGATGGTGGA





ANKGKINQY


ATCGGCGGGG





RPY


CTCTTGGTAAT








GCTCTCAACG








GATTAGGTAC








CTGGGCAAAC








ATGATGAACG








GTGGAGGATT








TGTTAATCAG








TGGCAAGTTT








ATGCTAATAA








AGGAAAAATA








AATCAATACC








GTCCGTATTAA





132
Garvicin
Unclassified
MFDLVATG

Lactococcus

133
ATGTTTGATTT



ML

MAAGVAKTI

garvieae


AGTCGCGACT





VNAVSAGM


GGAATGGCTG





DIATALSLFS


CAGGTGTAGC





GAFTAAGGI


AAAAACTATT





MALIKKYAQ


GTTAATGCCG





KKLWKQLIAA


TTAGTGCTGG








TATGGATATT








GCCACTGCTTT








ATCATTGTTCT








CAGGAGCTTT








TACTGCAGCT








GGGGGAATTA








TGGCACTCAT








TAAAAAATAT








GCTCAAAAGA








AATTATGGAA








ACAGCTTATT








GCTGCATAA





134
Gassericin A
Unclassified
MVTKYGRN

Lactobacillus

135
ATGGTTACTA





LGLNKVELF

gasseri


AGTACGGACG





AIWAVLVVA


TAATTTAGGTT





LLLTTANIY


TGAACAAGGT





WIADQFGIH


AGAGTTGTTT





LATGTARKL


GCAATTTGGG





LDAMASGAS


CGGTTTTAGT





LGTAFAAIL


AGTTGCTCTTT





GVTLPAWAL


TATTGACCAC





AAAGALGAT


AGCGAACATT





AA


TATTGGATTG








CTGATCAATTC








GGGATTCATT








TAGCGACTGG








AACAGCCCGT








AAGTTATTAG








ATGCAATGGC








TTCTGGTGCCT








CATTGGGAAC








TGCCTTTGCTG








CTATTTTGGGC








GTGACATTAC








CTGCATGGGC








TTTGGCAGCT








GCAGGAGCAT








TGGGAGCGAC








TGCAGCCTAG





136
Gassericin T
Unclassified
MKNFNTLSF

Lactobacillus

137
ATGAAAAATT



(gassericin

ETLANIVGG

gasseri


TTAATACATTA



K7 B)

RNNWAANIG


TCATTTGAAA





GVGGATVA


CATTGGCTAA





GWALGNAV


CATAGTTGGT





CGPACGFVG


GGGAGAAATA





AHYVPIAWA


ATTGGGCTGC





GVTAATGGF


TAATATAGGT





GKIRK


GGAGTAGGTG








GAGCGACAGT








CGCTGGATGG








GCTCTTGGAA








ATGCAGTTTG








CGGTCCTGCTT








GTGGCTTTGTT








GGAGCACACT








ATGTTCCAAT








AGCATGGGCT








GGCGTAACGG








CAGCTACTGG








TGGATTCGGA








AAGATAAGAA








AGTAG





138
Glycocin F
Unclassified
MSKLVKTLT

Lactobacillus

139
ATGAGTAAAT





ISEISKAQNN

plantarum


TGGTTAAGAC





GGKPAWCW


ACTTACTATA





YTLAMCGA


AGTGAAATTT





GYDSGTCDY


CTAAGGCTCA





MYSHCFGIK


AAACAACGGT





HHSSGSSSY


GGAAAACCTG





HC


CATGGTGTTG








GTATACTTTA








GCAATGTGTG








GTGCTGGTTA








TGATTCGGGA








ACCTGTGATT








ATATGTATTC








GCATTGTTTTG








GTATAAAGCA








TCATAGTAGT








GGTAGTAGCA








GTTATCATTGT








TAG





140
Halocin
Unclassified
MSKDRDGR

Haloferax

141
ATGTCGAAAG



H4

RTSRRGTLK

mediterranei


ACAGAGATGG





KIGGFSLGAL
(strain ATCC

GAGAAGGACA





SFGAVGRTQ
33500/DSM

AGTCGGCGAG





AATGSSVTT
1411/JCM

GCACGTTAAA





ADIAPPGPN
8866/

GAAAATCGGC





GDPKSVQID
NBRC 14739/

GGTTTCAGTCT





DKYTGAEM
NCIMB

CGGAGCGCTT





YGEGDFRVG
2177/R-4)

AGTTTCGGGG





LGTDLTMYP
(Halobacterium

CAGTCGGACG





PVYRESLGN

mediterranei)


AACTCAAGCG





GSGGWEFDF


GCGACCGGCT





TVCGSTACR


CATCGGTTAC





FVDSNGDVK


GACCGCTGAT





EDDKAKEM


ATCGCACCTC





WWQEINFND


CCGGACCGAA





INQDLYSRN


CGGAGACCCG





DSDWVGSTP


AAGAGTGTTC





ADTQPEFDY


AGATAGATGA





TEFALARDG


TAAATACACC





VTLALTALN


GGAGCCGAGA





PAMGSLALG


TGTACGGCGA





ATYFLSDMV


GGGTGACTTC





NWIASQHED


AGAGTCGGTC





DSSLKRKWD


TCGGAACTGA





YDGLSGPLY


CCTGACGATG





ADSSTYLLA


TATCCGCCCG





RDEMTSNSY


TGTACCGTGA





ESFTIDNIAV


GAGTCTTGGA





AFPEFPVRTK


AATGGAAGCG





YYVTFTAPD


GGGGTTGGGA





DPSTQSISTL


ATTCGACTTCA





EEEGIYRVP


CCGTTTGTGG





ATEVAAARP


GTCCACTGCC





PGSRRSKSA


TGTCGATTTGT





ADEMVYVA


GGACAGTAAC





DPKKFIEVEP


GGTGACGTCA





VKNPSIPDRI


AAGAGGACGA





YEEIEQKKK


CAAGGCGAAA





QRSRKQ


GAAATGTGGT








GGCAGGAAAT








TAACTTCAAC








GACATAAATC








AGGATTTATA








CAGTCGGAAC








GATTCCGACT








GGGTCGGGTC








GACCCCTGCC








GATACCCAAC








CGGAGTTCGA








TTACACCGAC








TTTGCGCTCGC








TCGGGACGGA








GTGACGCTCG








CTCTCACGGC








ACTCAACCCC








GCAATGGGGA








GTCTTGCACTC








GGTGCCACGT








ACTTCCTCAGC








GACATGGTGA








ACTGGATTGC








GAGCCAGCAC








GAAGACGACA








GTTCGCTCAA








GAGAAAATGG








GATTACGACG








GGCTAAGTGG








GCCGTTGTAC








GCCGATTCGT








CGACGTACCT








ACTGGCACGC








GACGAGATGA








CTTCGAACTC








GTACGAATCA








TTCACGATCG








ATAACATCGC








CGTTGCCTTCC








CAGAGTTCCC








CGTCCGGACC








AAGTACTACG








TCACATTCACT








GCGCCGGATG








ACCCGTCAAC








GCAGTCGATA








TCTACGCTCG








AAGAGGAGGG








AATCTACCGA








GTGCCCGCTA








CGGAAGTGGC








TGCGGCCAGA








CCACCGGGGT








CCCGACGTTC








CAAATCGGCA








GCCGACGAGA








TGGTGTACGT








TGCCGATCCG








AAGAAGTTCA








TAGAGGTCGA








GCCGGTGAAG








AACCCAAGTA








TCCCGGACCG








AATCTACGAG








GAGATAGAGC








AAAAAAAGAA








ACAACGGAGT








AGGAAACAGT








AG





142
Halocin-
Unclassified
MSDKDSINR

Haloarchaeon

143
ATGTCGGATA



S8

RNVLRKIGGI
S8a

AAGACAGCAT





GVASAVGFS


TAACAGAAGA





GLASGESLS


AATGTATTAA





DDEKQDVID


GAAAAATTGG





TIYKSQRVE


CGGTATCGGT





QIKKKFGGV


GTGGCTTCAG





NIEPKKVQS


CTGTCGGATTT





VTTNQSGDL


TCTGGTTTGG





VTAKLSVSD


CAAGCGGGGA





GDLVYSSVK


AAGTCTTAGC





DTTVIVQFD


GATGATGAGA





RSASEIGES


AACAAGATGT





WPKNTEAFI


TATTGACACA





KSTSSGVDL


ATTTACAAAT





LRTATDEEIK


CACAAAGAGT





DVTEGVNTS


TGAACAGATA





EIESADAVNI


AAGAAAAAGT





FIDPESQTYY


TCGGAGGAGT





MEKYDFNN


GAATATTGAG





KVLEMFELA


CCGAAAAAGG





TGGTSSGKIS


TTCAATCTGTA





PTREDQNHE


ACGACCAATC





YNVREHKVF


AGAGCGGAGA





NSEKQNIQL


TCTTGTTACGG





QSDCNINSN


CGAAGCTGTC





TAADVILCF


GGTTAGTGAT





NQVGSCALC


GGGGATTTGG





SPTLVGGPV


TATATTCGAG





PTVACLLVV


TGTCAAAGAT





CFGTPNAVS


ACAACTGTAA





AILEEVDNS


TAGTTCAGTTC





CFNLIKDVIS


GATAGATCGG





CWDEWTSFW


CTTCTGAAATT








GGTGAAAGTT








GGCCCAAGAA








TACTGAGGCA








TTCATCAAATC








GACGTCCTCT








GGGGTCGATC








TTCTACGTACA








GCAACTGATG








AAGAAATAAA








GGACGTTACT








GAGGGAGTCA








ACACATCTGA








AATTGAATCT








GCGGATGCTG








TTAACATATTT








ATTGATCCTG








AATCACAGAC








ATACTATATG








GAGAAATATG








ACTTTAATAAT








AAGGTACTTG








AGATGTTTGA








ATTAGCGACA








GGTGGGACAA








GTAGTGGTAA








AATCTCCCCC








ACACGTGAAG








ACCAGAATCA








CGAATATAAT








GTTAGGGAAC








ATAAAGTATT








TAACTCAGAA








AAACAGAATA








TACAACTTCA








GAGTGACTGT








AATATAAACA








GTAACACCGC








TGCTGATGTT








ATTCTATGCTT








CAACCAGGTT








GGTTCTTGTG








CACTCTGCTCC








CCGACTTTAG








TCGGAGGTCC








AGTCCCTACA








GTTGCATGTCT








CTTAGTCGTCT








GTTTCGGCAC








TCCAAATGCT








GTGTCCGCGA








TACTTGAAGA








AGTCGATAAT








TCTTGCTTTAA








CTTGATCAAG








GATGTAATTT








CGTGTTGGGA








TGAATGGACT








AGCTTCTGGT








GA





144
Helveticin-J
Unclassified
MKHLNETTN

Lactobacillus

145
ATGAAGCATT





VRILSQFDM

helveticus


TAAATGAAAC





DTGYQAVV
(Lactobacillus

AACTAATGTT





QKGNVGSK

suntoryeus)


AGAATTTTAA





YVYGLQLRK


GTCAATTTGA





GATTILRGY


TATGGATACT





RGSKINNPIL


GGCTATCAAG





ELSGQAGGH


CAGTAGTTCA





TQTWEFAGD


AAAAGGCAAT





RKDINGEER


GTAGGTTCAA





AGQWFIGVK


AATATGTATA





PSKIEGSKII


TGGATTACAA





WAKQIARVD


CTTCGCAAAG





LRNQMGPH


GTGCTACTAC





YSNTDFPRL


TATCTTGCGTG





SYLNRAGSN


GTTACCGTGG





PFAGNKMTH


AAGTAAAATT





AEAAVSPDY


AATAACCCTA





TKFLIATVEN


TTCTTGAATTA





NCIGHFTIYN


TCTGGTCAAG





LDTINEKLD


CAGGTGGTCA





EKGNSEDVN


CACACAGACA





LETVKYEDS


TGGGAATTTG





FIIDNLYGDD


CTGGTGATCG





NNSIVNSIQG


TAAAGACATT





YDLDNDGNI


AATGGTGAAG





YISSQKAPDF


AAAGAGCAGG





DGSYYAHH


TCAATGGTTT





KQIVKIPYYA


ATAGGTGTTA





RSKESEDQW


AACCATCGAA





RAVNLSEFG


AATTGAAGGA





GLDIPGKHS


AGCAAAATTA





EVESIQIIGE


TTTGGGCAAA





NHCYLTVAY


GCAAATTGCA





HSKNKAGEN


AGAGTTGATC





KTTLNEIYEL


TTAGAAATCA





SWN


AATGGGACCT








CATTATTCAA








ATACTGACTTT








CCTCGATTATC








CTACTTGAATC








GCGCCGGTTC








TAATCCATTTG








CTGGTAATAA








GATGACGCAT








GCCGAAGCCG








CAGTATCACC








TGATTATACTA








AGTTTTTAATT








GCTACTGTTG








AAAATAACTG








TATTGGTCATT








TTACTATATAC








AATTTAGATA








CAATTAATGA








AAAACTTGAT








GAAAAGGGAA








ATAGTGAAGA








TGTTAATCTCG








AAACTGTTAA








ATACGAAGAT








AGTTTTATCAT








TGATAATTTAT








ATGGTGATGA








TAATAATTCTA








TTGTAAATTCA








ATTCAAGGGT








ATGATTTGGA








TAATGATGGA








AATATTTATAT








TTCCAGTCAA








AAAGCGCCAG








ATTTTGATGG








CTCTTATTATG








CACATCATAA








GCAGATTGTT








AAGATTCCAT








ATTATGCTCG








GTCTAAAGAA








AGCGAAGACC








AATGGAGAGC








TGTAAATTTA








AGCGAATTCG








GTGGCTTGGA








TATTCCAGGT








AAACATAGTG








AAGTTGAAAG








CATCCAAATT








ATTGGTGAGA








ATCATTGTTAC








TTAACTGTTGC








ATATCATTCTA








AAAATAAAGC








GGGTGAAAAT








AAAACTACTT








TGAATGAGAT








TTATGAATTAT








CTTGGAATTAG





146
Hiracin
Class II
MKKKVLKH

Enterococcus

147
ATGAAAAAGA



JM79
sec-
CVILGILGTC

hirae


AAGTATTAAA




dependent
LAGIGTGIKV


ACATTGTGTT





DAATYYGN


ATTCTAGGAA





GLYCNKEKC


TATTAGGAAC





WVDWNQAK


TTGTCTAGCTG





GEIGKIIVNG


GCATCGGTAC





WVNHGPWA


AGGAATAAAA





PRR


GTTGATGCAG








CTACTTACTAT








GGAAATGGTC








TTTATTGTAAC








AAAGAAAAAT








GTTGGGTAGA








TTGGAATCAA








GCTAAAGGAG








AAATTGGAAA








AATTATTGTTA








ATGGTTGGGT








TAATCATGGT








CCATGGGCAC








CTAGAAGGTAG





148
Lactacin-
class IIB
MKQFNYLSH

Lactobacillus

149
ATGAAACAAT



F (lafA)

KDLAVVVG

johnsonii


TTAATTATTTA





GRNNWQTN
(strain

TCACATAAAG





VGGAVGSA
CNCM I-

ATTTAGCAGT





MIGATVGGT
12250/La1/

CGTTGTTGGT





ICGPACAVA
NCC 533)

GGAAGAAATA





GAHYLPILW


ATTGGCAAAC





TAVTAATGG


AAATGTGGGA





FGKIRK


GGAGCAGTGG








GATCAGCTAT








GATTGGGGCT








ACAGTTGGTG








GTACAATTTG








TGGACCTGCA








TGTGCTGTAG








CTGGTGCCCA








TTATCTTCCTA








TTTTATGGAC








AGCGGTTACA








GCTGCAACAG








GTGGTTTTGG








CAAGATAAGA








AAGTAG





150
Lactacin-
class IIB
MKLNDKELS

Lactobacillus

151
ATGAAATTAA



F (lafX)

KIVGGNRWG

johnsonii


ATGACAAAGA





DTVLSAASG
(strain

ATTATCAAAG





AGTGIKACK
CNCM I-

ATTGTTGGTG





SFGPWGMAI
12250/La1/

GAAATCGATG





CGVGGAAIG
NCC 533)

GGGAGATACT





GYFGYTHN


GTTTTATCAGC








TGCTAGTGGC








GCAGGAACTG








GTATTAAAGC








ATGTAAAAGT








TTTGGCCCAT








GGGGAATGGC








AATTTGTGGT








GTAGGAGGTG








CAGCAATAGG








AGGTTATTTTG








GCTATACTCAT








AATTAA





152
Lacticin
Lantibiotic
MNKNEIETQ

Lactococcus

153
ATGAACAAAA



3147 A1

PVTWLEEVS

lactis subsp.


ATGAAATTGA





DQNFDEDVF

lactis


AACACAACCA





GACSTNTFS
(Streptococcus

GTTACATGGT





LSDYWGNN

lactis)


TGGAAGAAGT





GAWCTLTHE


ATCTGATCAA





CMAWCK


AATTTTGATG








AAGATGTATT








TGGTGCGTGT








AGTACTAACA








CATTCTCGCTC








AGTGATTACT








GGGGAAATAA








CGGGGCTTGG








TGTACACTCA








CTCATGAATG








TATGGCTTGG








TGTAAATAA





154
Lacticin
Lantibiotic
MKEKNMKK

Lactococcus

155
ATGAAAGAAA



3147 A2

NDTIELQLG

lactis subsp.


AAAATATGAA





KYLEDDMIE

lactis


AAAGAATGAC





LAEGDESHG
(Streptococcus

ACTATTGAATT





GTTPATPAIS

lactis)


ACAATTGGGA





ILSAYISTNT


AAATACCTTG





CPTTKCTRAC


AAGATGATAT








GATTGAATTA








GCTGAAGGGG








ATGAGTCTCA








TGGAGGAACA








ACACCAGCAA








CTCCTGCAATC








TCTATTCTCAG








TGCATATATTA








GTACCAATAC








TTGTCCAACA








ACAAAATGTA








CACGTGCTTG








TTAA





156
Lacticin
Lantibiotic
MKEQNSFNL

Lactococcus

157
ATGAAAGAAC



481

LQEVTESEL

lactis subsp.


AAAACTCTTTT



(Lactococcin

DLILGAKGG

lactis


AATCTTCTTCA



DR)

SGVIHTISHE
(Streptococcus

AGAAGTGACA





CNMNSWQF

lactis)


GAAAGTGAAT





VFTCCS


TGGACCTTATT








TTAGGTGCAA








AAGGCGGCAG








TGGAGTTATT








CATACAATTTC








TCATGAATGT








AATATGAATA








GCTGGCAATT








TGTATTTACTT








GCTGCTCTTAA





158
Lacticin Q
Unclassified
MAGFLKVV

Lactococcus

159
ATGGCAGGGT





QLLAKYGSK

lactis


TTTTAAAAGT





AVQWAWAN


AGTTCAATTA





KGKILDWLN


CTAGCTAAAT





AGQAIDWV


ATGGTTCTAA





VSKIKQILGIK


AGCTGTACAA








TGGGCTTGGG








CAAACAAGGG








TAAGATTTTA








GATTGGCTTA








ATGCAGGTCA








GGCTATTGAT








TGGGTAGTTT








CGAAAATTAA








GCAAATTTTA








GGTATTAAGT








AA





160
Lacticin Z
Unclassified
MAGFLKVV

Lactococcus

161
ATGGCAGGGT





QILAKYGSK

lactis


TTTTAAAAGT





AVQWAWAN


AGTCCAAATT





KGKILDWIN


TTGGCTAAGT





AGQAIDWV


ATGGTTCTAA





VEKIKQILGIK


AGCCGTACAA








TGGGCATGGG








CAAATAAAGG








AAAAATCTTA








GATTGGATTA








ATGCAGGTCA








AGCTATTGAC








TGGGTAGTTG








AAAAGATTAA








GCAAATTTTG








GGTATTAAAT








AA





162
Lactobin-A
class IIB
MKQLNSEQL

Lactobacillus

163
ATGAAACAAT



(Amylovorin-

QNIIGGNRW

amylovorus


TGAATTCAGA



L471)

TNAYSAALG


ACAATTACAA





CAVPGVKYG


AATATTATCG





KKLGGVWG


GTGGAAATAG





AVIGGVGGA


ATGGACTAAT





AVCGLAGY


GCATACAGCG





VRKG


CAGCTTTGGG








ATGCGCTGTC








CCTGGAGTTA








AATATGGAAA








AAAACTTGGT








GGCGTATGGG








GTGCTGTAAT








TGGTGGCGTA








GGCGGTGCAG








CAGTCTGTGG








CTTGGCGGGT








TATGTTCGTA








AAGGCTAA





164
Lactocin-S
Lantibiotic
MKTEKKVL

Lactobacillus

165
ATGAAAACAG





DELSLHASA

sakei L45


AAAAAAAGGT





KMGARDVE


TTTAGATGAA





SSMNADSTP


CTGAGCTTAC





VLASVAVSM


ACGCTTCTGC





ELLPTASVL


AAAAATGGGA





YSDVAGCFK


GCACGTGATG





YSAKHHC


TTGAATCCAG








CATGAATGCA








GACTCAACAC








CAGTTTTAGC








ATCAGTCGCT








GTATCCATGG








AATTATTGCC








AACTGCGTCT








GTTCTTTATTC








GGATGTTGCA








GGTTGCTTCA








AATATTCTGC








AAAACATCAT








TGTTAG





166
Lactococcin
Unclassified
MKTKSLVLA

Lactococcus

167
ATGAAAACCA



972

LSAVTLFSA

lactis subsp.


AGTCTCTCGT





GGIVAQAEG

lactis


ATTGGCATTA





TWQHGYGV
(Streptococcus

TCTGCGGTTA





SSAYSNYHH

lactis)


CGTTATTCTCT





GSKTHSATV


GCCGGAGGAA





VNNNTGRQ


TTGTAGCTCA





GKDTQRAG


AGCTGAAGGA





VWAKATVG


ACATGGCAAC





RNLTEKASF


ATGGATATGG





YYNFW


TGTTAGTTCG








GCATATTCAA








ATTATCATCAT








GGTAGCAAAA








CTCATTCAGCC








ACAGTTGTAA








ATAATAATAC








TGGCCGACAA








GGTAAGGATA








CACAACGTGC








CGGTGTTTGG








GCAAAAGCTA








CTGTTGGACG








TAACTTAACT








GAAAAAGCTT








CATTTTATTAT








AACTTTTGGT








AA





168
Lactococcin-A
Unclassified
MKNQLNFNI

Lactococcus

169
ATGAAAAATC





VSDEELSEA

lactis subsp.


AATTAAATTTT





NGGKLTFIQ

cremoris


AATATTGTTTC





STAAGDLYY
(Streptococcus

AGATGAAGAA





NTNTHKYV

cremoris)


CTTTCAGAAG





YQQTQNAFG


CTAACGGAGG





AAANTIVNG


AAAATTAACA





WMGGAAGG


TTTATTCAATC





FGLHH


GACAGCGGCT








GGAGATTTAT








ATTACAATAC








TAATACACAC








AAATATGTTT








ACCAACAAAC








TCAAAACGCT








TTTGGGGCTG








CTGCTAATAC








CATTGTTAAT








GGATGGATGG








GTGGCGCTGC








TGGAGGTTTC








GGGTTGCACC








ATTGA





170
Lactococcin-B
Unclassified
MKNQLNFNI

Lactococcus

171
ATGAAAAATC





VSDEELAEV

lactis subsp.


AATTAAATTTT





NGGSLQYV

cremoris


AATATTGTTTC





MSAGPYTW
(Streptococcus

TGATGAAGAA





YKDTRTGKT

cremoris)


CTTGCAGAAG





ICKQTIDTAS


TTAATGGAGG





YTFGVMAE


AAGCTTGCAG





GWGKTFH


TATGTTATGA








GTGCTGGACC








ATATACTTGG








TATAAAGATA








CTAGAACAGG








AAAAACAATA








TGTAAACAGA








CAATTGACAC








AGCAAGTTAT








ACATTTGGTG








TAATGGCAGA








AGGATGGGGA








AAAACATTCC








ACTAA





172
Lactocyclicin Q
Unclassified
MKLIDHLGA

Lactococcus

173
ATGAAATTAA





PRWAVDTIL
sp. QU 12

TTGATCATTTA





GAIAVGNLA


GGTGCTCCAA





SWVLALVPG


GATGGGCCGT





PGWAVKAG


TGATACTATTT





LATAAAIVK


TAGGTGCAAT





HQGKAAAA


CGCAGTTGGG





AW


AACTTAGCAA








GTTGGGTTCT








AGCGCTTGTC








CCTGGTCCAG








GGTGGGCAGT








AAAAGCTGGT








TTAGCAACTG








CTGCTGCCAT








CGTTAAACAT








CAAGGTAAAG








CTGCCGCTGC








TGCTTGGTAA





174
Laterosporulin
Unclassified
MACQCPDAI

Brevibacillus

175
ATGGCTTGCC





SGWTHTDY
sp. GI-9

AATGTCCAGA





QCHGLENK


TGCGATCTCA





MYRHVYAIC


GGTTGGACGC





MNGTQVYC


ATACAGATTA





RTEWGSSC


CCAGTGTCAC








GGTTTGGAGA








ATAAAATGTA








TAGACATGTT








TATGCAATTT








GCATGAACGG








TACTCAAGTA








TATTGCAGAA








CAGAGTGGGG








TAGCAGCTGC








TAG





176
Leucocin N
Class IId
MNKEYNSIS

Leuconostoc

177
ATGAATAAAG





NFKKITNKD

pseudomesenteroides


AATATAATAG





LQNINGGFIG


CATTAGCAAT





RAIGDFVYF


TTTAAAAAAA





GAKGLRESG


TTACTAATAA





KLLNYYYKH


AGACTTGCAA





KH


AACATAAATG








GTGGATTTATT








GGTAGGGCAA








TAGGTGACTT








TGTGTACTTTG








GAGCGAAGGG








ACTAAGAGAA








TCTGGTAAAC








TACTTAATTAT








TACTATAAGC








ATAAGCATTGA





178
Leucocin Q
Class IId
MKNQLMSFE

Leuconostoc

179
ATGAAAAATC





VISEKELSTV

pseudomesenteroides


AGTTAATGTC





QGGKGLGKL


TTTCGAAGTG





IGIDWLLGQ


ATATCAGAAA





AKDAVKQY


AAGAATTGTC





KKDYKRWH


CACGGTACAA








GGTGGCAAAG








GCTTAGGTAA








ACTCATAGGA








ATTGATTGGC








TTTTGGGTCA








AGCTAAGGAC








GCTGTTAAAC








AGTACAAGAA








GGATTACAAA








CGTTGGCACT








AA





180
Leucocin-A
class
MMNMKPTE

Leuconostoc

181
ATGATGAACA



(Leucocin
IIA/YG
SYEQLDNSA

gelidum


TGAAACCTAC



A-UAL
NGV
LEQVVGGK


GGAAAGCTAT



187)

YYGNGVHC


GAGCAATTGG





TKSGCSVNW


ATAATAGTGC





GEAFSAGVH


TCTCGAACAA





RLANGGNGFW


GTCGTAGGAG








GTAAGTATTA








TGGTAACGGA








GTTCATTGCA








CAAAAAGTGG








TTGTTCTGTAA








ACTGGGGAGA








AGCCTTTTCA








GCTGGAGTAC








ATCGTTTAGC








AAATGGTGGA








AATGGTTTCT








GGTAA





182
Leucocin-B
class
MNNMKSAD

Leuconostoc

183
ATGAATAACA



(Leucocin
IIA/YG
NYQQLDNN

carnosum


TGAAATCTGC



B-Ta11a)
NGV
ALEQVVGGK


GGATAATTAT





YYGNGVHC


CAGCAATTGG





TKSGCSVNW


ATAATAATGC





GEAFSAGVH


TCTCGAACAA





RLANGGNGFW


GTCGTAGGAG








GTAAGTATTA








TGGTAACGGA








GTTCATTGCA








CAAAAAGTGG








TTGTTCTGTAA








ACTGGGGAGA








AGCCTTTTCA








GCTGGAGTAC








ATCGTTTAGC








AAATGGTGGA








AATGGTTTCT








GGTAA





184
Leucocyclicin Q
Unclassified
MFLVNQLGI

Leuconostoc

185
ATGTTCTTGGT





SKSLANTILG

mesenteroides


AAATCAGTTA





AIAVGNLAS


GGGATTTCAA





WLLALVPGP


AATCGTTAGC





GWATKAAL


TAATACTATTC





ATAETIVKH


TTGGTGCAAT





EGKAAAIAW


TGCTGTTGGT








AATTTGGCCA








GTTGGTTATTA








GCTTTGGTTCC








TGGTCCGGGT








TGGGCAACAA








AAGCAGCACT








TGCGACAGCT








GAAACAATTG








TGAAGCATGA








AGGAAAAGCA








GCTGCTATTG








CGTGGTAA





186
Lichenicidin
Lantibiotic
MSKKEMILS

Bacillus

187
ATGTCAAAAA



A1
(two-
WKNPMYRT

licheniformis


AGGAAATGAT




peptide)
ESSYHPAGNI
(strain DSM

TCTTTCATGGA





LKELQEEEQ
13/ATCC

AAAATCCTAT





HSIAGGTITL
14580)

GTATCGCACT





STCAILSKPL


GAATCTTCTTA





GNNGYLCTV


TCATCCAGCA





TKECMPSCN


GGGAACATCC








TTAAAGAACT








CCAGGAAGAG








GAACAGCACA








GCATCGCCGG








AGGCACAATC








ACGCTCAGCA








CTTGTGCCATC








TTGAGCAAGC








CGTTAGGAAA








TAACGGATAC








CTGTGTACAG








TGACAAAAGA








ATGCATGCCA








AGCTGTAACT








AA





188
Linocin
Unclassified
MNNLYRELA

Brevibacterium

189
GTGAATAACC



M18

PIPGPAWAEI

linens


TCTATCGCGA





EEEARRTFK


GCTTGCCCCC





RNIAGRRIV


ATCCCCGGCC





DVAGPTGFE


CGGCCTGGGC





TSAVTTGHI


GGAGATCGAG





RDVQSETSG


GAGGAGGCTC





LQVKQRIVQ


GACGGACATT





EYIELRTPFT


CAAACGCAAT





VTRQAIDDV


ATCGCCGGCC





ARGSGDSD


GCCGGATCGT





WQPVKDAA


CGATGTCGCA





TTIAMAEDR


GGGCCCACGG





AILHGLDAA


GCTTCGAGAC





GIGGIVPGSS


CTCCGCGGTG





NAAVAIPDA


ACCACTGGCC





VEDFADAVA


ACATCCGAGA





QALSVLRTV


CGTCCAGTCG





GVDGPYSLL


GAGACGAGCG





LSSAEYTKV


GACTGCAGGT





SESTDHGYPI


TAAGCAGCGC





REHLSRQLG


ATCGTGCAGG





AGEIIWAPAL


AATACATCGA





EGALLVSTR


GCTGCGGACC





GGDYELHLG


CCATTCACCGT





QDLSIGYYS


GACTCGGCAG





HDSETVELY


GCCATCGATG





LQETFGFLA


ACGTGGCCCG





LTDESSVPLSL


CGGGTCCGGT








GACTCGGACT








GGCAGCCCGT








CAAGGATGCG








GCCACGACGA








TCGCGATGGC








TGAAGATCGG








GCCATTCTCCA








CGGGCTCGAT








GCGGCCGGGA








TCGGCGGAAT








CGTTCCCGGC








AGCTCGAATG








CCGCAGTGGC








CATCCCCGAC








GCCGTCGAGG








ACTTCGCGGA








CGCCGTCGCC








CAGGCGCTGA








GTGTGCTGCG








CACGGTGGGA








GTCGACGGGC








CCTACAGCCT








GTTGCTCTCCT








CCGCGGAGTA








CACCAAGGTC








TCCGAGTCCA








CCGACCACGG








CTACCCGATC








CGCGAGCACC








TCTCCCGGCA








GCTCGGCGCC








GGAGAGATCA








TCTGGGCGCC








CGCGCTCGAA








GGGGCGCTGC








TCGTCTCCAC








GCGCGGGGGT








GACTACGAGC








TCCACCTCGG








CCAGGACCTG








TCGATCGGTT








ACTACAGCCA








CGACAGCGAG








ACCGTCGAAC








TCTATCTGCA








GGAGACCTTC








GGATTCCTCG








CGCTGACCGA








CGAATCCAGT








GTGCCTTTGA








GCCTCTGA





190
Listeriocin
Class IIa
MKKAALKFII

Listeria

191
TTGAAGAAGG



743A

VIAILGFSFSF

innocua


CAGCGTTAAA





FSIQSEAKSY


ATTTATTATTG





GNGVQCNK


TTATTGCTATT





KKCWVDWG


CTAGGTTTCA





SAISTIGNNS


GTTTTTCTTTC





AANWATGG


TTTAGCATAC





AAGWKS


AATCTGAAGC








TAAATCTTATG








GAAATGGAGT








TCAGTGTAAT








AAGAAAAAAT








GTTGGGTAGA








TTGGGGTAGT








GCTATAAGTA








CTATTGGAAA








TAATTCTGCA








GCGAATTGGG








CTACAGGTGG








AGCAGCTGGT








TGGAAAAGCT








GA





192
Mersacidin
Lantibiotic,
MSQEAIIRS

Bacillus sp.

193
ATGAGTCAAG




type B
WKDPFSREN
(strain HIL-

AAGCTATCAT





STQNPAGNP
Y85/54728)

TCGTTCATGG





FSELKEAQM


AAAGATCCTT





DKLVGAGD


TTTCCCGTGA





MEAACTFTL


AAATTCTACA





PGGGGVCTL


CAAAATCCAG





TSECIC


CTGGTAACCC








ATTCAGTGAG








CTGAAAGAAG








CACAAATGGA








TAAGTTAGTA








GGTGCGGGAG








ACATGGAAGC








AGCATGTACT








TTTACATTGCC








TGGTGGCGGC








GGTGTTTGTA








CTCTAACTTCT








GAATGTATTT








GTTAA





194
Mesentericin
class
MTNMKSVE

Leuconostoc

195
ATGACGAATA



Y105
IIA/YG
AYQQLDNQ

mesenteroides


TGAAGTCTGT




NGV
NLKKVVGG


GGAAGCATAT





KYYGNGVH


CAGCAATTAG





CTKSGCSVN


ATAACCAGAA





WGEAASAGI


TCTCAAGAAA





HRLANGGN


GTTGTTGGTG





GFW


GAAAGTATTA








TGGGAATGGT








GTTCACTGTA








CAAAAAGTGG








ATGCTCTGTTA








ACTGGGGAGA








AGCTGCCTCA








GCTGGCATAC








ATCGTTTGGC








CAATGGTGGA








AATGGATTTT








GGTAA





196
Michiganin-A
Lantibiotic
MNDILETET

Clavibacter

197
ATGAACGACA





PVMVSPRW

michiganensis


TCCTCGAGAC





DMLLDAGE
subsp.

GGAGACCCCC





DTSPSVQTQI

michiganensis


GTCATGGTCA





DAEFRRVVS


GCCCCCGGTG





PYMSSSGWL


GGACATGCTG





CTLTIECGTII


CTCGACGCGG





CACR


GCGAGGACAC








CAGCCCGTCC








GTCCAGACCC








AGATCGACGC








GGAGTTCCGT








CGCGTCGTGA








GCCCGTACAT








GTCCAGCAGC








GGCTGGCTCT








GCACGCTCAC








CATCGAATGT








GGCACCATCA








TCTGCGCGTG








TCGCTGA





198
Microcin
Unclassified
MELKASEFG

Escherichia

199
ATGGAATTAA



B17

VVLSVDALK

coli


AAGCGAGTGA



(MccB17)

LSRQSPLGV


ATTTGGTGTA





GIGGGGGGG


GTTTTGTCCGT





GGGSCGGQ


TGATGCTCTTA





GGGCGGCSN


AATTATCACG





GCSGGNGGS


CCAGTCTCCAT





GGSGSHI


TAGGTGTTGG








CATTGGTGGT








GGTGGCGGCG








GCGGCGGCGG








CGGTAGCTGC








GGTGGTCAAG








GTGGCGGTTG








TGGTGGTTGC








AGCAACGGTT








GTAGTGGTGG








AAACGGTGGC








AGCGGCGGAA








GTGGTTCACA








TATC





200
Microcin
Unclassified
MRTGNAN

Escherichia

201
ATGCGTACTG



C7



coli


GTAATGCAAA








CTAA





202
Microcin
Unclassified
MREISQKDL

Klebsiella

203
ATGAGAGAAA



E492

NLAFGAGET

pneumoniae


TTAGTCAAAA





DPNTQLLND


GGACTTAAAT





LGNNMAWG


CTTGCTTTTGG





AALGAPGGL


TGCAGGAGAG





GSAALGAAG


ACCGATCCAA





GALQTVGQ


ATACTCAACTT





GLIDHGPVN


CTAAACGACC





VPIPVLIGPS


TTGGAAATAA





WNGSGSGY


TATGGCATGG





NSATSSSGS


GGTGCTGCTC





GS


TTGGCGCTCCT








GGCGGATTAG








GATCAGCAGC








TTTGGGGGCC








GCGGGAGGTG








CATTACAAAC








TGTAGGGCAA








GGATTAATTG








ACCATGGTCC








TGTAAATGTC








CCCATCCCTGT








ACTCATCGGG








CCAAGCTGGA








ATGGTAGCGG








TAGTGGTTAT








AACAGCGCAA








CATCCAGTTCC








GGTAGTGGTA








GTTAA





204
Microcin
Unclassified
MREITESQL

Escherichia

205
ATGCGAGAAA



H47

RYISGAGGA

coli


TAACAGAATC





PATSANAAG


ACAGTTAAGA





AAAIVGALA


TATATTTCCGG





GIPGGPLGV


GGCGGGAGGT





VVGAVSAGL


GCGCCAGCGA





TTAIGSTVGS


CTTCAGCTAAT





GSASSSAGG


GCCGCAGGTG





GS


CTGCAGCTAT








TGTTGGAGCT








CTCGCCGGAA








TACCTGGTGG








TCCACTTGGG








GTTGTAGTTG








GAGCCGTATC








TGCCGGTTTG








ACAACAGCAA








TTGGCTCGAC








CGTGGGAAGT








GGTAGTGCCA








GTTCTTCTGCT








GGTGGCGGTA








GCTAA





206
Microcin
Unclassified
MIKHFHFNK

Escherichia

207
ATGATTAAGC



J25

LSSGKKNNV

coli


ATTTTCATTTT





PSPAKGVIQI


AATAAACTGT





KKSASQLTK


CTTCTGGTAA





GGAGHVPEY


AAAAAATAAT





FVGIGTPISF


GTTCCATCTCC





YG


TGCAAAGGGG








GTTATACAAA








TAAAAAAATC








AGCATCGCAA








CTCACAAAAG








GTGGTGCAGG








ACATGTGCCT








GAGTATTTTGT








GGGGATTGGT








ACACCTATAT








CTTTCTATGGC








TGA





208
Microcin-
Unclassified
MYMRELDR

Escherichia

209
ATGTATATGA



24

EELNCVGGA

coli


GAGAGTTAGA





GDPLADPNS


TAGAGAGGAA





QIVRQIMSN


TTAAATTGCG





AAWGPPLVP


TTGGTGGGGC





ERFRGMAVG


TGGAGATCCG





AAGGVTQT


CTTGCAGATC





VLQGAAAH


CTAATTCCCA





MPVNVPIPK


AATTGTAAGA





VPMGPSWN


CAGATAATGT





GSKG


CTAATGCGGC








ATGGGGCCCG








CCTTTGGTGCC








AGAGCGGTTT








AGGGGAATGG








CTGTTGGAGC








CGCAGGTGGG








GTTACGCAGA








CAGTTCTTCAA








GGAGCAGCAG








CTCATATGCC








GGTTAATGTC








CCTATACCTA








AAGTTCCGAT








GGGACCCTCA








TGGAACGGAA








GTAAAGGATAA





210
Mundticin
Unclassified
MSQVVGGK

Enterococcus

211
ATGTCACAGG



KS

YYGNGVSC

mundtii


TAGTAGGTGG





NKKGCSVD


AAAATACTAC





WGKAIGIIGN


GGTAATGGAG





NSAANLATG


TCTCATGTAAT





GAAGWKS


AAAAAAGGGT








GCAGTGTTGA








TTGGGGAAAA








GCGATTGGCA








TTATTGGAAA








TAATTCTGCTG








CGAATTTAGC








TACTGGTGGA








GCAGCTGGTT








GGAAAAGTTAA





212
Mundticin L
class
MKKLTSKE

Enterococcus

213
TTGAAGAAAT




IIA/YG
MAQVVGGK

mundtii


TAACATCAAA




NGV
YYGNGLSCN


AGAAATGGCA





KKGCSVDW


CAAGTAGTAG





GKAIGIIGNN


GTGGGAAATA





SAANLATGG


CTACGGTAAT





AAGWKS


GGATTATCAT








GTAATAAAAA








AGGGTGCAGT








GTTGATTGGG








GAAAAGCTAT








TGGCATTATT








GGAAATAATT








CTGCTGCGAA








TTTAGCTACTG








GTGGAGCAGC








TGGTTGGAAA








AGTTAA





214
Mutacin
Lantibiotic
MSNTQLLEV

Streptococcus

215
ATGTCAAACA



1140

LGTETFDVQ

mutans


CACAATTATT



(Mutacin

EDLFAFDTT


AGAAGTCCTT



III)

DTTIVASND


GGTACTGAAA





DPDTRFKSW


CTTTTGATGTT





SLCTPGCAR


CAAGAAGATC





TGSFNSYCC


TCTTTGCTTTT








GATACAACAG








ATACTACTATT








GTGGCAAGCA








ACGACGATCC








AGATACTCGT








TTCAAAAGTT








GGAGCCTTTG








TACGCCTGGT








TGTGCAAGGA








CAGGTAGTTT








CAATAGTTAC








TGTTGCTGA





216
Mutacin-2
Lantibiotic
MNKLNSNA

Streptococcus

217
ATGAACAAGT





VVSLNEVSD

mutans


TAAACAGTAA





SELDTILGGN


CGCAGTAGTT





RWWQGVVP


TCTTTGAATG





TVSYECRMN


AAGTTTCAGA





SWQHVFTCC


TTCTGAATTG








GATACTATTTT








GGGTGGTAAT








CGTTGGTGGC








AAGGTGTTGT








GCCAACGGTC








TCATATGAGT








GTCGCATGAA








TTCATGGCAA








CATGTTTTCAC








TTGCTGTTAA





218
Nisin A
Lantibiotic
MSTKDFNLD

Lactococcus

219
ATGAGTACAA





LVSVSKKDS

lactis subsp.


AAGATTTTAA





GASPRITSISL

lactis


CTTGGATTTG





CTPGCKTGA
(Streptococcus

GTATCTGTTTC





LMGCNMKT

lactis)


GAAGAAAGAT





ATCHCSIHV


TCAGGTGCAT





SK


CACCACGCAT








TACAAGTATTT








CGCTATGTAC








ACCCGGTTGT








AAAACAGGAG








CTCTGATGGG








TTGTAACATG








AAAACAGCAA








CTTGTCATTGT








AGTATTCACG








TAAGCAAATAA





220
Nisin F
Lantibiotic
MSTKDFNLD

Lactococcus

221
ATGAGTACAA





LVSVSKKDS

lactis


AAGATTTCAA





GASPRITSISL


CTTGGATTTG





CTPGCKTGA


GTATCTGTTTC





LMGCNMKT


GAAGAAAGAT





ATCNCSVHV


TCAGGTGCAT





SK


CACCACGCAT








TACAAGTATTT








CGCTATGTAC








ACCCGGTTGT








AAAACAGGAG








CTCTGATGGG








TTGTAACATG








AAAACAGCAA








CTTGTAATTGT








AGCGTTCACG








TAAGCAAA





222
Nisin Q
Lantibiotic
MSTKDFNLD

Lactococcus

223
ATGAGTACAA





LVSVSKTDS

lactis


AAGATTTCAA





GASTRITSIS


CTTAGATTTG





LCTPGCKTG


GTATCTGTTTC





VLMGCNLKT


AAAAACAGAT





ATCNCSVHV


TCTGGCGCTTC





SK


AACACGTATT








ACCAGCATTT








CGCTTTGTAC








ACCAGGTTGT








AAAACAGGTG








TTCTGATGGG








ATGTAACCTG








AAAACAGCAA








CTTGTAATTGT








AGCGTTCACG








TAAGCAAATAA





224
Nisin U
Lantibiotic
MNNEDFNL

Streptococcus

225
ATGAACAATG





DLIKISKENN

uberis


AAGATTTTAA





SGASPRITSK


TTTGGATCTCA





SLCTPGCKT


TCAAAATCTC





GILMTCPLK


AAAGGAAAAC





TATCGCHFG


AACTCAGGAG








CTTCACCTCGA








ATAACTAGTA








AATCATTATGT








ACTCCTGGAT








GTAAGACGGG








TATTTTGATGA








CTTGTCCACTA








AAAACTGCAA








CCTGTGGTTG








TCATTTTGGAT








AA





226
Nisin Z
Lantibiotic
MSTKDFNLD

Lactococcus

227
ATGAGTACAA





LVSVSKKDS

lactis subsp.


AAGATTTTAA





GASPRITSISL

lactis


CTTGGATTTG





CTPGCKTGA
(Streptococcus

GTATCTGTTTC





LMGCNMKT

lactis)


GAAGAAAGAT





ATCNCSIHV


TCAGGTGCAT





SK


CACCACGCAT








TACAAGTATTT








CGCTATGTAC








ACCCGGTTGT








AAAACAGGAG








CTCTGATGGG








TTGTAACATG








AAAACAGCAA








CTTGTAATTGT








AGTATTCACG








TAAGCAAATAA





228
Nukacin
Lantibiotic
MENSKVMK

Staphylococcus

229
ATGGAAAATT



ISK-1

DIEVANLLE

warneri


CTAAAGTTAT





EVQEDELNE


GAAGGACATT





VLGAKKKSG


GAAGTAGCAA





VIPTVSHDC


ATTTATTAGA





HMNSFQFVF


AGAGGTTCAA





TCCS


GAAGATGAAT








TGAATGAAGT








CTTAGGAGCT








AAGAAAAAGT








CAGGAGTAAT








CCCAACTGTG








TCACACGATT








GCCATATGAA








TTCTTTCCAAT








TTGTATTTACT








TGTTGTTCATAA





230
Paenicidin A
Lantibiotic
MAENLFDLD

Paenibacillus

231
ATGGCTGAAA





IQVNKSQGS

polymyxa


ACTTATTTGAT





VEPQVLSIV
(Bacillus

CTGGACATTC





ACSSGCGSG

polymyxa)


AAGTAAACAA





KTAASCVET


ATCTCAAGGT





CGNRCFTNV


TCTGTAGAGC





GSLC


CTCAGGTTCT








GAGCATTGTT








GCATGTTCTA








GCGGATGTGG








TAGCGGTAAA








ACAGCTGCCA








GTTGTGTTGA








AACTTGTGGC








AACCGGTGCT








TTACTAACGTT








GGTTCACTCT








GCTAA





232
Pediocin
class
MKKIEKLTE

Pediococcus

233
ATGAAAAAAA



PA-1
IIA/YG
KEMANIIGG

acidilactici


TTGAAAAATT



(Pediocin
NGV
KYYGNGVT


AACTGAAAAA



ACH)

CGKHSCSVD


GAAATGGCCA





WGKATTCII


ATATCATTGG





NNGAMAWA


TGGTAAATAC





TGGHQGNH


TACGGTAATG





KC


GGGTTACTTG








TGGCAAACAT








TCCTGCTCTGT








TGACTGGGGT








AAGGCTACCA








CTTGCATAATC








AATAATGGAG








CTATGGCATG








GGCTACTGGT








GGACATCAAG








GTAATCATAA








ATGCTAG





234
Penocin A
class
MTEIKVLND

Pediococcus

235
ATGACTGAAA




IIA/YG
KELKNVVGG

pentosaceus


TTAAAGTACT




NGV
KYYGNGVH
(strain ATCC

AAACGATAAG





CGKKTCYVD
25745/183-

GAACTAAAAA





WGQATASIG
1w)

ATGTCGTAGG





KIIVNGWTQ


AGGAAAGTAT





HGPWAHR


TACGGTAACG








GAGTGCATTG








TGGTAAAAAG








ACTTGCTATGT








GGACTGGGGA








CAAGCTACAG








CTAGCATTGG








AAAAATTATA








GTGAACGGAT








GGACACAACA








CGGGCCTTGG








GCACATAGAT








AA





236
Pep5
Lantibiotic
MKNNKNLF

Staphylococcus

237
ATGAAAAATA





DLEIKKETSQ

epidermidis


ACAAAAATTT





NTDELEPQT


ATTTGATTTAG





AGPAIRASV


AAATTAAAAA





KQCQKTLKA


AGAAACAAGT





TRLFTVSCK


CAAAACACTG





GKNGCK


ATGAACTTGA








ACCTCAAACT








GCTGGACCAG








CGATTAGAGC








TTCTGTGAAA








CAATGTCAGA








AAACTTTGAA








AGCTACGCGT








TTATTTACAGT








GTCTTGCAAA








GGAAAAAACG








GATGTAAATAG





238
Piscicolin
class
MKTVKELSV

Carnobacterium

239
ATGAAAACTG



126
IIA/YG
KEMQLTTGG

maltaromaticum


TTAAAGAACT




NGV
KYYGNGVS
(Carnobacterium

TAGCGTTAAA





CNKNGCTV

piscicola)


GAAATGCAAC





DWSKAIGIIG


TAACTACAGG





NNAAANLTT


AGGTAAGTAT





GGAAGWNKG


TACGGAAATG








GCGTTTCCTGT








AATAAAAATG








GTTGTACTGT








AGATTGGAGC








AAAGCTATTG








GGATTATAGG








AAACAATGCA








GCAGCAAATT








TGACTACAGG








TGGAGCCGCT








GGTTGGAACA








AAGGATAA





240
Plantaricin
Unclassified
MYKELTVDE

Lactobacillus

241
ATGTATAAAG



1.25 β

LALIDGGKK

plantarum


AATTAACAGT





KKKKVACT


TGATGAATTA





WGNAATAA


GCATTGATTG





ASGAVXGIL


ATGGAGGAAA





GGPTGALAG


AAAGAAGAAG





AIWGVSQCA


AAAAAAGTAG





SNNLHGMH


CTTGTACTTGG








GGAAATGCAG








CAACAGCCGC








TGCTTCTGGT








GCAGTTANGG








GTATTCTTGGT








GGGCCTACTG








GTGCACTGGC








TGGAGCTATC








TGGGGCGTTT








CACAATGCGC








GTCTAACAAC








TTACACGGCA








TGCACTAA





242
Plantaricin
class IIa
MMKKIEKLT

Lactobacillus

243
ATGATGAAAA



423

EKEMANIIG

plantarum


AAATTGAAAA





GKYYGNGV


ATTAACTGAA





TCGKHSCSV


AAAGAAATGG





NWGQAFSCS


CCAATATCATT





VSHLANFGH


GGTGGTAAAT





GKC


ACTATGGTAA








TGGGGTTACT








TGTGGTAAAC








ATTCCTGCTCT








GTTAACTGGG








GCCAAGCATT








TTCTTGTAGTG








TGTCACATTTA








GCTAACTTCG








GTCATGGAAA








GTGCTAA





244
Plantaricin
Unclassified
MSKLVKTLT

Lactobacillus

245
ATGAGTAAAC



ASM1

VDEISKIQTN

plantarum


TAGTTAAAAC





GGKPAWCW


ATTAACTGTC





YTLAMCGA


GATGAAATCT





GYDSGTCDY


CTAAGATTCA





MYSHCFGVK


AACCAATGGT





HSSGGGGSY


GGAAAACCTG





HC


CATGGTGTTG








GTACACATTG








GCAATGTGCG








GTGCTGGTTA








TGATTCAGGC








ACTTGTGATT








ATATGTATTCA








CACTGCTTTG








GTGTAAAACA








CTCTAGCGGT








GGTGGCGGTA








GCTACCATTG








TTAG





246
Plantaricin E
Unclassified
MLQFEKLQY

Lactobacillus

247
ATGCTACAGT





SRLPQKKLA

plantarum


TTGAGAAATT





KISGGFNRG


ACAATATTCC





GYNFGKSVR


AGGTTGCCGC





HVVDAIGSV


AAAAAAAGCT





AGIRGILKSIR


TGCCAAAATA








TCTGGTGGTTT








TAATCGGGGC








GGTTATAACT








TTGGTAAAAG








TGTTCGACAT








GTTGTTGATG








CAATTGGTTC








AGTTGCAGGC








ATTCGTGGTA








TTTTGAAAAG








TATTCGTTAA





248
Plantaricin F
Class IIb
MKKFLVLRD

Lactobacillus

249
ATGAAAAAAT





RELNAISGG

plantarum


TTCTAGTTTTG





VFHAYSARG


CGTGACCGTG





VRNNYKSAV


AATTAAATGC





GPADWVISA


TATTTCAGGT





VRGFIHG


GGCGTTTTCC








ATGCCTATAG








CGCGCGTGGC








GTTCGGAATA








ATTATAAAAG








TGCTGTTGGG








CCTGCCGATT








GGGTCATTAG








CGCTGTCCGA








GGATTCATCC








ACGGATAG





250
Plantaricin J
Class IIb
MTVNKMIK

Lactobacillus

251
ATGACTGTGA





DLDVVDAFA

plantarum


ACAAAATGAT





PISNNKLNG


TAAGGATTTG





VVGGGAWK


GATGTAGTAG





NFWSSLRKG


ATGCATTTGC





FYDGEAGRA


ACCTATTTCTA





IRR


ATAATAAGTT








GAACGGGGTT








GTTGGGGGAG








GCGCTTGGAA








AAATTTCTGG








TCTAGTTTAA








GAAAAGGATT








TTATGATGGC








GAAGCTGGCA








GAGCAATCCG








TCGTTAA





252
Plantaricin K
Unclassified
MKIKLTVLN

Lactobacillus

253
ATGAAAATTA





EFEELTADA

plantarum


AATTAACTGTT





EKNISGGRR


TTAAATGAAT





SRKNGIGYAI


TTGAAGAATT





GYAFGAVER


AACTGCTGAC





AVLGGSRDY


GCTGAAAAGA





NK


ATATTTCTGGT








GGCCGTCGGA








GTCGTAAAAA








TGGAATTGGA








TACGCTATTG








GTTATGCGTTT








GGCGCGGTTG








AACGGGCCGT








GCTTGGTGGT








TCAAGGGATT








ATAATAAGTGA





254
Plantaricin
Unclassified
MDKFEKIST

Lactobacillus

255
ATGGATAAAT



NC8α

SNLEKISGG

plantarum


TTGAAAAAAT





DLTTKLWSS


TAGTACATCT





WGYYLGKK


AACCTAGAAA





ARWNLKHP


AGATCTCTGG





YVQF


CGGTGATTTA








ACAACCAAGT








TATGGAGCTC








TTGGGGATAT








TATCTTGGCA








AGAAAGCACG








TTGGAATTTA








AAGCACCCAT








ATGTTCAATTT





256
Plantaricin
Unclassified
MNNLNKFST

Lactobacillus

257
ATGAATAACT



NC8β

LGKSSLSQIE

plantarum


TGAATAAATT





GGSVPTSVY


TTCTACTCTAG





TLGIKILWSA


GCAAGAGTAG





YKHRKTIEK


CTTGTCTCAAA





SFNKGFYH


TTGAGGGCGG








ATCAGTCCCA








ACTTCAGTAT








ATACGCTTGG








AATTAAAATT








CTATGGTCTG








CGTATAAGCA








TCGCAAAACG








ATTGAAAAAA








GTTTTAATAA








AGGCTTTTATC








ATTAA





258
Plantaricin
Unclassified
MNNALSFEQ

Lactobacillus

259
ATGAATAACG





QFTDFSTLSD

plantarum


CATTAAGTTTT





SELESVEGG


GAACAACAAT





RNKLAYNM


TTACAGACTTC





GHYAGKATI


AGCACCTTAT





FGLAAWALLA


CGGACTCTGA








ATTAGAATCC








GTTGAGGGTG








GCCGAAATAA








GCTTGCATAT








AATATGGGGC








ATTACGCTGG








TAAGGCAACC








ATTTTTGGACT








TGCAGCATGG








GCACTCCTTG








CATGA





260
Plantaricin
Unclassified
MDKIIKFQGI

Lactobacillus

261
ATGGATAAGA





SDDQLNAVI

plantarum


TTATTAAGTTT





GGKKKKQS


CAAGGGATTT





WYAAAGDAI


CTGATGATCA





VSFGEGFLN


ATTAAATGCT





AW


GTTATCGGTG








GGAAAAAGAA








AAAACAATCT








TGGTACGCAG








CAGCTGGTGA








TGCAATCGTT








AGTTTTGGTG








AAGGATTTTT








AAATGCTTGG








TAA





262
Plantaricin
Lantibiotic
MKISKIEAQ

Lactobacillus

263
ATGAAAATTT




(two-
ARKDFFKKI

plantarum


CTAAGATTGA




peptide)
DTNSNLLNV


AGCTCAGGCT





NGAKCKWW


CGTAAAGATT





NISCDLGNN


TTTTTAAAAA





GHVCTLSHE


AATCGATACT





CQVSCN


AACTCGAACT








TATTAAATGT








AAATGGTGCC








AAATGCAAGT








GGTGGAATAT








TTCGTGTGATT








TAGGAAATAA








TGGCCATGTTT








GTACCTTGTC








ACATGAATGC








CAAGTATCTT








GTAACTAA





264
Plantaricin
Lantibiotic
MTKTSRRKN

Lactobacillus

265
ATGACTAAAA




(two-
AIANYLEPV

plantarum


CTAGTCGTCG




peptide)
DEKSINESFG


TAAGAATGCT





AGDPEARSG


ATTGCTAATTA





IPCTIGAAVA


TTTAGAACCA





ASIAVCPTTK


GTCGACGAAA





CSKRCGKRKK


AAAGTATTAA








TGAATCTTTTG








GGGCTGGGGA








TCCGGAAGCA








AGATCCGGAA








TTCCATGTACA








ATCGGCGCAG








CTGTCGCAGC








ATCAATTGCA








GTTTGTCCAA








CTACTAAGTG








TAGTAAACGT








TGTGGCAAGC








GTAAGAAATAA





266
Plantaricin-A
Unclassified
MKIQIKGMK

Lactobacillus

267
ATGAAAATTC





QLSNKEMQK

plantarum


AAATTAAAGG





IVGGKSSAY
(strain ATCC

TATGAAGCAA





SLQMGATAI
BAA-793/

CTTAGTAATA





KQVKKLFKK
NCIMB

AGGAAATGCA





WGW
8826/

AAAAATAGTA






WCFS1)

GGTGGAAAGA








GTAGTGCGTA








TTCTTTGCAGA








TGGGGGCAAC








TGCAATTAAA








CAGGTAAAGA








AACTGTTTAA








AAAATGGGGA








TGGTAA





268
Propionicin
Unclassified
MNKTHKMA

Propionibacterium

269
ATGAACAAAA



SM1

TLVIAAILAA

jensenii


CACACAAAAT





GMTAPTAYA


GGCGACGCTG





DSPGNTRITA


GTAATTGCCG





SEQSVLTQIL


CGATCTTGGC





GHKPTQTEY


CGCCGGAATG





NRYVETYGS


ACCGCACCAA





VPTEADINA


CTGCCTATGC





YIEASESEGS


AGATTCTCCT





SSQTAAHDD


GGAAACACCA





STSPGTSTEI


GAATTACAGC





YTQAAPARF


CAGCGAGCAA





SMFFLSGTW


AGCGTCCTTA





ITRSGVVSLS


CCCAGATACT





LKPRKGGIG


CGGCCACAAA





NEGDERTW


CCTACACAAA





KTVYDKFHN


CTGAATATAA





AGQWTRYK


CCGATACGTT





NNGVDASM


GAGACTTACG





KKQYMCHF


GAAGCGTACC





KYGMVKTP


GACCGAAGCA





WNLEPHKK


GACATCAACG





AADVSPVKCN


CATATATAGA








AGCGTCTGAA








TCTGAGGGAT








CATCAAGTCA








AACGGCTGCT








CACGATGACT








CGACATCACC








CGGCACGAGT








ACCGAAATCT








ACACGCAGGC








AGCCCCTGCC








AGGTTCTCAA








TGTTTTTCCTG








TCCGGAACTT








GGATCACTAG








GAGTGGTGTA








GTATCGCTCTC








CTTGAAGCCA








AGGAAGGGTG








GTATTGGCAA








CGAGGGGGAC








GAGCGTACCT








GGAAGACTGT








ATACGACAAA








TTCCATAACG








CTGGGCAATG








GACACGATAC








AAGAACAACG








GCGTAGACGC








CAGCATGAAA








AAGCAGTACA








TGTGCCACTTC








AAGTACGGGA








TGGTGAAGAC








GCCATGGAAT








CTGGAGCCCC








ACAAGAAGGC








TGCAGACGTC








AGTCCAGTCA








AGTGCAACTAG





270
Propionicin
Unclassified
MKKTLLRSG

Propionibacterium

271
ATGAAGAAGA



T1

TIALATAAAF

thoenii


CCCTCCTGCG





GASLAAAPS


AAGTGGAACG





AMAVPGGC


ATCGCACTGG





TYTRSNRDV


CGACCGCGGC





IGTCKTGSG


TGCATTTGGC





QFRIRLDCN


GCATCATTGG





NAPDKTSVW


CAGCCGCCCC





AKPKVMVS


ATCTGCCATG





VHCLVGQPR


GCCGTTCCTG





SISFETK


GTGGTTGCAC








GTACACAAGA








AGCAATCGCG








ACGTCATCGG








TACCTGCAAG








ACTGGAAGCG








GCCAGTTCCG








AATCCGACTT








GACTGCAACA








ACGCTCCAGA








CAAAACTTCA








GTCTGGGCCA








AGCCCAAGGT








AATGGTGTCG








GTTCACTGTCT








TGTTGGTCAA








CCGAGGTCCA








TCTCGTTCGA








GACCAAGTGA





272
Propionicin-F
Unclassified
MNTKAVNL

Propionibacterium

273
ATGAATACCA





KSENTTKLV

freudenreichii


AAGCTGTAAA





SYLTENQLD
subsp.

TCTGAAGTCA





EFIRRIRIDG

freudenreichii


GAAAACACGA





ALVEEVSQN


CTAAGTTGGT





AKQALDNTG


GAGCTACCTT





LNGWINTDC


ACGGAAAATC





DEGLLSDFIS


AATTGGATGA





KIASARWIPL


GTTTATTAGA





AESIRPAVTD


AGGATTCGCA





RDKYRVSC


TTGATGGCGC





WFYQGMNI


TCTTGTGGAA





AIYANIGGV


GAGGTCAGTC





ANIIGYTEAA


AAAATGCTAA





VATLLGAVV


GCAGGCCTTA





AVAPVVPGT


GATAATACTG





PTPPKDKSS


GGCTCAATGG





QYKEVPLAV


CTGGATAAAT





RLSETYHEE


ACTGATTGCG





GVRGLFDEL


ATGAAGGCCT





NYSESRMIS


TCTCTCTGATT





TLRRASTDG


TCATTTCAAA





VLINSWNDG


GATAGCAAGT





QDTILLKKY


GCTAGATGGA





NFQDLQLTV


TTCCATTAGCT





RSRIVGNQTI


GAGTCAATTC





IEECKITDGR


GACCTGCGGT





KTLSDETV


GACTGACAGG








GATAAGTATC








GAGTAAGTTG








CTGGTTCTACC








AGGGGATGAA








TATAGCAATTT








ACGCAAATAT








CGGTGGCGTG








GCCAATATTA








TCGGCTATAC








GGAGGCCGCA








GTCGCAACAC








TCCTTGGTGC








AGTTGTGGCG








GTAGCTCCTG








TGGTCCCTGG








AACTCCAACC








CCTCCAAAGG








ACAAGAGTTC








GCAATATAAG








GAGGTTCCCC








TTGCCGTTCGT








CTTTCCGAAA








CATACCACGA








AGAGGGAGTA








CGAGGTCTAT








TCGACGAGCT








GAACTACTCC








GAGAGCCGTA








TGATCTCTACT








CTAAGGCGAG








CATCAACCGA








TGGAGTCCTA








ATTAATTCTTG








GAACGATGGG








CAGGATACAA








TTCTGCTTAAG








AAGTACAATT








TCCAAGACTT








GCAACTGACT








GTCAGGAGCC








GCATTGTTGG








GAATCAAACA








ATAATTGAAG








AATGCAAAAT








CACTGATGGT








AGAAAAACTC








TTTCAGACGA








GACTGTGTAG





274
Pyocin S1
Unclassified
MARPIADLIH

Pseudomonas

275
ATGGCACGAC





FNSTTVTAS

aeruginosa


CCATTGCTGA





GDVYYGPG


CCTTATCCACT





GGTGIGPIAR


TCAACTCTAC





PIEHGLDSST


AACTGTCACG





ENGWQEFES


GCAAGCGGAG





YADVGVDP


ACGTTTATTAC





RRYVPLQVK


GGCCCTGGGG





EKRREIELQF


GAGGTACCGG





RDAEKKLEA


CATTGGCCCC





SVQAELDKA


ATTGCCAGAC





DAALGPAKN


CTATAGAGCA





LAPLDVINRS


CGGCTTGGAT





LTIVGNALQ


TCGTCCACTG





QKNQKLLLN


AAAATGGCTG





QKKITSLGA


GCAAGAGTTT





KNFLTRTAE


GAAAGTTATG





EIGEQAVRE


CTGATGTGGG





GNINGPEAY


CGTTGACCCC





MRFLDREME


AGACGCTATG





GLTAAYNVK


TTCCTCTTCAG





LFTEAISSLQI


GTTAAAGAAA





RMNTLTAAK


AACGCAGGGA





ASIEAAAAN


GATCGAGCTT





KAREQAAAE


CAGTTCCGAG





AKRKAEEQA


ATGCCGAGAA





RQQAAIRAA


AAAACTTGAG





NTYAMPAN


GCGTCGGTAC





GSVVATAAG


AAGCCGAGCT





RGLIQVAQG


GGATAAGGCT





AASLAQAIS


GATGCCGCTC





DAIAVLGRV


TTGGTCCGGC





LASAPSVMA


AAAGAATCTT





VGFASLTYS


GCACCATTGG





SRTAEQWQ


ACGTCATCAA





DQTPDSVRY


CCGCAGTCTG





ALGMDAAK


ACCATCGTTG





LGLPPSVNL


GAAACGCCCT





NAVAKASGT


CCAGCAAAAG





VDLPMRLTN


AATCAAAAAC





EARGNTTTL


TACTGCTGAA





SVVSTDGVS


TCAGAAGAAG





VPKAVPVRM


ATTACCAGCC





AAYNATTGL


TGGGTGCAAA





YEVTVPSTT


GAATTTCCTTA





AEAPPLILTW


CCCGTACGGC





TPASPPGNQ


GGAAGAGATC





NPSSTTPVVP


GGTGAACAAG





KPVPVYEGA


CGGTGCGAGA





TLTPVKATP


AGGCAATATT





ETYPGVITLP


AACGGGCCTG





EDLIIGFPAD


AAGCCTATAT





SGIKPIYVMF


GCGCTTCCTC





RDPRDVPGA


GACAGGGAAA





ATGKGQPVS


TGGAAGGTCT





GNWLGAAS


CACGGCAGCT





QGEGAPIPSQ


TATAACGTAA





IADKLRGKT


AACTCTTCACC





FKNWRDFRE


GAAGCGATCA





QFWIAVAND


GTAGTCTCCA





PELSKQFNP


GATCCGCATG





GSLAVMRD


AATACGTTGA





GGAPYVRES


CCGCCGCCAA





EQAGGRIKIE


AGCAAGTATT





IHHKVRVAD


GAGGCGGCCG





GGGVYNMG


CAGCAAACAA





NLVAVTPKR


GGCGCGTGAA





HIEIHKGGK


CAAGCAGCGG








CTGAGGCCAA








ACGCAAAGCC








GAAGAGCAGG








CCCGCCAGCA








AGCGGCGATA








AGAGCTGCCA








ATACCTATGC








CATGCCGGCC








AATGGCAGCG








TTGTCGCCAC








CGCCGCAGGC








CGGGGTCTGA








TCCAGGTCGC








ACAAGGCGCC








GCATCCCTTG








CTCAAGCGAT








CTCCGATGCG








ATTGCCGTCCT








GGGCCGGGTC








CTGGCTTCAG








CACCCTCGGT








GATGGCCGTG








GGCTTTGCCA








GTCTGACCTA








CTCCTCCCGG








ACTGCCGAGC








AATGGCAGGA








CCAAACGCCC








GATAGCGTTC








GTTACGCCCT








GGGCATGGAT








GCCGCTAAAT








TGGGGCTTCC








CCCAAGCGTA








AACCTGAACG








CGGTTGCAAA








AGCCAGCGGT








ACCGTCGATC








TGCCGATGCG








CCTGACCAAC








GAGGCACGAG








GCAACACGAC








GACCCTTTCG








GTGGTCAGCA








CCGATGGTGT








GAGCGTTCCG








AAAGCCGTTC








CGGTCCGGAT








GGCGGCCTAC








AATGCCACGA








CAGGCCTGTA








CGAGGTTACG








GTTCCCTCTAC








GACCGCAGAA








GCGCCGCCAC








TGATCCTGAC








CTGGACGCCG








GCGAGTCCTC








CAGGAAACCA








GAACCCTTCG








AGTACCACTC








CGGTCGTACC








GAAGCCGGTG








CCGGTATATG








AGGGAGCGAC








CCTTACACCG








GTGAAGGCTA








CCCCGGAAAC








CTATCCTGGG








GTGATTACAC








TACCGGAAGA








CCTGATCATC








GGCTTCCCGG








CCGACTCGGG








GATCAAGCCG








ATCTATGTGA








TGTTCAGGGA








TCCGCGGGAT








GTACCTGGTG








CTGCGACTGG








CAAGGGACAG








CCCGTCAGCG








GTAATTGGCT








CGGCGCCGCC








TCTCAAGGTG








AGGGGGCTCC








AATTCCAAGC








CAGATTGCGG








ATAAACTACG








TGGTAAGACA








TTCAAAAACT








GGCGGGACTT








TCGGGAACAA








TTCTGGATAG








CTGTGGCTAA








TGATCCTGAG








TTAAGTAAAC








AGTTTAATCCT








GGTAGTTTAG








CTGTAATGAG








AGATGGAGGG








GCTCCTTATGT








CAGAGAGTCA








GAACAGGCTG








GCGGGAGAAT








AAAGATCGAA








ATCCACCACA








AGGTTCGAGT








AGCAGATGGA








GGCGGCGTTT








ACAATATGGG








GAACCTTGTT








GCAGTAACGC








CAAAACGTCA








TATAGAAATC








CACAAGGGAG








GGAAGTGA





276
Pyocin S2
colicin/pyosin
MAVNDYEP

Pseudomonas

277
ATGGCTGTCA




nuclease
GSMVITHVQ

aeruginosa


ATGATTACGA




family
GGGRDIIQYI
(strain ATCC

ACCTGGTTCG





PARSSYGTPP
15692/

ATGGTTATTA





FVPPGPSPYV
PAO1/1C/

CACATGTGCA





GTGMQEYR
PRS 101/

GGGTGGTGGG





KLRSTLDKS
LMG 12228)

CGTGACATAA





HSELKKNLK


TCCAGTATATT





NETLKEVDE


CCTGCTCGAT





LKSEAGLPG


CAAGCTACGG





KAVSANDIR


TACTCCACCAT





DEKSIVDAL


TTGTCCCACCA





MDAKAKSL


GGACCAAGTC





KAIEDRPAN


CGTATGTCGG





LYTASDFPQ


TACTGGAATG





KSESMYQSQ


CAGGAGTACA





LLASRKFYG


GGAAGCTAAG





EFLDRHMSE


AAGTACGCTT





LAKAYSADI


GATAAGTCCC





YKAQIAILK


ATTCAGAACT





QTSQELENK


CAAGAAAAAC





ARSLEAEAQ


CTGAAAAATG





RAAAEVEAD


AAACCCTGAA





YKARKANV


GGAGGTTGAT





EKKVQSELD


GAACTCAAGA





QAGNALPQL


GTGAAGCGGG





TNPTPEQWL


GTTGCCAGGT





ERATQLVTQ


AAAGCGGTCA





AIANKKKLQ


GTGCCAATGA





TANNALIAK


CATCCGCGAT





APNALEKQK


GAAAAGAGTA





ATYNADLLV


TCGTTGATGC





DEIASLQARL


ACTCATGGAT





DKLNAETAR


GCCAAAGCAA





RKEIARQAAI


AATCGCTAAA





RAANTYAM


GGCCATTGAG





PANGSVVAT


GATCGCCCGG





AAGRGLIQV


CCAATCTTTAT





AQGAASLAQ


ACGGCTTCAG





AISDAIAVLG


ACTTTCCTCAG





RVLASAPSV


AAGTCAGAGT





MAVGFASLT


CGATGTACCA





YSSRTAEQW


GAGTCAGTTG





QDQTPDSVR


CTGGCCAGCC





YALGMDAA


GAAAATTCTA





KLGLPPSVN


TGGAGAGTTC





LNAVAKASG


CTGGATCGCC





TVDLPMRLT


ATATGAGTGA





NEARGNTTT


GCTGGCCAAA





LSVVSTDGV


GCGTACAGCG





SVPKAVPVR


CCGATATCTAT





MAAYNATT


AAGGCGCAAA





GLYEVTVPS


TCGCTATCTTG





TTAEAPPLIL


AAACAAACGT





TWTPASPPG


CTCAAGAGCT





NQNPSSTTP


GGAGAATAAA





VVPKPVPVY


GCCCGGTCAT





EGATLTPVK


TGGAAGCAGA





ATPETYPGVI


AGCCCAGCGA





TLPEDLIIGFP


GCCGCTGCTG





ADSGIKPIYV


AGGTGGAGGC





MFRDPRDVP


GGACTACAAG





GAATGKGQP


GCCAGGAAGG





VSGNWLGA


CAAATGTCGA





ASQGEGAPIP


GAAAAAAGTG





SQIADKLRG


CAGTCCGAGC





KTFKNWRDF


TTGACCAGGC





REQFWIAVA


TGGGAATGCT





NDPELSKQF


TTGCCTCAACT





NPGSLAVMR


GACCAATCCA





DGGAPYVRE


ACGCCAGAGC





SEQAGGRIKI


AGTGGCTTGA





EIHHKVRIA


ACGCGCTACT





DGGGVYNM


CAACTGGTTA





GNLVAVTPK


CGCAGGCGAT





RHIEIHKGGK


CGCCAATAAG








AAGAAATTGC








AGACTGCAAA








CAATGCCTTG








ATTGCCAAGG








CACCCAATGC








ACTGGAGAAA








CAAAAGGCAA








CCTACAACGC








CGATCTCCTA








GTGGATGAAA








TCGCCAGCCT








GCAAGCACGG








CTGGACAAGC








TGAACGCCGA








AACGGCAAGG








CGCAAGGAAA








TCGCTCGTCA








AGCGGCGATC








AGGGCTGCCA








ATACTTATGCC








ATGCCAGCCA








ATGGCAGCGT








TGTCGCCACC








GCCGCAGGCC








GGGGTCTGAT








CCAGGTCGCA








CAAGGCGCCG








CATCCCTTGCT








CAAGCGATCT








CCGATGCGAT








TGCCGTCCTG








GGCCGGGTCC








TGGCTTCAGC








ACCCTCGGTG








ATGGCCGTGG








GCTTTGCCAG








TCTGACCTACT








CCTCCCGGAC








TGCCGAGCAA








TGGCAGGACC








AAACGCCCGA








TAGCGTTCGTT








ACGCCCTGGG








CATGGATGCC








GCTAAATTGG








GGCTTCCCCC








AAGCGTAAAC








CTGAACGCGG








TTGCAAAAGC








CAGCGGTACC








GTCGATCTGC








CGATGCGCCT








GACCAACGAG








GCACGAGGCA








ACACGACGAC








CCTTTCGGTG








GTCAGCACCG








ATGGTGTGAG








CGTTCCGAAA








GCCGTTCCGG








TCCGGATGGC








GGCCTACAAT








GCCACGACAG








GCCTGTACGA








GGTTACGGTT








CCCTCTACGA








CCGCAGAAGC








GCCGCCACTG








ATCCTGACCT








GGACGCCGGC








GAGTCCTCCA








GGAAACCAGA








ACCCTTCGAG








TACCACTCCG








GTCGTACCGA








AGCCGGTGCC








GGTATATGAG








GGAGCGACCC








TTACACCGGT








GAAGGCTACC








CCGGAAACCT








ATCCTGGGGT








GATTACACTA








CCGGAAGACC








TGATCATCGG








CTTCCCGGCC








GACTCGGGGA








TCAAGCCGAT








CTATGTGATG








TTCAGGGATC








CGCGGGATGT








ACCTGGTGCT








GCGACTGGCA








AGGGACAGCC








CGTCAGCGGT








AATTGGCTCG








GCGCCGCCTC








TCAAGGTGAG








GGGGCTCCAA








TTCCAAGCCA








GATTGCGGAT








AAACTACGTG








GTAAGACATT








CAAAAACTGG








CGGGACTTTC








GGGAACAATT








CTGGATAGCT








GTGGCTAATG








ATCCTGAGTT








AAGTAAACAG








TTTAATCCTGG








TAGTTTAGCT








GTAATGAGAG








ATGGAGGGGC








TCCTTATGTCA








GAGAGTCAGA








ACAGGCTGGC








GGGAGAATAA








AGATCGAAAT








CCACCACAAG








GTTCGAATAG








CAGATGGAGG








CGGCGTTTAC








AATATGGGGA








ACCTTGTTGC








AGTAACGCCA








AAACGTCATA








TAGAAATCCA








CAAGGGAGGG








AAGTGA





278
Ruminococcin-A
Lantibiotic
MRNDVLTLT

Ruminococcus

279
ATGAGAAATG





NPMEEKELE

gnavus


ACGTATTAAC





QILGGGNGV


ATTAACAAAC





LKTISHECN


CCAATGGAAG





MNTWQFLFT


AGAACGAACT





CC


GGAGCAGATC








TTAGGTGGTG








GCAATGGTGT








GTTAAAAACG








ATTAGCCACG








AATGCAATAT








GAACACATGG








CAGTTCCTGTT








TACTTGTTGCT








AA





280
Sakacin G
Class IIa
MKNAKSLTI

Lactobacillus

281
ATGAAAAACG





QEMKSITGG

sakei


CAAAAAGCCT





KYYGNGVS


AACAATTCAA





CNSHGCSVN


GAAATGAAAT





WGQAWTCG


CTATTACAGG





VNHLANGG


TGGTAAATAC





HGVC


TATGGTAATG








GCGTTAGCTG








TAACTCTCAC








GGCTGTTCAG








TAAATTGGGG








GCAAGCATGG








ACTTGTGGAG








TAAACCATCT








AGCTAATGGC








GGTCATGGAG








TTTGTTAA





282
Sakacin-A
class
MNNVKELS

Lactobacillus

283
ATGAATAATG




IIA/YG
MTELQTITG

sakei


TAAAAGAATT




NGV
GARSYGNG


AAGTATGACA





VYCNNKKC


GAATTACAAA





WVNRGEAT


CAATTACCGG





QSIIGGMISG


CGGTGCTAGA





WASGLAGM


TCATATGGCA








ACGGTGTTTA








CTGTAATAAT








AAAAAATGTT








GGGTAAATCG








GGGTGAAGCA








ACGCAAAGTA








TTATTGGTGG








TATGATTAGC








GGCTGGGCTA








GTGGTTTAGC








TGGAATGTAA





284
Sakacin-P
class
MEKFIELSLK

Lactobacillus

285
ATGGAAAAGT



(Sakacin
IIA/YG
EVTAITGGK

sakei


TTATTGAATTA



674)
NGV
YYGNGVHC


TCTTTAAAAG





GKHSCTVD


AAGTAACAGC





WGTAIGNIG


AATTACAGGT





NNAAANWA


GGAAAATATT





TGGNAGWNK


ATGGTAACGG








TGTACACTGT








GGAAAACATT








CATGTACCGT








AGACTGGGGA








ACAGCTATTG








GAAATATCGG








AAATAATGCA








GCTGCAAACT








GGGCCACAGG








CGGAAACGCT








GGCTGGAATA








AATAA





286
Salivaricin 9
lantibiotic
MKSTNNQSI

Streptococcus

287
ATGAAATCAA





AEIAAVNSL

salivarius


CAAATAATCA





QEVSMEELD


AAGTATCGCA





QIIGAGNGV


GAAATTGCAG





VLTLTHECN


CAGTAAACTC





LATWTKKLK


ACTACAAGAA





CC


GTAAGTATGG








AGGAACTAGA








CCAAATTATT








GGTGCCGGAA








ACGGAGTGGT








TCTTACTCTTA








CTCATGAATG








TAACCTAGCA








ACTTGGACAA








AAAAACTAAA








ATGTTGCTAA





288
Salivaricin A
Lantibiotic
MSFMKNSK

Streptococcus

289
ATGAGTTTTAT





DILTNAIEEV

pyogenes


GAAAAATTCA





SEKELMEVA
serotype

AAGGATATTT





GGKKGSGW
M28 (strain

TGACTAATGC





FATITDDCPN
MGAS6180)

TATCGAAGAA





SVFVCC


GTTTCTGAAA








AAGAACTTAT








GGAAGTAGCT








GGTGGTAAAA








AAGGTTCCGG








TTGGTTTGCA








ACTATTACTG








ATGACTGTCC








GAACTCAGTA








TTCGTTTGTTG








TTAA





290
Salivaricin
Lantibiotic
MKNSKDVL

Streptococcus

291
ATGAAAAACT



A3

NNAIEEVSE

salivarius


CAAAAGATGT





KELMEVAG


TTTGAACAAT





GKKGPGWIA


GCTATCGAAG





TITDDCPNSI


AGGTTTCTGA





FVCC


AAAAGAACTT








ATGGAAGTAG








CTGGTGGTAA








AAAAGGTCCA








GGTTGGATTG








CAACTATTACT








GATGACTGTC








CAAACTCAAT








ATTCGTTTGTT








GTTAA





292
Salivaricin-
Lantibiotic
MKNSKDILN

Streptococcus

293
ATGAAAAACT



A sa

NAIEEVSEKE

salivarius


CAAAAGATAT





LMEVAGGK


TTTGAACAAT





RGSGWIATIT


GCTATCGAAG





DDCPNSVFV


AAGTTTCTGA





CC


AAAAGAACTT








ATGGAAGTAG








CTGGTGGTAA








AAGAGGTTCA








GGTTGGATTG








CAACTATTACT








GATGACTGTC








CAAACTCAGT








ATTCGTTTGTT








GTTAA





294
Staphylococcin
Lantibiotic
MKSSFLEKDI

Staphylococcus

295
ATGAAAAGTT



C55
(two-
EEQVTWFEE

aureus


CTTTTTTAGAA



alpha
peptide)
VSEQEFDDD


AAAGATATAG





IFGACSTNTF


AAGAACAAGT





SLSDYWGNK


GACATGGTTC





GNWCTATH


GAGGAAGTTT





ECMSWCK


CAGAACAAGA








ATTTGACGAT








GATATTTTTGG








AGCTTGTAGT








ACAAACACTT








TTTCTTTGAGT








GACTATTGGG








GTAATAAAGG








AAATTGGTGT








ACTGCTACTC








ACGAATGTAT








GTCTTGGTGT








AAATAA





296
Staphylococcin
Lantibiotic
MKNELGKFL

Staphylococcus

297
ATGAAAAATG



C55
(two-
EENELELGK

aureus


AATTAGGTAA



beta
peptide)
FSESDMLEIT


GTTTTTAGAA





DDEVYAAG


GAAAACGAAT





TPLALLGGA


TAGAGTTAGG





ATGVIGYISN


TAAATTTTCAG





QTCPTTACT


AATCAGACAT





RAC


GCTAGAAATT








ACTGATGATG








AAGTATATGC








AGCTGGAACA








CCTTTAGCCTT








ATTGGGTGGA








GCTGCCACCG








GGGTGATAGG








TTATATTTCTA








ACCAAACATG








TCCAACAACT








GCTTGTACAC








GCGCTTGCTAG





298
Streptin
lantibiotic
MNNTIKDFD

Streptococcus

299
ATGAATAACA





LDLKTNKKD

pyogenes


CAATTAAAGA





TATPYVGSR


CTTTGATCTCG





YLCTPGSCW


ATTTGAAAAC





KLVCFTTTVK


AAATAAAAAA








GACACTGCTA








CACCTTATGTT








GGTAGCCGTT








ACCTATGTAC








CCCTGGTTCTT








GTTGGAAATT








AGTTTGCTTTA








CAACAACTGT








TAAATAA





300
Streptococcin
Lantibiotic
MEKNNEVIN

Streptococcus

301
ATGGAAAAAA



A-

SIQEVSLEEL

pyogenes


ATAATGAAGT



FF22

DQIIGAGKN


AATCAACTCT





GVFKTISHEC


ATTCAAGAAG





HLNTWAFLA


TTAGTCTTGA





TCCS


AGAACTCGAT








CAAATTATCG








GTGCTGGAAA








AAATGGTGTG








TTTAAAACAA








TTTCTCATGAG








TGTCATTTGA








ATACATGGGC








ATTCCTTGCTA








CTTGTTGTTCA








TAA





302
Streptococcin
Lantibiotic
MTKEHEIINS

Streptococcus

303
ATGGAAAAAA



A-

IQEVSLEELD

pyogenes


ATAATGAAGT



M49

QIIGAGKNG
serotype

AATCAACTCT





VFKTISHECH
M49

ATTCAAGAAG





LNTWAFLAT


TTAGTCTTGA





CCS


AGAACTCGAT








CAAATTATCG








GTGCTGGAAA








AAATGGTGTG








TTTAAAACAA








TTTCTCATGAG








TGTCATTTGA








ATACATGGGC








ATTCCTTGCTA








CTTGTTGCTCA








TAA





304
Sublancin
Lantibiotic
MEKLFKEVK

Bacillus

305
ATGGAAAAGC



168

LEELENQKG

subtilis


TATTTAAAGA





SGLGKAQCA
(strain 168)

AGTTAAACTA





ALWLQCASG


GAGGAACTCG





GTIGCGGGA


AAAACCAAAA





VACQNYRQF


AGGTAGTGGA





CR


TTAGGAAAAG








CTCAGTGTGC








TGCGTTGTGG








CTACAATGTG








CTAGTGGCGG








TACAATTGGT








TGTGGTGGCG








GAGCTGTTGC








TTGTCAAAAC








TATCGTCAATT








CTGCAGATAA





306
Subtilin
Lantibiotic
MSKFDDFDL

Bacillus

307
ATGTCAAAGT





DVVKVSKQ

subtilis


TCGATGATTTC





DSKITPQWK


GATTTGGATG





SESLCTPGC


TTGTGAAAGT





VTGALQTCF


CTCTAAACAA





LQTLTCNCK


GACTCAAAAA





ISK


TCACTCCGCA








ATGGAAAAGT








GAATCACTTT








GTACACCAGG








ATGTGTAACT








GGTGCATTGC








AAACTTGCTTC








CTTCAAACAC








TAACTTGTAA








CTGCAAAATC








TCTAAATAA





308
Subtilosin
Unclassified
MKLPVQQV

Bacillus

309
TTGAAATTGC





YSVYGGKDL

subtilis


CGGTGCAACA





PKGHSHSTM
(strain 168)

GGTCTATTCG





PFLSKLQFLT


GTCTATGGGG





KIYLLDIHTQ


GTAAGGATCT





PFFI


CCCAAAAGGG








CATAGTCATTC








TACTATGCCCT








TTTTAAGTAA








ATTACAATTTT








TAACTAAAAT








CTACCTCTTGG








ATATACATAC








ACAACCGTTTT








TCATTTGA





310
Subtilosin-A
Unclassified
MKKAVIVEN

Bacillus

311
ATGAAAAAAG





KGCATCSIG

subtilis


CTGTCATTGTA





AACLVDGPI
(strain 168)

GAAAACAAAG





PDFEIAGAT


GTTGTGCAAC





GLFGLWG


ATGCTCGATC








GGAGCCGCTT








GTCTAGTGGA








CGGTCCTATC








CCTGATTTTGA








AATTGCCGGT








GCAACAGGTC








TATTCGGTCTA








TGGGGGTAA





312
Thermophilin
Lantibiotic
MMNATENQI

Streptococcus

313
ATGATGAATG



1277

FVETVSDQE

thermophilus


CTACTGAAAA





LEMLIGGAD


CCAAATTTTTG





RGWIKTLTK


TTGAGACTGT





DCPNVISSIC


GAGTGACCAA





AGTIITACKN


GAATTAGAAA





CA


TGTTAATTGGT








GGTGCAGATC








GTGGATGGAT








TAAGACTTTA








ACAAAAGATT








GTCCAAATGT








AATTTCTTCAA








TTTGTGCAGG








TACAATTATTA








CAGCCTGTAA








AAATTGTGCT








TAA





314
Thermophilin
Unclassified
MKQYNGFE

Streptococcus

315
ATGAAGCAGT



13

VLHELDLAN

thermophilus


ATAATGGTTTT





VTGGQINWG


GAGGTTCTAC





SVVGHCIGG


ATGAACTTGA





AIIGGAFSGG


CTTAGCAAAT





AAAGVGCL


GTAACTGGCG





VGSGKAIIN


GTCAAATTAA





GL


TTGGGGATCA








GTTGTAGGAC








ACTGTATAGG








TGGAGCTATT








ATCGGAGGTG








CATTTTCAGG








AGGTGCAGCG








GCTGGAGTAG








GATGCCTTGTT








GGGAGCGGAA








AGGCAATCAT








AAATGGATTA








TAA





316
Thermophilin A
Unclassified
MNTITICKFD

Streptococcus

317
ATGAATACAA





VLDAELLST

thermophilus


TAACTATTTGT





VEGGYSGKD


AAATTTGATG





CLKDMGGY


TTTTAGATGCT





ALAGAGSGA


GAACTTCTTTC





LWGAPAGG


GACAGTTGAG





VGALPGAFV


GGTGGATACT





GAHVGAIAG


CTGGTAAGGA





GFACMGGMI


TTGTTTAAAA





GNKFN


GACATGGGAG








GATATGCATT








GGCAGGAGCT








GGAAGTGGAG








CTCTGTGGGG








AGCTCCAGCA








GGAGGTGTTG








GAGCACTTCC








AGGTGCATTT








GTCGGAGCTC








ATGTTGGGGC








AATTGCAGGA








GGCTTTGCAT








GTATGGGTGG








AATGATTGGT








AATAAGTTTA








ACTAA





318
Thiocillin
Unclassified
MSEIKKALN

Bacillus

319
ATGAGTGAAA



(Micrococcin

TLEIEDFDAI

cereus (strain


TTAAAAAAGC



P1)

EMVDVDAM
ATCC 14579/

ATTAAATACG



(Micrococcin

PENEALEIM
DSM 31)

CTTGAAATTG



P2)

GASCTTCVC


AAGATTTTGA



(Thiocillin

TCSCCTT


TGCAATTGAA



I)




ATGGTTGATG



(Thiocillin




TTGATGCTAT



II)




GCCAGAAAAC



(Thiocillin




GAAGCGCTTG



III)




AAATTATGGG



(Thiocillin




AGCGTCATGT



IV)




ACGACATGCG



(Antibiotic




TATGTACATG



YM-




CAGTTGTTGT



266183)




ACAACTTGA



(Antibiotic



YM-



266184)





320
Thuricin
two-
MEVMNNALI

Bacillus

321
ATGGAAGTTA



CD alpha
peptide
TKVDEEIGG

cereus


TGAACAATGC




lantibiotic
NAACVIGCI
95/8201

TTTAATTACAA





GSCVISEGIG


AAGTAGATGA





SLVGTAFTLG


GGAGATTGGA








GGAAACGCTG








CTTGTGTAATT








GGTTGTATTG








GCAGTTGCGT








AATTAGTGAA








GGAATTGGTT








CACTTGTAGG








AACAGCATTT








ACTTTAGGTT








AA





322
Thuricin
two-
MEVLNKQN

Bacillus

323
ATGGAAGTTT



CD beta
peptide
VNIIPESEEV

cereus


TAAACAAACA




lantibiotic
GGWVACVG
95/8201

AAATGTAAAT





ACGTVCLAS


ATTATTCCAG





GGVGTEFAA


AATCTGAAGA





ASYFL


AGTAGGTGGA








TGGGTAGCAT








GTGTTGGAGC








ATGTGGTACA








GTATGTCTTGC








TAGTGGTGGT








GTTGGAACAG








AGTTTGCAGC








TGCATCTTATT








TCCTATAA





324
Thuricin-
Class IId
METPVVQPR

Bacillus

325
ATGGAAACAC



17

DWTCWSCL

thuringiensis


CAGTAGTACA





VCAACSVEL


ACCAAGGGAT





LNLVTAATG


TGGACTTGTT





ASTAS


GGAGTTGCTT








AGTATGTGCA








GCATGTTCTGT








GGAATTATTA








AATTTAGTTAC








TGCGGCAACA








GGGGCTAGTA








CTGCAAGCTAA





326
Trifolitoxin
Unclassified
MDNKVAKN

Rhizobium

327
ATGGATAACA





VEVKKGSIK

leguminosarum


AGGTTGCGAA





ATFKAAVLK
bv. trifolii

GAATGTCGAA





SKTKVDIGG


GTGAAGAAGG





SRQGCVA


GCTCCATCAA








GGCGACCTTC








AAGGCTGCTG








TTCTGAAGTC








GAAGACGAAG








GTCGACATCG








GAGGTAGCCG








TCAGGGCTGC








GTCGCTTAA





328
Ubericin A
Class IIa
MNTIEKFENI

Streptococcus

329
ATGAATACAA





KLFSLKKIIG

uberis


TTGAAAAATT





GKTVNYGN


TGAAAATATT





GLYCNQKKC


AAACTTTTTTC





WVNWSETA


ACTAAAGAAA





TTIVNNSIM


ATTATCGGTG





NGLTGGNA


GCAAAACTGT





GWHSGGRA


AAATTATGGT








AATGGCCTTT








ATTGTAACCA








AAAAAAATGC








TGGGTAAACT








GGTCAGAAAC








TGCTACAACA








ATAGTAAATA








ATTCCATCATG








AACGGGCTCA








CAGGTGGTAA








TGCGGGTTGG








CACTCAGGCG








GGAGAGCATAA





330
Uberolysin
Unclassified
MDILLELAG

Streptococcus

331
ATGGACATTT





YTGIASGTA

uberis


TATTAGAACT





KKVVDAIDK


CGCAGGATAT





GAAAFVIISII


ACTGGGATAG





STVISAGAL


CCTCAGGTAC





GAVSASADF


TGCAAAAAAA





IILTVKNYIS


GTTGTTGATG





RNLKAQAVIW


CCATTGATAA








AGGAGCTGCA








GCCTTTGTTAT








TATTTCAATTA








TCTCAACAGT








AATTAGTGCG








GGAGCATTGG








GAGCAGTTTC








AGCCTCAGCT








GATTTTATTAT








TTTAACTGTAA








AAAATTACAT








TAGTAGAAAT








TTAAAAGCAC








AAGCTGTCAT








TTGGTAA





332
UviB
Unclassified
MDSELFKLM

Clostridium

333
ATGGATAGTG





ATQGAFAILF

perfringens


AATTATTTAA





SYLLFYVLK


GTTAATGGCA





ENSKREDKY


ACACAAGGAG





QNIIEELTEL


CCTTTGCAATA





LPKIKEDVE


TTATTTTCGTA





DIKEKLNK


TTTATTGTTTT








ATGTTTTAAA








AGAGAATAGT








AAAAGAGAAG








ATAAGTATCA








AAATATAATA








GAGGAGCTTA








CAGAATTATT








GCCAAAAATA








AAAGAAGATG








TAGAAGATAT








AAAAGAAAAA








CTTAATAAAT








AG





334
Variacin
Lantibiotic,
MTNAFQALD

Micrococcus

335
ATGACGAACG




Type A
EVTDAELDA

varians


CATTTCAGGC





ILGGGSGVIP


ACTGGACGAA





TISHECHMN


GTCACGGACG





SFQFVFTCCS


CCGAGCTCGA








CGCCATCCTT








GGCGGGGGCA








GTGGTGTTAT








TCCCACGATC








AGCCACGAGT








GCCACATGAA








CTCCTTCCAGT








TCGTGTTCACC








TGCTGCTCCTGA





336
Zoocin A
Unclassified
MKRIFFAFLS

Streptococcus

337
ATGAAACGTA





LCLFIFGTQT

equi subsp.


TATTTTTTGCT





VSAATYTRP

zooepidemicus


TTCTTAAGTTT





LDTGNITTGF


ATGCTTATTTA





NGYPGHVG


TATTCGGAAC





VDYAVPVGT


ACAAACGGTA





PVRAVANGT


TCTGCAGCTA





VKFAGNGA


CTTATACTCG





NHPWMLWM


GCCATTAGAT





AGNCVLIQH


ACGGGAAATA





ADGMHTGY


TCACTACAGG





AHLSKISVST


GTTTAACGGA





DSTVKQGQII


TACCCTGGTC





GYTGATGQ


ATGTTGGAGT





VTGPHLHFE


CGATTATGCA





MLPANPNW


GTACCCGTTG





QNGFSGRID


GAACTCCGGT





PTGYIANAP


TAGAGCAGTT





VFNGTTPTE


GCAAATGGTA





PTTPTTNLKI


CAGTCAAATT





YKVDDLQKI


TGCAGGTAAT





NGIWQVRN


GGGGCTAATC





NILVPTDFT


ACCCATGGAT





WVDNGIAA


GCTTTGGATG





DDVIEVTSN


GCTGGAAACT





GTRTSDQVL


GTGTTCTAATT





QKGGYFVIN


CAACATGCTG





PNNVKSVGT


ACGGGATGCA





PMKGSGGLS


TACTGGATAT





WAQVNFTT


GCACACTTAT





GGNVWLNT


CAAAAATTTC





TSKDNLLYGK


AGTTAGCACA








GATAGTACAG








TTAAACAAGG








ACAAATCATA








GGTTATACTG








GTGCCACCGG








CCAAGTTACC








GGTCCACATT








TGCATTTTGA








AATGTTGCCA








GCAAATCCTA








ACTGGCAAAA








TGGTTTTTCTG








GAAGAATAGA








TCCAACCGGA








TACATCGCTA








ATGCCCCTGT








ATTTAATGGA








ACAACACCTA








CAGAACCTAC








TACTCCTACA








ACAAATTTAA








AAATCTATAA








AGTTGATGAT








TTACAAAAAA








TTAATGGTATT








TGGCAAGTAA








GAAATAACAT








ACTTGTACCA








ACTGATTTCAC








ATGGGTTGAT








AATGGAATTG








CAGCAGATGA








TGTAATTGAA








GTAACTAGCA








ATGGAACAAG








AACCTCTGAC








CAAGTTCTTCA








AAAAGGTGGT








TATTTTGTCAT








CAATCCTAAT








AATGTTAAAA








GTGTTGGAAC








TCCGATGAAA








GGTAGTGGTG








GTCTATCTTGG








GCTCAAGTAA








ACTTTACAAC








AGGTGGAAAT








GTCTGGTTAA








ATACTACTAG








CAAAGACAAC








TTACTTTACGG








AAAATAA





338
Fulvocin-C
Unclassified
ANCSCSTAS

Myxococcus

339
GCGAACTGCA





DYCPILTFCT

fulvus


GCTGCAGCAC





TGTACSYTP


CGCGAGCGAT





TGCGTGWV


TATTGCCCGA





YCACNGNFY


TTCTGACCTTT








TGCACCACCG








GCACCGCGTG








CAGCTATACC








CCGACCGGCT








GCGGCACCGG








CTGGGTGTAT








TGCGCGTGCA








ACGGCAACTT








TTAT





340
Duramycin-C
Lantibiotic
CANSCSYGP

Streptomyces

341
TGCGCGAACA





LTWSCDGNTK

griseoluteus


GCTGCAGCTA








TGGCCCGCTG








ACCTGGAGCT








GCGATGGCAA








CACCAAA





342
Duramycin
Lantibiotic B
CKQSCSFGPF

Streptoverticillium

343
TGCAAACAGA



(duramycin-

TFVCDGNTK

griseoverticillatum


GCTGCAGCTT



B)




TGGCCCGTTT



(Leucopeptin)




ACCTTTGTGTG








CGATGGCAAC








ACCAAA





344
Carnocin
lantibiotic
GSEIQPR

Carnobacterium

345
GGCAGCGAAA



UI49


sp. (strain

TTCAGCCGCGC






UI49)





346
Lactococcin-
Unclassified
GTWDDIGQG

Lactococcus

347
GGCACCTGGG





IGRVAYWVG

lactis subsp.


ATGATATTGG





KAMGNMSD

lactis


CCAGGGCATT





VNQASRINR
(Streptococcus

GGCCGCGTGG





KKKH

lactis)


CGTATTGGGT








GGGCAAAGCG








ATGGGCAACA








TGAGCGATGT








GAACCAGGCG








AGCCGCATTA








ACCGCAAAAA








AAAACAT





348
Lactococcin-
Unclassified
KKWGWLAW

Lactococcus

349
AAAAAATGGG





VDPAYEFIK

lactis subsp.


GCTGGCTGGC





GFGKGAIKE

lactis


GTGGGTGGAT





GNKDKWKNI
(Streptococcus

CCGGCGTATG







lactis)


AATTTATTAA








AGGCTTTGGC








AAAGGCGCGA








TTAAAGAAGG








CAACAAAGAT








AAATGGAAAA








ACATT





350
Ancovenin
Lantibiotic
CVQSCSFGP

Streptomyces

351
TGCGTGCAGA





LTWSCDGNTK
sp. (strain

GCTGCAGCTT






A647P-2)

TGGCCCGCTG








ACCTGGAGCT








GCGATGGCAA








CACCAAA





352
Actagardine
Lantibiotic
SSGWVCTLT

Actinoplanes

353
AGCAGCGGCT



(Gardimycin)

IECGTVICAC

liguriae


GGGTGTGCAC








CCTGACCATT








GAATGCGGCA








CCGTGATTTG








CGCGTGC





354
Curvaticin
Unclassified
YTAKQCLQA

Lactobacillus

355
TATACCGCGA



FS47

IGSCGIAGTG

curvatus


AACAGTGCCT





AGAAGGPA


GCAGGCGATT





GAFVGAXV


GGCAGCTGCG





VXI


GCATTGCGGG








CACCGGCGCG








GGCGCGGCGG








GCGGCCCGGC








GGGCGCGTTT








GTGGGCGCGN








NNGTGGTGNN








NATT [IN








WHICH NNN =








ANY AMINO-








ACID CODING








TRIPLET]





356
Bavaricin-
class
TKYYGNGV

Lactobacillus

357
ACCAAATATT



MN
IIA/YG
YCNSKKCW

sakei


ATGGCAACGG




NGV
VDWGQAAG


CGTGTATTGC





GIGQTVVXG


AACAGCAAAA





WLGGAIPGK


AATGCTGGGT








GGATTGGGGC








CAGGCGGCGG








GCGGCATTGG








CCAGACCGTG








GTGNNNGGCT








GGCTGGGCGG








CGCGATTCCG








GGCAAA[IN








WHICH NNN =








ANY AMINO-








ACID CODING








TRIPLET]





358
Mutacin
Lantibiotic
FKSWSFCTP

Streptococcus

359
TTTAAAAGCT



B-Ny266

GCAKTGSFN

mutans


GGAGCTTTTG





SYCC


CACCCCGGGC








TGCGCGAAAA








CCGGCAGCTT








TAACAGCTAT








TGCTGCTTTAA








AAGCTGGAGC








TTTTGCACCCC








GGGCTGCGCG








AAAACCGGCA








GCTTTAACAG








CTATTGCTGC





360
Mundticin
class
KYYGNGVS

Enterococcus

361
AAATATTATG




IIA/YG
CNKKGCSVD

mundtii


GCAACGGCGT




NGV
WGKAIGIIGN


GAGCTGCAAC





NSAANLATG


AAAAAAGGCT





GAAGWSK


GCAGCGTGGA








TTGGGGCAAA








GCGATTGGCA








TTATTGGCAA








CAACAGCGCG








GCGAACCTGG








CGACCGGCGG








CGCGGCGGGC








TGGAGCAAA





362
Bavaricin-A
class
KYYGNGVH

Lactobacillus

363
AAATATTATG




IIA/YG
XGKHSXTVD

sakei


GCAACGGCGT




NGV
WGTAIGNIG


GCATNNNGGC





NNAAANXA


AAACATAGCN





TGXNAGG


NNACCGTGGA








TTGGGGCACC








GCGATTGGCA








ACATTGGCAA








CAACGCGGCG








GCGAACNNNG








CGACCGGCNN








NAACGCGGGC








GGC [IN








WHICH NNN =








ANY AMINO-








ACID CODING








TRIPLET]





364
Lactocin-
Class IIb
GMSGYIQGI

Lactobacillus

365
GGCATGAGCG



705

PDFLKGYLH

paracasei


GCTATATTCA





GISAANKHK


GGGCATTCCG





KGRL


GATTTTCTGA








AAGGCTATCT








GCATGGCATT








AGCGCGGCGA








ACAAACATAA








AAAAGGCCGC








CTG





366
Leucocin-B
Unclassified
KGKGFWSW

Leuconostoc

367
AAAGGCAAAG





ASKATSWLT

mesenteroides


GCTTTTGGAG





GPQQPGSPL


CTGGGCGAGC





LKKHR


AAAGCGACCA








GCTGGCTGAC








CGGCCCGCAG








CAGCCGGGCA








GCCCGCTGCT








GAAAAAACAT








CGC





368
Leucocin C
class
KNYGNGVH

Leuconostoc

369
AAAAACTATG




IIA/YG
CTKKGCSVD

mesenteroides


GCAACGGCGT




NGV
WGYAWTNI


GCATTGCACC





ANNSVMNG


AAAAAAGGCT





LTGGNAGW


GCAGCGTGGA





HN


TTGGGGCTAT








GCGTGGACCA








ACATTGCGAA








CAACAGCGTG








ATGAACGGCC








TGACCGGCGG








CAACGCGGGC








TGGCATAAC





370
LCI
Unclassified
AIKLVQSPN

Bacillus

371
GCGATTAAAC





GNFAASFVL

subtilis


TGGTGCAGAG





DGTKWIFKS


CCCGAACGGC





KYYDSSKGY


AACTTTGCGG





WVGIYEVW


CGAGCTTTGT





DRK


GCTGGATGGC








ACCAAATGGA








TTTTTAAAAGC








AAATATTATG








ATAGCAGCAA








AGGCTATTGG








GTGGGCATTT








ATGAAGTGTG








GGATCGCAAA





372
Lichenin
Unclassified
ISLEICXIFHDN

Bacillus

373
ATTAGCCTGG







licheniformis


AAATTTGCNN








NATTTTTCATG








ATAAC [IN








WHICH NNN =








ANY AMINO-








ACID CODING








TRIPLET]





374
Lactococcin
class
TSYGNGVHC

Lactococcus

375
ACCAGCTATG



MMFII
IIA/YG
NKSKCWIDV

lactis subsp.


GCAACGGCGT




NGV
SELETYKAG

lactis


GCATTGCAAC





TVSNPKDILW
(Streptococcus

AAAAGCAAAT







lactis)


GCTGGATTGA








TGTGAGCGAA








CTGGAAACCT








ATAAAGCGGG








CACCGTGAGC








AACCCGAAAG








ATATTCTGTGG





376
Serracin-P
Phage-
DYHHGVRVL

Serratia

377
GATTATCATC




Tail-


plymuthica


ATGGCGTGCG




Like



CGTGCTG





378
Halocin-
Unclassified
DIDITGCSAC

Halobacterium

379
GATATTGATA



C8

KYAAG
sp. (strain

TTACCGGCTG






AS7092)

CAGCGCGTGC








AAATATGCGG








CGGGC





380
Subpeptin
Unclassified
XXKEIXHIFH

Bacillus

381
NNNNNNAAAG



JM4-B

DN

subtilis


AAATTNNNCA








TATTTTTCATG








ATAAC [IN








WHICH NNN =








ANY AMINO-








ACID CODING








TRIPLET]





382
Curvalicin-
Unclassified
TPVVNPPFL

Lactobacillus

383
ACCCCGGTGG



28a

QQT

curvatus


TGAACCCGCC








GTTTCTGCAG








CAGACC





384
Curvalicin-
Unclassified
VAPFPEQFLX

Lactobacillus

385
GTGGCGCCGT



28b



curvatus


TTCCGGAACA








GTTTCTGNNN








[IN WHICH








NNN = ANY








AMINO-ACID








CODING








TRIPLET]





386
Curvalicin-
Unclassified
NIPQLTPTP

Lactobacillus

387
AACATTCCGC



28c



curvatus


AGCTGACCCC








GACCCCG





388
Thuricin-S
Unclassified
DWTXWSXL

Bacillus

389
GATTGGACCN





VXAACSVELL

thuringiensis


NNTGGAGCNN






subsp.

NCTGGTGNNN







entomocidus


GCGGCGTGCA








GCGTGGAACT








GCTG [IN








WHICH NNN =








ANY AMINO-








ACID CODING








TRIPLET]





390
Curvaticin
Unclassified
AYPGNGVH

Lactobacillus

391
GCGTATCCGG



L442

CGKYSCTVD

curvatus


GCAACGGCGT





KQTAIGNIG


GCATTGCGGC





NNAA


AAATATAGCT








GCACCGTGGA








TAAACAGACC








GCGATTGGCA








ACATTGGCAA








CAACGCGGCG





392
Divergicin
class
TKYYGNGV

Carnobacterium

393
ACCAAATATT



M35
IIa/YGN
YCNSKKCW

divergens


ATGGCAACGG




GV
VDWGTAQG
(Lactobacillus

CGTGTATTGC





CIDVVIGQL

divergens)


AACAGCAAAA





GGGIPGKGKC


AATGCTGGGT








GGATTGGGGC








ACCGCGCAGG








GCTGCATTGA








TGTGGTGATT








GGCCAGCTGG








GCGGCGGCAT








TCCGGGCAAA








GGCAAATGC





394
Enterocin
class IIb
NRWYCNSA

Enterococcus

395
AACCGCTGGT



E-760

AGGVGGAA
sp.

ATTGCAACAG





VCGLAGYV


CGCGGCGGGC





GEAKENIAG


GGCGTGGGCG





EVRKGWGM


GCGCGGCGGT





AGGFTHNKA


GTGCGGCCTG





CKSFPGSGW


GCGGGCTATG





ASG


TGGGCGAAGC








GAAAGAAAAC








ATTGCGGGCG








AAGTGCGCAA








AGGCTGGGGC








ATGGCGGGCG








GCTTTACCCAT








AACAAAGCGT








GCAAAAGCTT








TCCGGGCAGC








GGCTGGGCGA








GCGGC





396
Bacteriocin
Unclassified
TTKNYGNG

Enterococcus

397
ACCACCAAAA



E50-52

VCNSVNWC

faecium


ACTATGGCAA





QCGNVWAS
(Streptococcus

CGGCGTGTGC





CNLATGCAA

faecium)


AACAGCGTGA





WLCKLA


ACTGGTGCCA








GTGCGGCAAC








GTGTGGGCGA








GCTGCAACCT








GGCGACCGGC








TGCGCGGCGT








GGCTGTGCAA








ACTGGCG





398
Paenibacillin
Unclassified
ASIIKTTIKVS

Paenibacillus

399
GCGAGCATTA





KAVCKTLTC

polymyxa


TTAAAACCAC





ICTGSCSNCK
(Bacillus

CATTAAAGTG







polymyxa)


AGCAAAGCGG








TGTGCAAAAC








CCTGACCTGC








ATTTGCACCG








GCAGCTGCAG








CAACTGCAAA





400
Epilancin
Unclassified
SASIVKTTIK

Staphylococcus

401
AGCGCGAGCA



15x

ASKKLCRGF

epidermidis


TTGTGAAAAC





TLTCGCHFT


CACCATTAAA





GKK


GCGAGCAAAA








AACTGTGCCG








CGGCTTTACC








CTGACCTGCG








GCTGCCATTTT








ACCGGCAAAA








AA





402
Enterocin-
class IIa
KYYGNGVS

Enterococcus

403
AAATATTATG



HF

CNKKGCSVD

faecium


GCAACGGCGT





WGKAIGIIGN
(Streptococcus

GAGCTGCAAC





NAAANLTTG

faecium)


AAAAAAGGCT





GKAAWAC


GCAGCGTGGA








TTGGGGCAAA








GCGATTGGCA








TTATTGGCAA








CAACGCGGCG








GCGAACCTGA








CCACCGGCGG








CAAAGCGGCG








TGGGCGTGC





404
Bacillocin
Class IIa
ATYYGNGL

Paenibacillus

405
GCGACCTATT



602

YCNKQKHY

polymyxa


ATGGCAACGG





TWVDWNKA
(Bacillus

CCTGTATTGC





SREIGKITVN

polymyxa)


AACAAACAGA





GWVQH


AACATTATAC








CTGGGTGGAT








TGGAACAAAG








CGAGCCGCGA








AATTGGCAAA








ATTACCGTGA








ACGGCTGGGT








GCAGCAT





406
Bacillocin
Class IIa
VNYGNGVS

Bacillus

407
GTGAACTATG



1580

CSKTKCSVN

circulans


GCAACGGCGT





WGIITHQAF


GAGCTGCAGC





RVTSGVASG


AAAACCAAAT








GCAGCGTGAA








CTGGGGCATT








ATTACCCATC








AGGCGTTTCG








CGTGACCAGC








GGCGTGGCGA








GCGGC





408
Bacillocin
Unclassified
FVYGNGVTS

Paenibacillus

409
TTTGTGTATG



B37

ILVQAQFLV

polymyxa


GCAACGGCGT





NGQRRFFYT
(Bacillus

GACCAGCATT





PDK

polymyxa)


CTGGTGCAGG








CGCAGTTTCT








GGTGAACGGC








CAGCGCCGCT








TTTTTTATACC








CCGGATAAA





410
Rhamnosin A
Unclassified
AVPAVRKTN

Lactobacillus

411
GCGGTGCCGG





ETLD

rhamnosus


CGGTGCGCAA








AACCAACGAA








ACCCTGGAT





412
Lichenicidin
Lantibiotic
MKNSAARE

Bacillus

413
ATGAAAAACA



A2
(two-
AFKGANHPA

licheniformis


GCGCGGCGCG




peptide)
GMVSEEELK
(strain DSM

CGAAGCGTTT





ALVGGNDV
13/ATCC

AAAGGCGCGA





NPETTPATTS
14580)

ACCATCCGGC





SWTCITAGV


GGGCATGGTG





TVSASLCPTT


AGCGAAGAAG





KCTSRC


AACTGAAAGC








GCTGGTGGGC








GGCAACGATG








TGAACCCGGA








AACCACCCCG








GCGACCACCA








GCAGCTGGAC








CTGCATTACC








GCGGGCGTGA








CCGTGAGCGC








GAGCCTGTGC








CCGACCACCA








AATGCACCAG








CCGCTGC





414
Plantaricin
Class IIa
KYYGNGLSC

Lactobacillus

415
AAATATTATG



C19

SKKGCTVN

plantarum


GCAACGGCCT





WGQAFSCG


GAGCTGCAGC





VNRVATAG


AAAAAAGGCT





HGK


GCACCGTGAA








CTGGGGCCAG








GCGTTTAGCT








GCGGCGTGAA








CCGCGTGGCG








ACCGCGGGCC








ATGGCAAA





416
Acidocin
Class IIb
GNPKVAHCA

Lactobacillus

417
GGCAACCCGA



J1132 β

SQIGRSTAW

acidophilus


AAGTGGCGCA





GAVSGA


TTGCGCGAGC








CAGATTGGCC








GCAGCACCGC








GTGGGGCGCG








GTGAGCGGCG








CG





418
factor
Unclassified
WLPPAGLLG

Enterococcus

419
TGGCTGCCGC



with anti-

RCGRWFRP

faecalis


CGGCGGGCCT



Candida

WLLWLQSG


GCTGGGCCGC



activity

AQYKWLGN


TGCGGCCGCT





LFGLGPK


GGTTTCGCCC








GTGGCTGCTG








TGGCTGCAGA








GCGGCGCGCA








GTATAAATGG








CTGGGCAACC








TGTTTGGCCT








GGGCCCGAAA





420
Ava_1098
Unclassified
NLDQWLTE

Anabaena

421
TAATTTAGATC



(putative

QVHEFQDM

variabilis


AGTGGTTAAC



heterocyst

YLEPQAISN
ATCC 29413

AGAACAAGTT



differentiation

QDITFKLSDL


CATGAGTTTC



protein)

DFIHN


AAGATATGTA








CTTGGAACCA








CAAGCAATAT








CCAATCAAGA








CATTACCTTCA








AACTATCTGA








CCTAGATTTTA








TTCATAATTGA





422
alr2818
Unclassified
NLDQWLTE

Nostoc sp

423
AATTTAGATC



(putative

QVHEFQDM
7120

AATGGTTAAC



heterocyst

YLEPQAISN


AGAACAAGTT



differentiation

QDITFKLSDL


CATGAGTTTC



protein)

DFIHN


AAGATATGTA








CTTGGAACCA








CAAGCAATAT








CCAATCAAGA








CATTACCTTCA








AACTGTCAGA








CCTAGATTTTA








TTCATAATTGA





424
Aazo_0724
Unclassified
HREKKSA

Nostoc

425
CACAGAGAGA



(putative



azollae 0708


AAAAATCAGC



heterocyst




ATAG



differentiation



protein)





426
AM1_4010
Unclassified
TSNNWLAK

Acaryochloris

427
ACAAGCAATA



(putative

NYLSMWNK

marina


ACTGGCTAGC



heterocyst

KSSNPNL
MBIC11017

CAAAAACTAT



differentiation




CTTTCTATGTG



protein)




GAATAAAAAG








AGCAGTAATC








CAAACCTTTAG





428
PCC8801_3266
Unclassified
FRYFWW

Cyanothece

429
TTTAGATATTT



(putative


PCC 8801

TTGGTGGTAA



heterocyst



differentiation



protein)





430
Cyan8802_2855
Unclassified
FRYFWW

Cyanothece

431
TTTAGATATTT



(putative


PCC 8802

TTGGTGGTAA



heterocyst



differentiation



protein)





432
PCC7424_3517
Unclassified
CGEKWRIFS

Cyanothece

433
TGTGGAGAAA






PCC 7424

AATGGAGAAT








TTTTAGC





434
cce_2677
Unclassified
FRLQLWQF

Cyanothece

435
TTTCGCTTACA



(putative


ATCC 51142

ACTGTGGCAA



HetP




TTT



protein)





436
CY0110_11572
Unclassified
LGCNQSSIW

Cyanothece

437
CTAGGATGTA



(putative

SIFFWNH
CCY0110

ACCAGAGCAG



heterocyst




TATCTGGTCA



differentiation




ATTTTTTTCTG



protein)




GAATCATTAA





438
MC7420_4637
Unclassified
YNLQGLPAI

Microcoleus

439
TATAACCTAC





ESEDCIPDSV

chthonoplastes


AGGGGTTGCC





APSDDWFSG
PCC 7420

AGCAATTGAG





VSSLFNRLT


TCAGAAGACT





GLG


GTATCCCAGA








TTCTGTAGCG








CCTTCGGATG








ATTGGTTTTCA








GGCGTATCGT








CTCTGTTTAAC








CGCTTGACTG








GGTTGGGTTAG





440
asr1611
Unclassified
WMAIRRILR

Nostoc sp

441
TGGATGGCGA



(putative

CHPFHPGGY
7120

TTCGCCGCATT



DUF37

DPVPELGEH


TTGCGTTGTCA



family

CCHHDSGNKG


TCCATTCCACC



protein)




CAGGGGGTTA








TGATCCTGTA








CCAGAGTTGG








GTGAGCATTG








TTGTCATCATG








ATAGCGGGAA








TAAGGGGTGA





442
Ava_4222
Unclassified
WMGIRRILR

Anabaena

443
TGGATGGGGA



(putative

CHPFHPGGY

variabilis


TTCGCCGCATT



DUF37

DPVPEVGEH
ATCC 29413

TTGCGTTGTCA



family

CCHHDSGK


TCCATTCCACC



protein)




CAGGCGGTTA








TGATCCTGTA








CCAGAGGTGG








GTGAGCATTG








TTGTCATCATG








ATAGCGGGAA








GTAG





444
N9414_07129
Unclassified
WMATRRILR

Nodularia

445
TGGATGGCGA



(putative

CHPFHPGGY

spumigena


CTCGGCGGAT



DUF37

DPVPEVKHN
CCY9414

TTTGCGTTGTC



family

CCDQHLSDS


ATCCCTTCCAT



protein)

GKQTTEDHH


CCTGGTGGAT





KGS


ATGATCCAGT








TCCAGAGGTA








AAACACAATT








GCTGCGATCA








GCATCTGTCC








GATTCTGGGA








AACAGACCAC








AGAAGACCAT








CACAAAGGCT








CGTAG





446
Aazo_0083
Unclassified
WMATLRILC

Nostoc

447
TGGATGGCAA



(putative

HPFHPGGYD

azollae 0708


CTTTGCGGATT



DUF37

PVPGLAEKS


TTACGCTGTC



family

CCDHHD


ATCCTTTCCAT



protein)




CCTGGTGGTT








ATGATCCTGT








ACCAGGACTA








GCGGAAAAAT








CCTGTTGTGA








CCATCATGATT








GA





448
S7335_3409
Unclassified
WLTAKRFCR

Synechococcus

449
TGGCTAACAG



(putative

CHPLHPGGY
PCC 7335

CCAAGCGCTT



DUF37

DPVPEKKSVL


TTGTCGCTGTC



family




ATCCGCTTCAT



protein)




CCTGGCGGGT








ATGATCCGGT








ACCGGAGAAG








AAATCGGTAC








TCTAA





450
P9303_21151
Unclassified
WLTLRRLSR

Prochlorococcus

451
TGGCTCACCC



(putative

CHPFTPCGC

marinus


TGCGGCGCCT



DUF37

DPVPD
MIT 9303

GTCTCGTTGCC



family




ATCCTTTTACC



protein)




CCCTGTGGTT








GCGACCCGGT








GCCTGATTAA









As used herein “bacteriocin polynucleotide” refers to a polynucleotide encoding a bacteriocin. In some embodiments, the host cell comprises at least one bacteriocin.


Bacteriocin Immunity Modulators


Exemplary bacteriocin immunity modulators are shown in Table 2. While the immunity modulators in Table 2 are naturally-occurring, the skilled artisan will appreciate that variants of the immunity modulators of Table 2, naturally-occurring immunity modulators other than the immunity modulators of Table 2, or synthetic immunity modulators can be used according to some embodiments herein.


In some embodiments, a particular immunity modulator or particular combination of immunity modulators confers immunity to a particular bacteriocin, particular class or category of bacteriocins, or particular combination of bacteriocins. Exemplary bacteriocins to which immunity modulators can confer immunity are identified in Table 2. While Table 2 identifies an “organism of origin” for exemplary immunity modulators, these immunity modulators can readily be expressed in other naturally-occurring, genetically modified, or synthetic microorganisms to provide a desired bacteriocin immunity activity in accordance with some embodiments herein. As such, as used herein “immunity modulator” refers not only to structures expressly provided herein, but also to structure that have substantially the same effect as the “immunity modulator” structures described herein, including fully synthetic immunity modulators, and immunity modulators that provide immunity to bacteriocins that are functionally equivalent to the bacteriocins disclosed herein.


Exemplary polynucleotide sequences encoding the polypeptides of Table 2 are indicated in Table 2. The skilled artisan will readily understand that the genetic code is degenerate, and moreover, codon usage can vary based on the particular organism in which the gene product is being expressed, and as such, a particular polypeptide can be encoded by more than one polynucleotide. In some embodiments, a polynucleotide encoding a bacteriocin immunity modulator is selected based on the codon usage of the organism expressing the bacteriocin immunity modulator. In some embodiments, a polynucleotide encoding a bacteriocin immunity modulator is codon optimized based on the particular organism expressing the bacteriocin immunity modulator. A vast range of functional immunity modulators can incorporate features of immunity modulators disclosed herein, thus providing for a vast degree of identity to the immunity modulators in Table 2. In some embodiments, an immunity modulator has at least about 50% identity, for example, at least about 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 61%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identity to any one of the polypeptides of Table 2.









TABLE 2







Exemplary bacteriocin immunity modulators












Poly-



Poly-



peptide



nucleotide


SEQ

Polypeptide
Organism
SEQ


ID NO:
Name
Sequence
of origin
ID NO:
Polynucleotide Sequence





452
Microcin
MSYKKLY

Escherichia

453
ATGAGTTATAAAAAAC



H47
QLTAIFSLP

coli


TGTACCAATTGACGGCT



immunity
LTILLVSLS


ATATTTAGTTTACCTCT



modulator
SLRIVGEG


TACTATCTTATTGGTTT



MchI
NSYVDVFL


CACTTTCATCCCTTCGG




SFIIFLGFIE


ATTGTTGGCGAAGGGA




LIHGIRKIL


ATTCTTATGTTGACGTT




VWSGWKN


TTTCTAAGCTTTATAAT




GS


ATTTCTTGGTTTTATTG







AGCTGATTCATGGGATT







CGAAAGATTTTGGTCTG







GTCAGGCTGGAAAAAC







GGAAGTTAA





454
Colicin-E3
MGLKLDLT

Escherichia

455
ATGGGACTTAAATTGG



immunity
WFDKSTED

coli


ATTTAACTTGGTTTGAT



modulator
FKGEEYSK


AAAAGTACAGAAGATT



(Colicin-E3
DFGDDGSV


TTAAGGGTGAGGAGTA



chain B)
MESLGVPF


TTCAAAAGATTTTGGAG



(ImmE3)
KDNVNNG


ATGACGGTTCAGTTATG



(Microcin-
CFDVIAEW


GAAAGTCTAGGTGTGC



E3
VPLLQPYF


CTTTTAAGGATAATGTT



immunity
NHQIDISD


AATAACGGTTGCTTTGA



modulator)
NEYFVSFD


TGTTATAGCTGAATGG




YRDGDW


GTACCTTTGCTACAACC







ATACTTTAATCATCAAA







TTGATATTTCCGATAAT







GAGTATTTTGTTTCGTT







TGATTATCGTGATGGTG







ATTGGTGA





456
Colicin-E1
MSLRYYIK

Escherichia

457
ATGAGCTTAAGATACTA



immunity
NILFGLYC

coli


CATAAAAAATATTTTAT



modulator
TLIYIYLIT


TTGGCCTGTACTGCACA



(ImmE1)
KNSEGYYF


CTTATATATATATACCT



(Microcin-
LVSDKML


TATAACAAAAAACAGC



E1
YAIVISTIL


GAAGGGTATTATTTCCT



immunity
CPYSKYAI


TGTGTCAGATAAGATG



modulator)
EYIAFNFIK


CTATATGCAATAGTGAT




KDFFERRK


AAGCACTATTCTATGTC




NLNNAPVA


CATATTCAAAATATGCT




KLNLFMLY


ATTGAATACATAGCTTT




NLLCLVLA


TAACTTCATAAAGAAA




IPFGLLGLF


GATTTTTTCGAAAGAAG




ISIKNN


AAAAAACCTAAATAAC







GCCCCCGTAGCAAAATT







AAACCTATTTATGCTAT







ATAATCTACTTTGTTTG







GTCCTAGCAATCCCATT







TGGATTGCTAGGACTTT







TTATATCAATAAAGAAT







AATTAA





458
Cloacin
MGLKLHIH

Escherichia

459
ATGGGGCTTAAATTAC



immunity
WFDKKTEE

coli


ATATTCATTGGTTTGAT



modulator
FKGGEYSK


AAGAAAACCGAAGAGT




DFGDDGSV


TTAAAGGCGGTGAATA




IESLGMPL


CTCAAAAGACTTCGGT




KDNINNG


GATGATGGTTCTGTCAT




WFDVEKP


TGAAAGTCTGGGGATG




WVSILQPH


CCTTTAAAGGATAATAT




FKNVIDISK


TAATAATGGTTGGTTTG




FDYFVSFV


ATGTTGAAAAACCATG




YRDGNW


GGTTTCGATATTACAGC







CACACTTTAAAAATGTA







ATCGATATTAGTAAATT







TGATTACTTTGTATCCT







TTGTTTACCGGGATGGT







AACTGGTAA





460
Colicin-E2
MELKHSIS

Escherichia

461
ATGGAACTGAAACATA



immunity
DYTEAEFL

coli


GTATTAGTGATTATACC



modulator
EFVKKICR


GAGGCTGAATTTCTGG



(ImmE2)
AEGATEED


AGTTTGTAAAAAAAAT



(Microcin-
DNKLVREF


ATGTAGAGCTGAAGGT



E2
ERLTEHPD


GCTACTGAAGAGGATG



immunity
GSDLIYYP


ACAATAAATTAGTGAG



modulator)
RDDREDSP


AGAGTTTGAGCGATTA




EGIVKEIKE


ACTGAGCACCCAGATG




WRAANGK


GTTCAGATCTGATTTAT




SGFKQG


TATCCTCGCGATGACAG







GGAAGATAGTCCTGAA







GGGATTGTCAAGGAAA







TTAAAGAATGGCGAGC







TGCTAACGGTAAGTCA







GGATTTAAACAGGGCT







GA





462
Colicin-A
MMNEHSID

Citrobacter

463
ATGATGAATGAACACT



immunity
TDNRKAN

freundii


CAATAGATACGGACAA



modulator
NALYLFIII


CAGAAAGGCCAATAAC



(Microcin-
GLIPLLCIF


GCATTGTATTTATTTAT



A immunity
VVYYKTPD


AATAATCGGATTAATAC



modulator)
ALLLRKIA


CATTATTGTGCATTTTT




TSTENLPSI


GTTGTTTACTACAAAAC




TSSYNPLM


GCCAGACGCTTTACTTT




TKVMDIYC


TACGTAAAATTGCTACA




KTAPFLALI


AGCACTGAGAATCTCCC




LYILTFKIR


GTCAATAACATCCTCCT




KLINNTDR


ACAACCCATTAATGACA




NTVLRSCL


AAGGTTATGGATATTTA




LSPLVYAA


TTGTAAAACAGCGCCTT




IVYLFCFR


TCCTTGCCTTAATACTA




NFELTTAG


TACATCCTAACCTTTAA




RPVRLMAT


AATCAGAAAATTAATC




NDATLLLF


AACAACACCGACAGGA




YIGLYSIIFF


ACACTGTACTTAGATCT




TTYITLFTP


TGTTTATTAAGTCCATT




VTAFKLLK


GGTCTATGCAGCAATTG




KRQ


TTTATCTATTCTGCTTC







CGAAATTTTGAGTTAAC







AACAGCCGGAAGGCCT







GTCAGATTAATGGCCA







CCAATGACGCAACACT







ATTGTTATTTTATATTG







GTCTGTACTCAATAATT







TTCTTTACAACCTATAT







CACGCTATTCACACCAG







TCACTGCATTTAAATTA







TTAAAAAAAAGGCAGT







AA





464
Colicin-Ia
MNRKYYF

Escherichia

465
ATGAACAGAAAATATT



immunity
NNMWWG

coli


ATTTTAATAATATGTGG



modulator
WVTGGYM


TGGGGATGGGTGACGG




LYMSWDY


GGGGATATATGCTGTA




EFKYRLLF


TATGTCATGGGATTATG




WCISLCGM


AGTTTAAATACAGATTA




VLYPVAK


CTGTTCTGGTGTATTTC




WYIEDTAL


TCTCTGCGGAATGGTTT




KFTRPDFW


TGTATCCGGTTGCAAAA




NSGFFADT


TGGTATATTGAAGATAC




PGKMGLLA


AGCTCTAAAATTTACCC




VYTGTVFI


GGCCTGATTTCTGGAAC




LSLPLSMIY


AGCGGTTTTTTTGCTGA




ILSVIIKRLS


TACACCTGGAAAAATG




VR


GGGTTGCTTGCGGTTTA







TACGGGTACTGTTTTCA







TATTATCTCTTCCGTTA







AGTATGATATATATTCT







TTCTGTTATTATAAAAA







GGCTGTCTGTAAGATAG





466
Colicin-Ib
MKLDISVK

Escherichia

467
ATGAAACTGGATATATC



immunity
YLLKSLIPI

coli


TGTAAAGTATTTACTGA



modulator
LIILTVFYL


AAAGCCTGATACCAAT




GWKDNQE


CCTCATTATTCTTACAG




NARMFYAF


TTTTTTATCTGGGATGG




IGCIISAITF


AAAGATAACCAGGAAA




PFSMRIIQK


ATGCAAGAATGTTTTAT




MVIRFTGK


GCGTTCATCGGATGCAT




EFWQKDFF


TATCAGTGCCATTACTT




TNPVGGSL


TTCCTTTTTCAATGAGG




TAIFELFCF


ATAATACAGAAAATGG




VISVPVVAI


TAATAAGGTTTACAGG




YLIFILCKA


GAAAGAATTCTGGCAA




LSGK


AAAGACTTCTTTACAAA







TCCAGTTGGCGGAAGC







TTAACTGCAATATTTGA







ATTATTCTGTTTCGTTA







TATCAGTTCCTGTGGTT







GCCATTTACTTAATTTT







TATACTCTGCAAAGCCC







TTTCAGGAAAATGA





468
Colicin-N
MHNTLLEK

Escherichia

469
ATGCACAATACACTCCT



immunity
IIAYLSLPG

coli


CGAAAAAATCATCGCA



modulator
FHSLNNPP


TACCTATCCCTACCAGG



(Microcin-
LSEAFNLY


ATTTCATTCATTAAACA



N immunity
VHTAPLAA


ACCCGCCCCTAAGCGA



modulator)
TSLFIFTHK


AGCATTCAATCTCTATG




ELELKPKS


TTCATACAGCCCCTTTA




SPLRALKIL


GCTGCAACCAGCTTATT




TPFTILYIS


CATATTCACACACAAAG




MIYCFLLT


AATTAGAGTTAAAACC




DTELTLSS


AAAGTCGTCACCTCTGC




KTFVLIVK


GGGCACTAAAGATATT




KRSVFVFF


AACTCCTTTCACTATTC




LYNTIYWD


TTTATATATCCATGATA




IYIHIFVLL


TACTGTTTCTTGCTAAC




VPYRNI


TGACACAGAACTAACC







TTGTCATCAAAAACATT







TGTATTAATAGTCAAAA







AACGATCTGTTTTTGTC







TTTTTTCTATATAACAC







TATATATTGGGATATAT







ATATTCACATATTTGTA







CTTTTGGTTCCTTATAG







GAACATATAA





470
Colicin-E8
MELKNSIS

Escherichia

471
ATGGAACTGAAAAACA



immunity
DYTETEFK

coli


GCATTAGTGATTACACT



modulator
KIIEDIINCE


GAAACTGAATTCAAAA



(ImmE8)
GDEKKQD


AAATTATTGAAGACATC



(Microcin-
DNLEHFIS


ATCAATTGTGAAGGTG



E8
VTEHPSGS


ATGAAAAAAAACAGGA



immunity
DLIYYPEG


TGATAACCTCGAGCATT



modulator)
NNDGSPEA


TTATAAGTGTTACTGAG




VIKEIKEW


CATCCTAGTGGTTCTGA




RAANGKSG


TCTGATTTATTACCCAG




FKQG


AAGGTAATAATGATGG







TAGCCCTGAAGCTGTTA







TTAAAGAGATTAAAGA







ATGGCGAGCTGCTAAC







GGTAAGTCAGGATTTA







AACAGGGCTGA





472
Lactococcin-A
MKKKQIEF

Lactococcus

473
ATGAAAAAAAAACAAA



immunity
ENELRSML

lactis


TAGAATTTGAAAACGA



modulator
ATALEKDI
subsp.

GCTAAGAAGTATGTTG




SQEERNAL

lactis


GCTACCGCCCTTGAAAA




NIAEKALD
(Streptococcus

AGACATTAGTCAAGAG




NSEYLPKII

lactis)


GAAAGAAATGCTCTGA




LNLRKALT


ATATTGCAGAAAAGGC




PLAINRTL


GCTTGACAATTCTGAAT




NHDLSELY


ATTTACCAAAAATTATT




KFITSSKAS


TTAAACCTCAGAAAAG




NKNLGGG


CCCTAACTCCATTAGCT




LIMSWGRLF


ATAAATCGAACACTTAA







CCATGATTTATCTGAAC







TGTATAAATTCATTACA







AGTTCCAAAGCATCAA







ACAAAAATTTAGGTGG







TGGTTTAATTATGTCGT







GGGGACGACTATTCTAA





474
Lactococcin-A
MKKKQIEF

Lactococcus

475
ATGAAAAAAAAACAAA



immunity
ENELRSML

lactis


TAGAATTTGAAAACGA



modulator
ATALEKDI
subsp.

GCTAAGAAGTATGTTG




SQEERNAL

cremoris


GCTACCGCCCTTGAAAA




NIAEKALD
(Streptococcus

AGACATTAGTCAAGAG




NSEYLPKII

cremoris)


GAAAGAAATGCTCTGA




LNLRKALT


ATATTGCAGAAAAGGC




PLAINRTL


GCTTGACAATTCTGAAT




NHDLSELY


ATTTACCAAAAATTATT




KFITSSKAS


TTAAACCTCAGAAAAG




NKNLGGG


CCCTAACTCCATTAGCT




LIMSWGRLF


ATAAATCGAACACTTAA







CCATGATTTATCTGAAC







TGTATAAATTCATTACA







AGTTCCAAAGCATCAA







ACAAAAATTTAGGTGG







TGGTTTAATTATGTCGT







GGGGACGACTATTCTAA





476
Colicin-D
MNKMAMI

Escherichia

477
ATGATCGATTTGGCGA



immunity
DLAKLFLA

coli


AATTATTTTTAGCTTCG



modulator
SKITAIEFS


AAAATTACAGTGATTG



(Microcin-
ERICVERR


AGTTTTCAGAGCGAATT



D immunity
RLYGVKDL


TGTGTTGAACGGAGAA



modulator)
SPNILNCG


GATTGTATGGTGTTAAG




EELFMAAE


GATTTGTCTCCGAATAT




RFEPDADR


ATTAAATTGTGGGGAA




ANYEIDDN


GAGTTGTCTATGGCTGC




GLKVEVRS


TGAGCGATTTGAGCCT




ILEKFKL


GATGCAGATAGGGCTA







ATTATGAAATTGATGAT







AATGGACTTAAGGTCG







AGGTCCGATCTATCTTG







GAAAAACTTAAATCAT







AA





478
Colicin-E5
MKLSPKAA

Escherichia

479
ATGAAGTTATCACCAA



immunity
IEVCNEAA

coli


AAGCTGCAATAGAAGT



modulator
KKGLWILG


TTGTAATGAAGCAGCG



(ImmE5)
IDGGHWLN


AAAAAAGGCTTATGGA



(Microcin-
PGFRIDSSA


TTTTGGGCATTGATGGT



E5
SWTYDMP


GGGCATTGGCTGAATC



immunity
EEYKSKIPE


CTGGATTCAGGATAGA



modulator)
NNRLAIENI


TAGTTCAGCATCATGGA




KDDIENGY


CATATGATATGCCGGA




TAFIITLKM


GAATACAAATCAAAAA







TCCCTGAAAATAATAG







ATTGGCTATTGAAAATA







TTAAAGATGATATTGA







GAATGGATACACTGCTT







TCATTATCACGTTAA





480
Colicin-E6
MGLKLHIN

Escherichia

481
ATGGGGCTTAAATTAC



immunity
WFDKRTEE

coli


ATATTAATTGGTTTGAT



modulator
FKGGEYSK


AAGACGACCGAGGAAT



(ImmE6)
DFGDDGSV


TTAAAGGTGGTGAGTA



(Microcin-
IERLGMPF


TTCAAAAGATTTTGGAG



E6
KDNINNG


ATGATGGCTCGGTCATT



immunity
WFDVIAEW


GAACGTCTTGGAATGC



modulator)
VPLLQPYF


CTTTAAAAGATAATATC




NHQIDISD


AATAATGGTTGGTTTGA




NEYFVSFD


TGTTATAGCTGAATGG




YRDGDW


GTACCTTTGCTACAACC







ATACTTTAATCATCAAA







TTGATATTTCCGATAAT







GAGTATTTTGTTTCGTT







TGATTATCGTGATGGTG







ATTGGTGA





482
Colicin-E8
MELKKSIG

Escherichia

483
GTGGAGCTAAAGAAAA



immunity
DYTETEFK

coli


GTATTGGTGATTACACT



modulator
KIIENIINCE


GAAACCGAATTCAAAA



in ColE6
GDEKKQD


AAATTATTGAAAACATC



(E8Imm[E6])
DNLEHFIS


ATCAATTGTGAAGGTG




VTEHPSGS


ATGAAAAAAAACAGGA




DLIYYPEG


TGATAACCTCGAGCATT




NNDGSPEA


TTATAAGTGTTACTGAG




VIKEIKEW


CATCCTAGTGGTTCTGA




RAANGKSG


TCTGATTTATTACCCAG




FKQG


AAGGTAATAATGATGG







TAGCCCTGAAGCTGTTA







TTAAAGAGATTAAAGA







ATGGCGAGCTGCTAAC







GGTAAGTCAGGATTTA







AACAGGGCTGA





484
Colicin-E9
MELKHSIS

Escherichia

485
ATGGAACTGAAGCATA



immunity
DYTEAEFL

coli


GCATTAGTGATTATACA



modulator
QLVTTICN


GAAGCTGAATTTTTACA



(ImmE9)
ADTSSEEE


ACTTGTAACAACAATTT



(Microcin-
LVKLVTHF


GTAATGCGAACACTTCC



E9
EEMTEHPS


AGTGAAGAAGAACTGG



immunity
GSDLIYYP


TTAAATTGGTTACACAC



modulator)
KEGDDDSP


TTTGAGGAAATGACTG




SGIVNTVK


AGCACCCTAGTGGTAG




QWRAANG


TGATTTAATATATTACC




KSGFKQG


CAAAAGAAGGTGATGA







TGACTCACCTTCAGGTA







TTGTAAACACAGTAAA







ACAATGGCGAGCCGCT







AACGGTAAGTCAGGAT







TTAAACAGGGCTAA





486
Colicin-M
MLTLYGYI

Escherichia

487
ATGAAAGTAATTAGCA



immunity
RNVFLYR

coli


TGAAATTTATTTTTATT



modulator
MNDRSCG


TTAACGATTATTGCTCT



(Microcin-M
DFMKVISM


TGCTGCTGTTTTTTTCT



immunity
KFIFILTIIA


GGTCTGAAGATAAAGG



modulator)
LAAVFFWS


TCCGGCATGCTATCAGG




EDKGPACY


TCAGCGATGAACAGGC




QVSDEQAR


CAGAACGTTTGTAAAA




TFVKNDYL


AATGATTACCTGCAAA




QRMKRWD


GAATGAAACGCTGGGA




NDVQLLGT


CAACGATGTACAACTTC




EIPKITWEK


TTGGTACAGAAATCCC




IERSLTDVE


GAAAATTACATGGGAA




DEKTLLVP


AAGATTGAGAGAAGTT




FKAEGPDG


TAACAGATGTTGAAGA




KRMYYGM


TGAAAAAACACTTCTTG




YHCEEGY


TCCCATTTAAAGCTGAA




VEYAND


GGCCCGGACGGTAAGA







GAATGTATTATGGCATG







TACCATTGTGAGGAGG







GATATGTTGAATATGCG







AATGACTAA





488
Colicin-B
MTSNKDK

Escherichia

489
ATGACCAGCAATAAAG



immunity
NKKANEIL

coli


ATAAGAACAAGAAAGC



modulator
YAFSIIGIIP


AAACGAAATATTATAT



(Microcin-
LMAILILRI


GCATTTTCCATAATCGG



B immunity
NDPYSQVL


GATTATTCCATTAATGG



modulator)
YYLYNKV


CTATATTAATACTTCGA




AFLPSITSL


ATAAATGATCCATATTC




HDPVMTTL


TCAAGTGCTGTACTACT




MSNYNKT


TATATAATAAGGTGGC




APVMGILV


ATTTCTCCCTTCTATTA




FLCTYKTR


CATCATTGCATGATCCC




EIIKPVTRK


GTCATGACAACACTTAT




LVVQSCFW


GTCAAACTACAACAAG




GPVFYAILI


ACAGCGCCAGTTATGG




YITLFYNLE


GTATTCTCGTTTTTCTT




LTTAGGFF


TGCACATATAAGACAA




KLLSHNVI


GAGAAATCATAAAGCC




TLFILYCSI


AGTAACAAGAAAACTT




YFTVLTMT


GTTGTGCAATCCTGTTT




YAILLMPL


CTGGGGGCCCGTTTTTT




LVIKYFKG


ATGCCATTCTGATTTAT




RQ


ATCACACTGTTCTATAA







TCTGGAACTAACAACA







GCAGGTGGTTTTTTTAA







ATTATTATCTCATAATG







TCATCACTCTGTTTATT







TTATATTGCTCCATTTA







CTTTACTGTTTTAACCA







TGACATATGCGATTTTA







CTGATGCCATTACTTGT







CATTAAATATTTTAAAG







GGAGGCAGTAA





490
Colicin-V
MDRKRTK

Escherichia

491
ATGGATAGAAAAAGAA



immunity
LELLFAFII

coli


CAAAATTAGAGTTGTTA



modulator
NATAIYIAL


TTTGCATTTATAATAAA



(Microcin-
AIYDCVFR


TGCCACCGCAATATATA



V immunity
GKDFLSMH


TTGCATTAGCTATATAT



modulator)
TFCFSALM


GATTGTGTTTTTAGAGG




SAICYFVG


AAAGGACTTTTTATCCA




DNYYSISD


TGCATACATTTTGCTTC




KIKRRSYE


TCTGCATTAATGTCTGC




NSDSK


AATATGTTACTTTGTTG







GTGATAATTATTATTCA







ATATCCGATAAGATAA







AAAGGAGATCATATGA







GAACTCTGACTCTAAAT







GA





492
Colicin-
MSLRYYIK

Shigella

493
ATGAGTTTAAGATACTA



E1*
NILFGLYC

sonnei


CATAAAAAATATTTTGT



immunity
ALIYIYLIT


TTGGCCTATACTGCGCA



modulator
KNNEGYYF


CTTATATATATATACCT



(ImmE1)
LASDKMLY


TATAACAAAAAACAAC



(Microcin-
AIVISTILCP


GAAGGGTATTATTTCCT



E1*
YSKYAIEHI


AGCGTCAGATAAGATG



immunity
FFKFIKKDF


CTATACGCAATAGTGAT



modulator)
FRKRKNLN


AAGCACTATTCTATGCC




KCPRGKIK


CATATTCAAAATATGCT




PYLCVYNL


ATTGAACACATATTTTT




LCLVLAIPF


TAAGTTCATAAAGAAA




GLLGLVYI


GATTTTTTCAGAAAAAG




NKE


AAAAAACCTAAATAAA







TGCCCCCGTGGCAAAA







TTAAACCGTATTTATGC







GTATACAATCTACTTTG







TTTGGTCCTAGCAATCC







CATTTGGATTGCTAGGA







CTTGTTTATATCAATAA







AGAATAA





494
Colicin-E1
MSLRYYIK

Escherichia

495
ATGAGCTTAAGATACTA



immunity
NILFGLYC

coli


CATAAAAAATATTTTAT



modulator
TLIYIYLIT


TTGGCCTGTACTGCACA



(ImmE1)
KNSEEYYF


CTTATATATATATACCT



(Microcin-
LVTDKML


TATAACAAAAAACAGC



E1
YAIVISTIL


GAAGAGTATTATTTCCT



immunity
CPYSKYAI


TGTGACAGATAAGATG



modulator)
EHIAFNFIK


CTATATGCAATAGTGAT




KHFFERRK


AAGCACTATTCTATGTC




NLNNAPVA


CATATTCAAAATATGCT




KLNLFMLY


ATTGAACACATAGCTTT




NLLCLVLA


TAACTTCATAAAGAAAC




IPFGLLGLF


ATTTTTTCGAAAGAAGA




ISIKNN


AAAAACCTAAATAACG







CCCCCGTAGCAAAATTA







AACCTATTTATGCTATA







TAATCTACTTTGTTTGG







TCCTAGCAATCCCATTT







GGATTGCTAGGACTTTT







TATATCAATAAAGAATA







ATTAA





496
Probable
MRKNNILL

Leuconostoc

497
TTGAGAAAAAATAACA



leucocin-A
DDAKIYTN

gelidum


TTTTATTGGACGATGCT



immunity
KLYLLLID


AAAATATACACGAACA



modulator
RKDDAGY


AACTCTATTTGCTATTA




GDICDVLF


ATCGATAGAAAAGATG




QVSKKLDS


ACGCTGGGTATGGAGA




TKNVEALI


TATTTGTGATGTTTTGT




NRLVNYIRI


TTCAGGTATCCAAAAA




TASTNRIKF


ATTAGATAGCACAAAA




SKDEEAVII


AATGTAGAAGCATTGA




ELGVIGQK


TTAACCGATTGGTCAAT




AGLNGQY


TATATACGAATTACCGC




MADFSDKS


TTCAACAAACAGAATTA




QFYSIFER


AGTTTTCAAAAGATGA







AGAGGCTGTAATTATA







GAACTTGGTGTAATTG







GTCAGAAGGCTGGATT







AAACGGCCAATACATG







GCTGATTTTTCTGACAA







ATCTCAGTTTTATAGTA







TCTTTGAAAGATAA





498
Lactococcin-B
MKKKVDT

Lactococcus

499
ATGAAAAAAAAAGTTG



immunity
EKQITSWA

lactis


ATACAGAAAAACAAAT



modulator
SDLASKNE
subsp.

TACTTCTTGGGCATCTG




TKVQEKLI

cremoris


ACTTAGCTTCCAAAAAT




LSSYIQDIE
(Streptococcus

GAAACAAAGGTTCAAG




NHVYFPKA

cremoris)


AAAAATTAATACTGTCT




MISLEKKL


TCTTATATTCAGGACAT




RDQNNICA


CGAAAACCATGTTTACT




LSKEVNQF


TTCCAAAAGCAATGATT




YFKVVEVN


TCTTTAGAAAAAAAATT




QRKSWMV


ACGAGACCAAAATAAT




GLIV


ATTTGCGCTTTATCAAA







AGAAGTCAATCAGTTTT







ATTTTAAAGTTGTTGAA







GTAAATCAAAGAAAAT







CCTGGATGGTAGGTTTG







ATAGTTTAA





500
Pediocin
MNKTKSE

Pediococcus

501
ATGAATAAGACTAAGT



PA-1
HIKQQALD

acidilactici


CGGAACATATTAAACA



immunity
LFTRLQFLL


ACAAGCTTTGGACTTAT



modulator
QKHDTIEP


TTACTAGGCTACAGTTT



(Pediocin
YQYVLDIL


TTACTACAGAAGCACG



ACH
ETGISKTK


ATACTATCGAACCTTAC



immunity
HNQQTPER


CAGTACGTTTTAGATAT



modulator)
QARVVYN


TCTGGAGACTGGTATCA




KIASQALV


GTAAAACTAAACATAA




DKLHFTAE


CCAGCAAACGCCTGAA




ENKVLAAI


CGACAAGCTCGTGTAG




NELAHSQK


TCTACAACAAGATTGCC




GWGEFNM


AGCCAAGCGTTAGTAG




LDTTNTWP


ATAAGTTACATTTTACT




SQ


GCCGAAGAAAACAAAG







TTCTAGCAGCCATCAAT







GAATTGGCGCATTCTCA







AAAAGGGTGGGGCGAG







TTTAACATGCTAGATAC







TACCAATACGTGGCCTA







GCCAATAG





502
Putative
MIKDEKIN

Carnobacterium

503
ATGATAAAAGATGAAA



carnobacteriocin-
KIYALVKS

maltaromaticum


AAATAAATAAAATCTAT



BM1
ALDNTDV
(Carnobacterium

GCTTTAGTTAAGAGCGC



immunity
KNDKKLSL

piscicola)


ACTTGATAATACGGAT



modulator
LLMRIQET


GTTAAGAATGATAAAA




SINGELFY


AACTTTCTTTACTTCTT




DYKKELQP


ATGAGAATACAAGAAA




AISMYSIQ


CATCAATTAATGGAGA




HNFRVPDD


ACTATTTTACGATTATA




LVKLLALV


AAAAAGAATTACAGCC




QTPKAWS


AGCTATTAGTATGTACT




GF


CTATTCAACATAACTTT







CGGGTTCCTGACGATCT







AGTAAAACTGTTAGCAT







TAGTTCAAACACCTAAA







GCTTGGTCAGGGTTTTAA





504
Putative
MDIKSQTL

Carnobacterium

505
ATGGATATAAAGTCTCA



carnobacteriocin-
YLNLSEAY

maltaromaticum


AACATTATATTTGAATC



B2
KDPEVKAN
(Carnobacterium

TAAGCGAGGCATATAA



immunity
EFLSKLVV

piscicola)


AGACCCTGAAGTAAAA



modulator
QCAGKLTA


GCTAATGAATTCTTATC



(Carnocin-
SNSENSYIE


AAAATTAGTTGTACAAT



CP52
VISLLSRGI


GTGCTGGGAAATTAAC



immunity
SSYYLSHK


AGCTTCAAACAGTGAG



modulator)
RIIPSSMLTI


AACAGTTATATTGAAGT




YTQIQKDI


AATATCATTGCTATCTA




KNGNIDTE


GGGGTATTTCTAGTTAT




KLRKYEIA


TATTTATCCCATAAACG




KGLMSVPY


TATAATTCCTTCAAGTA




IYF


TGTTAACTATATATACT







CAAATACAAAAGGATA







TAAAAAACGGGAATAT







TGACACCGAAAAATTA







AGGAAATATGAGATAG







CAAAAGGATTAATGTC







CGTTCCTTATATATATT







TCTAA





506
Nisin
MRRYLILI

Lactococcus

507
ATGAGAAGATATTTAAT



immunity
VALIGITGL

lactis


ACTTATTGTGGCCTTAA



modulator
SGCYQTSH
subsp.

TAGGGATAACAGGTTT




KKVRFDEG

lactis


ATCAGGGTGTTATCAA




SYTNFIYD
(Streptococcus

ACAAGTCATAAAAAGG




NKSYFVTD

lactis)


TGAGGTTTGACGAAGG




KEIPQENV


AAGTTATACTAATTTTA




NNSKVKFY


TTTATGATAATAAATCG




KLLIVDMK


TATTTCGTAACTGATAA




SEKLLSSSN


GGAGATTCCTCAGGAG




KNSVTLVL


AACGTTAACAATTCCAA




NNIYEASD


AGTAAAATTTTATAAGC




KSLCMGIN


TGTTGATTGTTGACATG




DRYYKILP


AAAAGTGAGAAACTTT




ESDKGAVK


TATCAAGTAGCAACAA




ALRLQNFD


AAATAGTGTGACTTTGG




VTSDISDD


TCTTAAATAATATTTAT




NFVIDKND


GAGGCTTCTGACAAGT




SRKIDYMG


CGCTATGTATGGGTATT




NIYSISDTT


AACGACAGATACTATA




VSDEELGE


AGATACTTCCAGAAAG




YQDVLAE


TGATAAGGGGGCGGTC




VRVFDSVS


AAAGCTTTGAGATTACA




GKSIPRSE


AAACTTTGATGTGACAA




WGRIDKD


GCGATATTTCTGATGAT




GSNSKQSR


AATTTTGTTATTGATAA




TEWDYGEI


AAATGATTCACGAAAA




HSIRGKSLT


ATTGACTATATGGGAA




EAFAVEIN


ATATTTACAGTATATCG




DDFKLATK


GACACCACCGTATCTGA




VGN


TGAAGAATTGGGAGAA







TATCAGGATGTTTTAGC







TGAAGTACGTGTGTTTG







ATTCAGTTAGTGGCAA







AAGTATCCCGAGGTCT







GAATGGGGGAGAATTG







ATAAGGATGGTTCAAA







TTCCAAACAGAGTAGG







ACGGAATGGGATTATG







GCGAAATCCATTCTATT







AGAGGAAAATCTCTTA







CTGAAGCATTTGCCGTT







GAGATAAATGATGATT







TTAAGCTTGCAACGAA







GGTAGGAAACTAG





508
Trifolitoxin
MNDEICLT

Rhizobium

509
ATGAATGATGAGATTT



immunity
GGGRTTVT

leguminosarum


GCCTGACAGGTGGCGG



modulator
RRGGVVY
bv.

ACGAACGACTGTCACG




REGGPWSS
trifolii

CGGCGCGGCGGAGTCG




TVISLLRHL


TGTATCGCGAAGGCGG




EASGFAEA


CCCGTGGTCATCAACCG




PSVVGTGF


TCATTTCGCTCCTGCGG




DERGRETL


CATCTGGAAGCCTCTGG




SFIEGEFVH


CTTCGCTGAAGCTCCTT




PGPWSEEA


CCGTTGTCGGCACCGGT




FPQFGMML


TTCGATGAGCGCGGCC




RRLHDATA


GGGAGACATTATCGTTT




SFKPPENS


ATCGAGGGTGAGTTTG




MWRDWFG


TTCACCCAGGCCCTTGG




RNLGEGQH


TCGGAGGAGGCTTTTCC




VIGHCDTG


GCAATTTGGAATGATGT




PWNIVCRS


TGCGGCGACTGCACGA




GLPVGLID


TGCCACCGCCTCGTTCA




WEVAGPV


AACCTCCCGAAAACTC




RADIELAQ


GATGTGGCGCGATTGG




ACWLNAQ


TTCGGGCGTAACCTCG




LYDDDIAE


GTGAGGGTCAACACGT




RVGLGSVT


AATAGGACACTGCGAC




MRAHQVR


ACAGGCCCATGGAACA




LLLDGYGL


TTGTTTGCCGGTCAGGA




SRKQRGGF


TTGCCTGTCGGGTTGAT




VDKLITFA


AGATTGGGAGGTGGCT




VHDAAEQ


GGGCCTGTCAGGGCGG




AKEAAVTP


ATATCGAATTGGCCCA




ESNDAEPL


GGCTTGTTGGCTGAATG




WAIAWRT


CCCAGCTCTACGATGAC




RSASWML


GACATTGCGGAGAGGG




HHRQTLEA


TCGGATTAGGCTCTGTG




ALA


ACCATGAGAGCGCATC







AAGTTCGCCTGCTGCTT







GACGGCTATGGTCTGTC







TCGGAAGCAACGCGGC







GGCTTCGTCGACAAGCT







AATCACGTTCGCAGTTC







ACGATGCGGCCGAGCA







GGCGAAAGAGGCGGCT







GTCACGCCAGAGTCGA







ACGATGCGGAACCGCT







ATGGGCAATTGCCTGG







CGCACTAGAAGTGCCT







CCTGGATGCTCCATCAT







CGGCAAACACTGGAAG







CAGCGCTGGCATAG





510
Antilisterial
MNNIIPIMS

Bacillus

511
ATGAATAACATAATCCC



bacteriocin
LLFKQLYS

subtilis


TATCATGTCTTTGCTGT



subtilosin
RQGKKDAI
(strain 168)

TCAAACAGCTTTACAGC



biosynthesis
RIAAGLVIL


CGGCAAGGGAAAAAGG



protein
AVFEIGLIR


ACGCCATCCGCATTGCC



AlbD
QAGIDESV


GCAGGCCTTGTCATTCT




LRKTYIILA


GGCCGTGTTTGAAATC




LLLMNTY


GGGCTGATCCGCCAGG




MVFLSVTS


CCGGCATTGATGAATC




QWKESYM


GGTGTTGCGCAAAACG




KLSCLLPIS


TATATCATACTCGCGCT




SRSFWLAQ


TCTTTTGATGAACACAT




SVVLFVDT


ATATGGTGTTTCTTTCC




CLRRTLFFF


GTGACATCACAATGGA




ILPLFLFGN


AGGAATCTTATATGAA




GTLSGAQT


GCTGAGCTGCCTGCTGC




LFWLGRFS


CGATTTCTTCACGGAGC




FFTVYSIIF


TTTTGGCTCGCCCAGAG




GVVLSNHF


TGTCGTTTTGTTTGTCG




VKKKNLM


ATACCTGTTTGAGAAG




FLLHAAIFA


AACTTTATTCTTTTTTA




CVCISAAL


TTTTACCGCTGTTCTTA




MPAATIPL


TTTGGAAACGGAACGC




CAVHILWA


TGTCAGGGGCGCAAAC




VVIDFPVFL


ATTGTTTTGGCTCGGCA




QAPPQQGK


GGTTTTCGTTTTTTACC




MHSFMRRS


GTTTACTCCATTATTTT




EFSFYKRE


CGGAGTTGTGCTAAGC




WNRFISSK


AACCACTTCGTCAAAAA




AMLLNYA


GAAGAACTTGATGTTTC




VMAVFSGF


TGCTGCATGCGGCGAT




FSFQMMNT


ATTCGCCTGTGTATGTA




GIFNQQVI


TCAGCGCCGCTTTGATG




YIVISALLL


CCGGCCGCCACGATTCC




ICSPIALLY


GCTTTGCGCGGTTCATA




SIEKNDRM


TCCTGTGGGCGGTGGT




LLITLPIKR


CATTGACTTTCCTGTCT




KTMFWAK


TTCTGCAGGCGCCTCCG




YRFYSGLL


CAGCAGGGCAAGATGC




AGGFLLVV


ATTCATTTATGCGGCGA




MIVGFISGR


TCTGAATTTTCGTTTTA




SISVLTFLQ


CAAAAGAGAATGGAAC




CIELLLAG


CGATTTATCTCTTCTAA




AYIRLTAD


AGCGATGCTGTTAAATT




EKRPSFSW


ACGCGGTAATGGCGGT




QTEQQLWS


ATTCAGCGGCTTCTTTT




GFSKYRSY


CGTTCCAGATGATGAA




LFCLPLFLA


CACCGGCATCTTCAATC




ILAGTAVS


AGCAAGTGATTTATATC




LAVIPIAGL


GTGATTTCCGCGCTTTT




VIVYYLQK


GCTCATCTGCTCGCCGA




QDGGFFDT


TCGCCCTTTTGTATTCG




SKRERLGS


ATTGAAAAAAATGACC







GGATGCTGCTCATCACG







CTTCCGATCAAGCGAA







AAACGATGTTTTGGGC







GAAATATCGCTTTTATT







CAGGCCTATTGGCAGG







CGGATTTCTCCTTGTCG







TGATGATTGTGGGTTTCA





512
Putative
MSILDIHD

Bacillus

513
GCATTTTGGATATACAC



ABC
VSVWYER

subtilis


GATGTATCCGTTTGGTA



transporter
DNVILEQV
(strain 168)

TGAACGGGACAACGTC



ATP-
DLHLEKGA


ATCTTAGAGCACGTGG



binding
VYGLLGV


ACTTACACTTAGAAAAA



protein
NGAGKTTL


GGCGCCGTTTACGGATT



AlbC
INTLTGVN


GCTTGGGGTAAACGGT



(Antilisterial
RNFSGRFT


GCCGGCAAAACAACAC



bacteriocin
LCGIEAEA


TGATCAATACGCTGACA



subtilosin
GMPQKTSD


GGAGTGAACCGCAATT



biosynthesis
QLKTHRYF


ACAGCGGGGGCTTTAC



protein
AADYPLLF


GCTGTGCGGCATTGAA



AlbC)
TEITAKDY


GCTGAGGCCGGCATGC




VSFVHSLY


CGCAGAAAACATCAGA




QKDFSEQQ


TCAACTGAAGATTCACC




FASLAEAF


GTTACTTCGCCGCTGAT




HFSKYINR


TATCCGCTGCTGTTTAC




RISELSLGN


AGAAATTACGGCGAAG




RQKVVLM


GACTATGTGTCTTTCGT




TGLLLRAP


CCATTCGCTTTATCAAA




LFILDEPLV


AGGATTTTTCAGAGCG




GLDVESIE


ACAGTTTGCCAGTTTGG




VFYQKMR


CTGAGGCCTTTCATTTT




EYCEAGGT


TCAAAATACATCAACA




ILFSSHLLD


GGAGAATCTCGGAGCT




VVQRFCDY


GTCCTTGGGGAACAGG




AAILHNKQ


CAAAAGGTTGTGTTGAT




IQKVIPIGE


GACAGGATTATTGCTGC




ETDLRREF


GGGCTCCCCTGTTTATT




FEVIGHE


TTGGATGAGCCGCTCGT







CGGTTTGGATGTGGAA







TCAATAGAGGTCTTTTA







TCAGAAAATGCGGGAG







TACTGTGAGGAAGGCG







GAACCATTTTGTTTTCT







TCCCATCTGCTCGATGT







CGTGCAGAGATTTTGTG







ATTTTGCGGCCATTCTG







CACAACAAACAGATCC







AAAAGGTCATTCCGATT







GGGGAGGAGACCGATC







TGCGGCGGGAATTTTTT







GAGGTTATCGGCCATG







AATAA





514
Antilisterial
MSPAQRRI

Bacillus

515
TTGTCACCAGCACAAA



bacteriocin
LLYILSFIF

subtilis


GAAGAATTTTACTGTAT



subtilosin
VIGAVVYF
(strain 168)

ATCCTTTCATTTATCTT



biosynthesis
VKSDYLFT


TGTCATCGGCGCAGTC



protein
LIFIAIAILF


GTCTATTTTGTCAAAAG



AlbB
GMRARKA


CGATTATCTGTTTACGC




DSR


TGATTTTCATTGCCATT







GCCATTCTGTTCGGGAT







GCGCGCGCGGAAGGCT







GACTCGCGATGA





516
Colicin-E7
MELKNSIS

Escherichia

517
ATGGAACTGAAAAATA



immunity
DYTEAEFV

coli


GTATTAGTGATTACACA



modulator
QLLKEIEK


GAGGCTGAGTTTGTTCA



(ImmE7)
ENVAATD


ACTTCTTAAGGAAATTG



(Microcin-
DVLDVLLE


AAAAAGAGAATGTTGC



E7
HFVKITEH


TGCAACTGATGATGTGT



immunity
PDGTDLIY


TAGATGTGTTACTCGAA



modulator)
YPSDNRDD


CACTTTGTAAAAATTAC




SPEGIVKEI


TGAGCATCCAGATGGA




KEWRAAN


ACGGATCTGATTTATTA




GKPGFKQG


TCCTAGTGATAATAGA







GACGATAGCCCCGAAG







GGATTGTCAAGGAAAT







TAAAGAATGGCGAGCT







GCTAACGGTAAGCCAG







GATTTAAACAGGGCTGA





518
Pyocin-S1
MKSKISEY

Pseudomonas

519
ATGAAGTCCAAGATTTC



immunity
TEKEFLEF

aeruginosa


CGAATATACGGAAAAA



modulator
VEDIYTNN


GAGTTTCTTGAGTTTGT




KKKFPTEE


TGAAGACATATACACA




SHIQAVLE


AACAATAAGAAAAAGT




FKKLTEHP


TCCCTACCGAGGAGTCT




SGSDLLYY


CATATTCAAGCCGTGCT




PNENREDS


TGAATTTAAAAAACTAA




PAGVVKEV


CGGAACACCCAAGCGG




KEWRASK


CTCAGACCTTCTTTACT




GLPGFKAG


ACCCCAACGAAAATAG







AGAAGATAGCCCAGCT







GGAGTTGTAAAGGAAG







TTAAAGAATGGCGTGC







TTCCAAGGGGCTTCCTG







GCTTTAAGGCCGGTTAG





520
Pyocin-S2
MKSKISEY

Pseudomonas

521
ATGAAGTCCAAGATTTC



immunity
TEKEFLEF

aeruginosa


CGAATATACGGAAAAA



modulator
VKDIYTNN
(strain

GAGTTTCTTGAGTTTGT




KKKFPTEE
ATCC

TAAAGACATATACACA




SHIQAVLE
15692/

AACAATAAGAAAAAGT




FKKLTEHP
PAO1/1C/

TCCCTACCGAGGAGTCT




SGSDLLYY
PRS 101/

CATATTCAAGCCGTGCT




PNENREDS
LMG

TGAATTTAAAAAACTAA




PAGVVKEV
12228)

CGGAACACCCAAGCGG




KEWRASK


CTCAGACCTTCTTTACT




GLPGFKAG


ACCCCAACGAAAATAG







AGAAGATAGCCCAGCT







GGAGTTGTAAAGGAAG







TTAAAGAATGGCGTGC







TTCCAAGGGGCTTCCTG







GCTTTAAGGCCGGTTAG





522
Hiracin-
MDFTKEEK

Enterococcus

523
ATGGATTTTACTAAAGA



JM79
LLNAISKV

hirae


AGAAAAACTTTTAAAT



immunity
YNEATIDD


GCAATTAGTAAAGTAT



factor
YPDLKEKL


ACAATGAAGCAACTAT




FLYSKEISE


AGATGACTATCCTGACT




GKSVGEVS


TAAAAGAAAAGCTCTTT




MKLSSFLG


CTTTATTCTAAAGAAAT




RYILKHKF


CAGTGAGGGAAAAAGT




GLPKSLIEL


GTTGGTGAAGTTAGTAT




QEIVSKES


GAAATTAAGTAGTTTTC




QVYRGWA


TTGGAAGATATATTTTA




SIGIWS


AAACATAAATTTGGATT







ACCTAAATCTTTAATAG







AATTACAAGAAATTGTT







AGTAAGGAATCTCAAG







TATATAGAGGATGGGC







TTCTATTGGTATTTGGA







GTTAA





524
Probable
MKKKYRY

Leuconostoc

525
TTGAAAAAAAAGTATC



mesentericin-
LEDSKNYT

mesenteroides


GGTATTTAGAAGATAG



Y105
STLYSLLV


CAAAAATTACACTAGTA



immunity
DNVDKPG


CACTCTATTCTCTGTTA



modulator
YSDICDVL


GTTGATAATGTTGACAA




LQVSKKLD


ACCTGGATACTCAGATA




NTQSVEAL


TTTGCGATGTTTTGCTT




INRLVNYIR


CAAGTTTCTAAGAAGTT




ITASTYKIIF


GGATAATACTCAAAGT




SKKEEELII


GTTGAAGCGCTAATTA




KLGVIGQK


ATCGATTGGTTAATTAT




AGLNGQY


ATTCGTATTACTGCTTC




MADFSDKS


AACATACAAAATTATTT




QFYSVFDQ


TTTCAAAAAAAGAAGA







GGAATTGATTATAAAA







CTTGGTGTTATTGGACA







AAAAGCTGGACTTAAT







GGTCAGTATATGGCTG







ATTTTTCAGACAAGTCT







CAGTTTTACAGCGTTTT







CGATCAGTAA





526
Microcin-
MSFLNFAF

Escherichia

527
ATGAGTTTTCTTAATTT



24
SPVFFSIMA

coli


TGCATTTTCTCCTGTAT



immunity
CYFIVWRN


TCTTCTCCATTATGGCG



modulator
KRNEFVCN


TGTTATTTCATTGTATG




RLLSIIIISFL


GAGAAATAAACGAAAC




ICFIYPWLN


GAATTTGTCTGCAATAG




YKIEVKYY


ATTGCTATCAATTATAA




IFEQFYLFC


TAATATCTTTTTTGATA




FLSSLVAV


TGCTTCATATATCCATG




VINLIVYFI


GCTAAATTACAAAATC




LYRRCI


GAAGTTAAATATTATAT







ATTTGAACAGTTTTATC







TTTTTTGTTTTTTATCGT







CACTCGTGGCTGTTGTA







ATAAACCTAATTGTATA







CTTTATATTATACAGGA







GATGTATATGA





528
Colicin-K
MHLKYYL

Escherichia

529
ATGCATTTAAAATACTA



immunity
HNLPESLIP

coli


CCTACATAATTTACCTG



modulator
WILILIFND


AATCACTTATACCATGG




NDNTPLLFI


ATTCTTATTTTAATATT




FISSIHVLL


TAACGACAATGATAAC




YPYSKLTIS


ACTCCTTTGTTATTTAT




RYIKENTK


ATTTATATCATCAATAC




LKKEPWYL


ATGTATTGCTATATCCA




CKLSALFY


TACTCTAAATTAACCAT




LLMAIPVG


ATCTAGATATATCAAAG




LPSFIYYTL


AAAATACAAAGTTAAA




KRN


AAAAGAACCCTGGTAC







TTATGCAAGTTATCTGC







ATTGTTTTATTTATTAA







TGGCAATCCCAGTAGG







ATTGCCAAGTTTCATAT







ATTACACTCTAAAGAG







AAATTAA





530
Microcin
MMIQSHPL

Escherichia

531
ATGATGATACAATCTCA



C7 self-
LAAPLAVG

coli


TCCACTACTGGCCGCTC



immunity
DTIGFFSSS


CCCTGGCAGTAGGAGA



modulator
APATVTAK


TACAATTGGTTTCTTTT



MccF
NRFFRGVE


CATCATCTGCTCCGGCA




FLQRKGFK


ACAGTTACTGCAAAAA




LVSGKLTG


ATCGTTTTTTTCGGGGA




KTDFYRSG


GTTGAGTTTCTTCAGAG




TIKERAQE


AAAGGGATTTAAGCTG




FNELVYNP


GTATCAGGGAAGCTTA




DITCIMSTI


CCGGTAAAACAGATTTT




GGDNSNSL


TATCGTTCAGGTACTAT




LPFLDYDA


TAAAGAAAGAGCTCAA




IIANPKIIIG


GAATTTAATGAGTTAGT




YSDTTALL


CTACAATCCTGATATTA




AGIYAKTG


CCTGTATAATGTCAACG




LITFYGPAL


ATCGGTGGAGATAACA




IPSFGEHPP


GTAATTCACTACTACCG




LVDITYESF


TTTCTGGACTATGATGC




IKILTRKQS


TATCATTGCAAACCCCA




GIYTYTLP


AAATTATCATAGGTTAC




EKWSDESI


TCAGATACAACTGCTTT




NWNENKIL


ATTAGCAGGAATATAT




RPKKLYKN


GCAAAAACAGGGTTAA




NCAFYGSG


TAACATTCTATGGACCA




KVEGRVIG


GCTCTTATTCCTTCGTT




GNLNTLTG


TGGTGAACATCCACCTC




IWGSEWM


TTGTGGATATAACATAT




PEILNGDIL


GAATCATTTATTAAAAT




FIEDSRKSI


ACTAACAAGAAAACAA




ATIERLFS


TCAGGAATATATACCTA




MLKLNRVF


CACATTACCTGAAAAGT




DKVSAIILG


GGAGTGATGAGAGCAT




KHELFDCA


AAACTGGAATGAAAAC




GSKRRPYE


AAGATATTAAGGCCTA




VLTEVLDG


AGAAGCTATATAAAAA




KQIPVLDG


CAACTGTGCCTTTTATG




FDCSHTHP


GTTCCGGAAAAGTTGA




MLTLPLGV


GGGGCGTGTAATTGGA




KLAIDFDN


GGAAATCTAAATACTTT




KNISITEQY


GACAGGTATATGGGGG




LSTEK


AGTGAATGGATGCCTG







AAATTCTTAATGGAGAT







ATATTGTTTATTGAGGA







CAGTCGGAAAAGCATT







GCAACAATTGAACGAT







TATTCTCTATGCTAAAG







CTTAATCGCGTGTTTGA







TAAAGTTAGTGCAATA







ATACTCGGGAAACATG







AGCTTTTTGATTGTGCA







GGAAGTAAACGCAGAC







CATATGAAGTATTAACA







GAGGTATTAGATGGGA







AACAGATTCCTGTACTG







GATGGATTTGATTGTTC







ACATACACATCCAATGC







TAACTCTTCCACTTGGT







GTAAAATTAGCTATTGA







CTTTGACAACAAAAATA







TAT





532
Sakacin-A
MKADYKKI

Lactobacillus

533
GGCAGATTATAAAAAA



immunity
NSILTYTST

sakei


ATAAATTCAATACTAAC



factor
ALKNPKIIK


TTACACATCTACTGCTT




DKDLVVLL


TAAAAAACCCTAAAATT




TIIQEEAKQ


ATAAAAGATAAAGATT




NRIFYDYK


TAGTAGTCCTTCTAACT




RKFRPAVT


ATTATTCAAGAAGAAG




RFTIDNNFE


CCAAACAAAATAGAAT




IPDCLVKL


CTTTTATGATTATAAAA




LSAVETPK


GAAAATTTCGTCCAGC




AWSGFS


GGTTACTCGCTTTACAA







TTGATAATAATTTTGAG







ATTCCTGATTGTTTGGT







TAAACTACTGTCAGCTG







TTGAAACACCTAAGGC







GTGGTCTGGATTTAGTT







AG





534
Colicin-E5
MKLSPKAA

Escherichia

535
TGAAGTTATCACCAAA



immunity
IEVCNEAA

coli


AGCTGCAATAGAAGTT



modulator
KKGLWILG


TGTAATGAAGCAGCGA



in ColE9
IDGGHWLN


AAAAAGGCTTATGGAT



(E5Imm[E9])
PGFRIDSSA


TTTGGGCATTGATGGTG




SWTYDMP


GGCATTGGCTGAATCCT




EEYKSKTP


GGATTCAGGATAGATA




ENNRLAIE


GTTCAGCATCATGGAC




NIKDDIEN


ATATGATATGCCGGAG




GYTAFIITL


GAATACAAATCAAAAA




KM


CCCCTGAAAATAATAG







ATTGGCTATTGAAAATA







TTAAAGATGATATTGA







GAATGGATACACTGCTT







TCATTATCACGTTAAAG







ATGTAA





536
Antilisterial
MNNIFPIM

Bacillus

537
TTGGGGAGGAGACCGA



bacteriocin
SLLFKQLY

subtilis


TCTGCGGCGGGAATTTT



subtilosin
SRQGKKDA


TTGAGGTTATCGGCCAT



biosynthesis
IRIAAGLVI


GAATAACATATTCCCCA



protein
LAVFEIGLI


TCATGTCGTTGCTGTTC



AlbD
RQAGIDES


AAACAGCTGTACAGCC




VLGKTYIIL


GGCAAGGGAAAAAGGA




ALLLMNTY


CGCTATCCGCATTGCTG




MVFLSVTS


CAGGGCTTGTGATTCTC




QWKESYM


GCCGTGTTTGAAATCG




KLSCLLPIS


GGCTGATCCGACAAGC




SRSFWLAQ


CGGCATTGACGAATCG




SVVLFVDT


GTGTTGGGAAAAACGT




CLRRTLFFF


ATATCATATTGGCGCTT




ILPLFLFGN


CTCTTAATGAACACGTA




GTLSGAQT


TATGGTGTTTCTTTCCG




LFWLGRFS


TGACATCACAATGGAA




FFTVYSILF


GGAATCTTATATGAAG




GVMLSNHF


CTGAGCTGTCTGCTGCC




VKKKNSM


GATTTCATCACGGAGCT




FLLHAAVF


TTTGGCTCGCCCAGAGT




AFVCLSAA


GTCGTTCTGTTTGTCGA




FMPAVTIP


TACCTGTTTGAGAAGA




LCAVHML


ACGTTATTCTTTTTTAT




WAVIIDFP


TTTACCGCTGTTCTTAT




VFLQAPPH


TTGGAAACGGAACGCT




QSKMHFF


GTCAGGGGCGCAAACA




MRRSEFSF


TTGTTTTGGCTTGGCAG




YKREWNR


ATTTTCGTTTTTTACCG




FISSKAMLL


TTTACTCGATTCTATTC




NYVVMAA


GGAGTTATGCTAAGCA




FSGFFSFQ


ACCATTTCGTCAAAAAG




MMNTGIFN


AAGAACTCGATGTTTCT




QQVIYIVIS


GCTGCATGCGGCGGTA




ALLLICSPI


TTCGCCTTTGTATGCCT




ALLYSIEK


CAGTGCCGCTTTTATGC




NDRMLLIT


CGGCCGTCACGATCCC




LPIKRRTM


GCTATGCGCGGTTCACA




FWAKYRF


TGCTATGGGCGGTGAT




YSGLLAGG


CATTGACTTTCCGGTCT




FLLVAIIVG


TTCTGCAGGCGCCTCCG




FISGRPISA


CATCAGAGCAAGATGC




LTFVQCME


ATTTTTTTATGCGGCGA




LLLAGAFIR


TCTGAATTTTCGTTTTA




LTADEKRP


CAAAAGAGAATGGAAC




SFGWQTEQ


CGATTTATTTCTTCTAA




QLWSGFSK


AGCGATGCTGTTAAATT




YRSYLFCL


ACGTGGTGATGGCGGC




PLFLATLA


GTTCAGCGGATTCTTTT




GTAVSLAV


CGTTCCAGATGATGAA




IPIAALIIVY


CACTGGCATCTTCAATC




YLQKQDG


AGCAAGTGATTTATATT




GFFDTSKR


GTGATTTCCGCTCTATT




ERIGS


GCTGATTTGCTCGCCGA







TCGCCCTTTTGTACTCT







ATTGAAAAAAACGATC







GCATGCTGCTCATCACG







CTTCCAATTAAAAGAA







GAACGATGTTTTGGGC







GAAATATCGCTTTTATT







CAG





538
Microcin-
MERKQKN

Escherichia

539
ATGGAAAGAAAACAGA



J25 export
SLFNYIYSL

coli


AAAACTCATTATTTAAT



ATP-
MDVRGKF


TATATTTATTCATTAAT



binding/permease
LFFSMLFIT


GGATGTAAGAGGTAAA



protein
SLSSIIISISP


TTTTTATTCTTTTCCAT



McjD
LILAKITDL


GTTATTCATTACATCAT



(Microcin-
LSGSLSNFS


TATCATCGATAATCATA



J25
YEYLVLLA


TCTATTTCACCATTGAT



immunity
CLYMFCVI


TCTTGCAAAGATTACAG



modulator)
SNKASVFL


ATTTACTGTCTGGCTCA



(Microcin-
FMILQSSLR


TTGTCAAATTTTAGTTA



J25
INMQKKM


TGAATATCTGGTTTTAC



secretion
SLKYLREL


TTGCCTGTTTATACATG



ATP-
YNENITNL


TTTTGCGTTATATCTAA



binding
SKNNAGYT


TAAAGCAAGTGTTTTTT



protein
TQSLNQAS


TATTTATGATACTGCAA



McjD)
NDIYILVR


AGTAGTCTACGTATTAA




NVSQNILS


CATGCAGAAAAAAATG




PVIQLISTI


TCGCTAAAGTATTTGAG




VVVLSTKD


AGAATTGTATAACGAA




WFSAGVFF


AATATAACTAACTTGAG




LYILVFVIF


TAAAAATAATGCTGGA




NTRLTGSL


TATACAACGCAAAGTCT




ASLRKHSM


TAACCAGGCTTCAAATG




DITLNSYSL


ACATTTATATTCTTGTG




LSDTVDN


AGAAATGTTTCCCAGA




MIAAKKNN


ATATCCTGTCACCTGTT




ALRLISERY


ATACAACTTATTTCCAC




EDALTQEN


TATTGTTGTTGTTTTAT




NAQKKYW


CTACGAAGGACTGGTTT




LLSSKVLL


TCTGCCGGTGTGTTTTT




LNSLLAVIL


TCTCTATATTCTGGTAT




FGSVFIYNI


TTGTAATTTTTAATACC




LGVLNGV


AGACTGACTGGCAGTTT




VSIGHFIMI


AGCGTCTCTCAGAAAA




TSYIILLST


CACAGCATGGATATCA




PVENIGAL


CTCTTAACTCTTATAGT




LSEIRQSM


CTGTTATCTGATACTGT




SSLAGFIQR


TGATAACATGATAGCA




HAENKATS


GCTAAAAAGAATAATG




PSIPFLNME


CATTAAGACTTATTTCT




RKLNLSIRE


GAACGTTATGAAGATG




LSFSYSDD


CTCTCACTCAGGAAAAC




KKILNSVS


AATGCTCAGAAAAAAT




LDLFTGKM


ACTGGTTACTCAGTTCT




YSLTGPSG


AAAGTTCTTTTATTGAA




SGKSTLVK


CTCTTTACTTGCTGTAA




IISGYYKN


TATTATTTGGTTCTGTA




YFGDIYLN


TTCATATATAATATTTT




DISLRNISD


AGGTGTGCTGAATGGT




EDLNDAIY


GTAGTTAGTATCGGCCA




YLTQDDYI


CTTCATTATGATTACAT




FMDTLRFN


CATATATCATTCTTCTT




LRLANYDA


TCAACGCCAGTGGAAA




SENEIFKVL


ATATAGGGGCATTGCT




KLANLSVV


AAGTGAGATCAGGCAG




NNEPVSLD


TCAATGTCTAGCCTGGC




THLINRGN


AGGTTTTATTCAACGTC




NYSGGQK


ATGCCGAGAATAAAGC




QRISLARLF


CACATCTCCTTCAA




LRKPAIIIID




EATSALDY




INESEILSSI




RTHFPDALI




INISHRINL




LECSDCVY




VLNEGNIV




ASGHFRDL




MVSNEYIS




GLASVTE





540
Microcin
MTLLSFGF

Klebsiella

541
ATGACATTACTTTCATT



E492
SPVFFSVM

pneumoniae


TGGATTTTCTCCTGTTT



immunity
AFCIISRSK


TCTTTTCAGTCATGGCG



modulator
FYPQRTRN


TTCTGTATCATTTCACG




KVIVLILLT


TAGTAAATTCTATCCGC




FFICFLYPL


AGAGAACGCGAAACAA




TKVYLVGS


AGTTATTGTTCTGATTT




YGIFDKFY


TACTAACTTTTTTTATT




LFCFISTLI


TGTTTTTTATATCCATT




AIAINVVIL


AACAAAAGTGTATCTG




TINGAKNE


GTGGGAAGTTACGGTA




RN


TATTTGACAAATTCTAC







CTCTTTTGCTTTATTTC







TACGTTAATTGCAATAG







CAATTAACGTAGTGATA







CTTACAATAAATGGAG







CTAAGAATGAGAGAAA







TTAG










Poison-Antidote Systems


It can be desirable to contain a particular microbial cell within a desired environment, for example by killing or arresting the growth of the microbial cell if it is no longer in the desired environment. Poison-antidote systems, which are distinct from bacteriocins, can be useful for accomplishing such containment, or for other selective growth of microbial cells. Exemplary poison antidote systems are described in U.S. Pat. Nos. 5,910,438, 6,180,407, 7,176,029, and 7,183,097, each of which is hereby incorporated by reference in its entirety. In some embodiments, a poison-antidote system comprises a cytotoxic (poison) polypeptide, and a corresponding antitoxin (antidote) polypeptide in a single cell. As used herein, a “poison polynucleotide” refers to a polynucleotide encoding a poison polypeptide, and an “antidote polynucleotide” refers to a polynucleotide encoding an antidote polypeptide.


In some embodiments, the poison polypeptide is expressed constitutively, while the antidote polypeptide is only expressed under desired conditions. In some embodiments, the poison polypeptide is only expressed under undesired conditions, while the antidote polypeptide is only expressed under desired conditions. For example, in some embodiments, a poison/antidote system is configured so that the microbial cell survives under desired environmental conditions, but dies under undesired environmental conditions. For example, in some embodiments, a poison antidote system is configured so that the microbial cell is killed if it escapes from the environment in which it is being used in an industrial process. In other embodiments, a poison antidote system is configured so that the microbial cell survives when a vector (e.g. a plasmid) encoding an antidote polypeptide is present, but dies when the vector is absent. In some embodiments, the poison polypeptide is encoded by a poison polynucleotide in the host genome, while the antidote polypeptide is encoded by an antidote polynucleotide on a vector (such as a plasmid or extrachromosomal array or episome or minichromosome), and as such is only expressed when the vector is present in the host cell. In some embodiments, the poison polypeptide is encoded by a poison polynucleotide on a first vector, while the antidote polypeptide is encoded by an antidote polynucleotide on a second vector, and as such is only expressed when the second vector is present. In some embodiments, the presence of the antidote polynucleotide (and thus the presence of the antidote polypeptide) depends on the presence or absence of a recombination event, for example the integration of a polynucleotide sequence encoding the antidote polynucleotide into the host genome. It should be appreciated that in some embodiments in which expression of the antidote polypeptide depends on the presence or absence of a vector or recombination event, the poison and antidote polypeptide can each be expressed constitutively. Optionally, in some embodiments in which expression of the antidote polypeptide depends on the presence or absence of a vector or a recombination event, expression of the poison polypeptide and/or antidote polypeptide is conditional, for example so that the poison is only expressed in conditions in which the microbial cell is not desired, and/or the antidote polypeptide is only expressed in conditions in which the microbial cell is desired.


Exemplary microbial toxin polypeptide/antitoxin polypeptide pairs (also referred to as “poison/antidote” pairs) that can used in poison antidote systems in conjunction with some embodiments herein include, but are not limited to RelE/RelB, CcdB/CcdA, Kis/Kid, SoK/HoK, PasB (or PasC)/PasA, PemK/PemI, Doc/Phd, MazE/MazF and ParE/ParD. Without being limited by any particular theory, many poison polypeptides, for example RelE, are highly conserved across Gram-positive and Gram-negative bacteria and Archae, and as such, can have cytotoxic activity in a broad range of naturally occurring, genetically modified, and fully synthetic microbial cells. Further, without being limited by any particular theory, it is contemplated that an antidote polypeptide can generally inhibit the activity of its poison polypeptide partner in a variety of host environments, and as such, poison/antidote pairs such as those described herein can readily be used in a broad range of naturally occurring, genetically modified, and fully synthetic microbial cells.


It is noted that a poison-antidote system is distinct from a bacteriocin system at least in that a poison-antidote system provides an endogenous system by which a microbial cell can kill or arrest itself, while a bacteriocin system provides an exogenous system by which a microbial cell can kill or arrest other cells. It is further noted, however, that, while a poison-antidote system cannot be used to kill or arrest cells other than the individual cell in which the poison is produced, in some embodiments, a poison-antidote system may be used along with a bacteriocin system as described herein. For example, in some embodiments a bacteriocin system as described herein may be used to kill or arrest the growth of cells other than the bacteriocin producing cell in a culture while the poison-antidote system may be used to kill or arrest the growth of the bacteriocin producing cell should it escape from its desired environment. A poison-antidote system may also be used to select for bacteriocin producing cells which have been genetically engineered to express a molecule useful in an industrial process (an “industrially useful molecule”). For example, in some embodiments, expression of an antidote can be tied to expression of an industrially useful molecule or bacteriocin by placing polynucleotides encoding the bacteriocin and the industrially useful molecule, or polynucleotides encoding the bacteriocin and antidote under the control of a single promoter. Accordingly, in some embodiments, a microbial cell encoding a bacteriocin or bacteriocin immunity modulator further comprises a poison antidote system. In some embodiments, the bacteriocin system is useful for regulating growth of the microbial cell or other microbial cells within a particular environment, while the poison-antidote system is useful for containing the microbial cell within a particular environment.


Promoters


Promoters are well known in the art. A promoter can be used to drive the transcription of one or more genes. In some embodiments, a promoter drives expression of polynucleotide encoding a desired gene product as described herein. In some embodiments, a promoter drives expression of a bacteriocin polynucleotide as described herein. In some embodiments, a promoter drives expression of an immunity modulator polynucleotide as described herein. In some embodiments, a promoter drives expression of a bacteriocin nucleotide and an immunity modulator polynucleotide. In some embodiments, a promoter drives expression of polynucleotide encoding at least one of a bacteriocin, immunity modulator, industrially useful molecule, poison molecule, or antidote molecule. Some promoters can drive transcription at all times (“constitutive promoters”). Some promoters can drive transcription under only select circumstances (“conditional promoters”), for example depending on the presence or absence of an environmental condition, chemical compound, gene product, stage of the cell cycle, or the like.


The skilled artisan will appreciate that depending on the desired expression activity, an appropriate promoter can be selected, and placed in cis with a sequence to be expressed. Exemplary promoters with exemplary activities are provided in Table 3.1-3.11 herein. The skilled artisan will appreciate that some promoters are compatible with particular transcriptional machinery (e.g. RNA polymerases, general transcription factors, and the like). As such, while compatible “species” are identified for some promoters described herein, it is contemplated that according to some embodiments herein, these promoters can readily function in microorganisms other than the identified species, for example in species with compatible endogenous transcriptional machinery, genetically modified species comprising compatible transcriptional machinery, or fully synthetic microbial organisms comprising compatible transcriptional machinery.


The promoters of Tables 3.1-3.11 herein are publicly available from the Biobricks foundation. Per the Biobricks foundation, use of these promoters in accordance with BioBrick™ Public Agreement (BPA) is encouraged.


It should be appreciated that any of the “coding” polynucleotides described herein (for example a bacteriocin polynucleotide, immunity polynucleotide, poison polynucleotide, antidote polynucleotide, or product polynucleotide) is generally amenable to being expressed under the control of a desired promoter. In some embodiments, a single “coding” polynucleotide is under the control of a single promoter. In some embodiments, two or more “coding” polynucleotides are under the control of a single promoter, for example two, three, four, five, six, seven, eight, nine, or ten polynucleotides. As such, in some embodiments, a “cocktail” of different bacteriocins can be produced by a single microbial organism. In some embodiments, a bacteriocin polynucleotide is under the control of a promoter. In some embodiments, an immunity modulator is under the control of a promoter. In some embodiments, a polynucleotide encoding a desired gene product is under the control of a promoter. In some embodiments, the bacteriocin polynucleotide and the polynucleotide encoding a desired gene product are under the control of the same promoter. In some embodiments, a bacteriocin polynucleotide and the polynucleotide encoding a desired gene product are under the control of different promoters. In some embodiments, the immunity modulator polynucleotide and the polynucleotide encoding a desired gene product are under the control of the same promoter. In some embodiments, the bacteriocin polynucleotide and the immunity modulator polynucleotide are under the control of different promoters.


Generally, translation initiation for a particular transcript is regulated by particular sequences at or 5′ of the 5′ end of the coding sequence of a transcript. For example, a coding sequence can begin with a start codon configured to pair with an initiator tRNA. While naturally-occurring translation systems typically use Met (AUG) as a start codon, it will be readily appreciated that an initiator tRNA can be engineered to bind to any desired triplet or triplets, and accordingly, triplets other than AUG can also function as start codons in certain embodiments. Additionally, sequences near the start codon can facilitate ribosomal assembly, for example a Kozak sequence ((gcc)gccRccAUGG, SEQ ID NO: 542, in which R represents “A” or “G”) or Internal Ribosome Entry Site (IRES) in typical eukaryotic translational systems, or a Shine-Delgarno sequence (GGAGGU, SEQ ID NO: 543) in typical prokaryotic translation systems. As such in some embodiments, a transcript comprising a “coding” polynucleotide sequence, for example a bacteriocin polynucleotide or immunity modulator polynucleotide, or polynucleotide encoding a desired industrial product, comprises an appropriate start codon and translational initiation sequence. In some embodiments, for example if two or more “coding” polynucleotide sequences are positioned in cis on a transcript, each polynucleotide sequence comprises an appropriate start codon and translational initiation sequence(s). In some embodiments, for example if two or more “coding” polynucleotide sequences are positioned in cis on a transcript, the two sequences are under control of a single translation initiation sequence, and either provide a single polypeptide that can function with both encoded polypeptides in cis, or provide a means for separating two polypeptides encoded in cis, for example a 2A sequence or the like. In some embodiments, a translational intiator tRNA is regulatable, so as to regulate initiation of translation of a bacteriocin, immunity modulator, poison molecule, antidote molecule, or industrially useful molecule.









TABLE 3.1







Exemplary Metal-Sensitive Promoters










SEQ





ID


NO:
Name
Description
Sequence





544
BBa_I721001
Lead Promoter
gaaaaccttgtcaatgaagagcgatctatg





545
BBa_I731004
FecA promoter
ttctcgttcgactcatagctgaacacaaca





546
BBa_I760005
Cu-sensitive promoter
atgacaaaattgtcat





547
BBa_I765000
Fe promoter
accaatgctgggaacggccagggcacctaa





548
BBa_I765007
Fe and UV promoters
ctgaaagcgcataccgctatggagggggtt





549
BBa_J3902
PrFe (PI + PII rus operon)
tagatatgcctgaaagcgcataccgctatg
















TABLE 3.2







Exemplary Cell Signaling-Responsive Promoters










SEQ





ID


NO:
Name
Description
Sequence





550
BBa_I1051
Lux cassette right promoter
tgttatagtcgaatacctctggcggtgata





551
BBa_I14015
P(Las) TetO
ttttggtacactccctatcagtgatagaga





552
BBa_I14016
P(Las) CIO
ctttttggtacactacctctggcggtgata





553
BBa_I14017
P(Rhl)
tacgcaagaaaatggtttgttatagtcgaa





554
BBa_I739105
Double Promoter (LuxR/HSL,
cgtgcgtgttgataacaccgtgcgtgttga




positive/cI, negative)





555
BBa_I746104
P2 promoter in agr operon
agattgtactaaatcgtataatgacagtga




from S. aureus





556
BBa_I751501
plux-cI hybrid promoter
gtgttgatgcttttatcaccgccagtggta





557
BBa_I751502
plux-lac hybrid promoter
agtgtgtggaattgtgagcggataacaatt





558
BBa_I761011
CinR, CinL and glucose
acatcttaaaagttttagtatcatattcgt




controlled promotor





559
BBa_J06403
RhIR promoter repressible by
tacgcaagaaaatggtttgttatagtcgaa




CI





560
BBa_J102001
Reverse Lux Promoter
tcttgcgtaaacctgtacgatcctacaggt





561
BBa_J64000
rhlI promoter
atcctcctttagtcttccccctcatgtgtg





562
BBa_J64010
lasI promoter
taaaattatgaaatttgcataaattcttca





563
BBa_J64067
LuxR + 3OC6HSL independent
gtgttgactattttacctctggcggtgata




R0065





564
BBa_J64712
LasR/LasI Inducible &
gaaatctggcagtttttggtacacgaaagc




RHLR/RHLI repressible




Promoter





565
BBa_K091107
pLux/cI Hybrid Promoter
acaccgtgcgtgttgatatagtcgaataaa





566
BBa_K091117
pLas promoter
aaaattatgaaatttgtataaattcttcag





567
BBa_K091143
pLas/cI Hybrid Promoter
ggttctttttggtacctctggcggtgataa





568
BBa_K091146
pLas/Lux Hybrid Promoter
tgtaggatcgtacaggtataaattcttcag





569
BBa_K091156
pLux
caagaaaatggtttgttatagtcgaataaa





570
BBa_K091157
pLux/Las Hybrid Promoter
ctatctcatttgctagtatagtcgaataaa





571
BBa_K145150
Hybrid promoter: HSL-LuxR
tagtttataatttaagtgttctttaatttc




activated, P22 C2 repressed





572
BBa_K266000
PAI + LasR -> LuxI (AI)
caccttcgggtgggcctttctgcgtttata





573
BBa_K266005
PAI + LasR -> LasI & AI +
aataactctgatagtgctagtgtagatctc




LuxR --|LasI





574
BBa_K266006
PAI + LasR -> LasI + GFP &
caccttcgggtgggcctttctgcgtttata




AI + LuxR --|LasI + GFP





575
BBa_K266007
Complex QS -> LuxI & LasI
caccttcgggtgggcctttctgcgtttata




circuit





576
BBa_K658006
position 3 mutated promoter
caagaaaatggtttgttatagtcgaataaa




lux pR-3 (luxR & HSL




regulated)





577
BBa_K658007
position 5 mutated promoter
caagaaaatggtttgttatagtcgaataaa




lux pR-5 (luxR & HSL




regulated)





578
BBa_K658008
position 3&5 mutated
caagaaaatggtttgttatagtcgaataaa




promoter lux pR-3/5 (luxR &




HSL regulated)





579
BBa_R0061
Promoter (HSL-mediated luxR
ttgacacctgtaggatcgtacaggtataat




repressor)





580
BBa_R0062
Promoter (luxR & HSL
caagaaaatggtttgttatagtcgaataaa




regulated -- lux pR)





581
BBa_R0063
Promoter (luxR & HSL
cacgcaaaacttgcgacaaacaataggtaa




regulated - lux pL)





582
BBa_R0071
Promoter (Rh1R & C4-HSL
gttagctttcgaattggctaaaaagtgttc




regulated)





583
BBa_R0078
Promoter (cinR and HSL
ccattctgctttccacgaacttgaaaacgc




regulated)





584
BBa_R0079
Promoter (LasR & PAI
ggccgcgggttctttttggtacacgaaagc




regulated)





585
BBa_R1062
Promoter, Standard (luxR and
aagaaaatggtttgttgatactcgaataaa




HSL regulated -- lux pR)
















TABLE 3.3







Exemplary Constitutive E. coli σ70 Promoters










SEQ





ID


NO:
Name
Description
Sequence





586
BBa_I14018
P(Bla)
gtttatacataggcgagtactctgttatgg





587
BBa_I14033
P(Cat)
agaggttccaactttcaccataatgaaaca





588
BBa_I14034
P(Kat)
taaacaactaacggacaattctacctaaca





589
BBa_I732021
Template for Building Primer
acatcaagccaaattaaacaggattaacac




Family Member





590
BBa_I742126
Reverse lambda cI-regulated
gaggtaaaatagtcaacacgcacggtgtta




promoter





591
BBa_J01006
Key Promoter absorbs 3
caggccggaataactccctataatgcgcca





592
BBa_J23100
constitutive promoter family
ggctagctcagtcctaggtacagtgctagc




member





593
BBa_J23101
constitutive promoter family
agctagctcagtcctaggtattatgctagc




member





594
BBa_J23102
constitutive promoter family
agctagctcagtcctaggtactgtgctagc




member





595
BBa_J23103
constitutive promoter family
agctagctcagtcctagggattatgctagc




member





596
BBa_J23104
constitutive promoter family
agctagctcagtcctaggtattgtgctagc




member





597
BBa_J23105
constitutive promoter family
ggctagctcagtcctaggtactatgctagc




member





598
BBa_J23106
constitutive promoter family
ggctagctcagtcctaggtatagtgctagc




member





599
BBa_J23107
constitutive promoter family
ggctagctcagccctaggtattatgctagc




member





600
BBa_J23108
constitutive promoter family
agctagctcagtcctaggtataatgctagc




member





601
BBa_J23109
constitutive promoter family
agctagctcagtcctagggactgtgctagc




member





602
BBa_J23110
constitutive promoter family
ggctagctcagtcctaggtacaatgctagc




member





603
BBa_J23111
constitutive promoter family
ggctagctcagtcctaggtatagtgctagc




member





604
BBa_J23112
constitutive promoter family
agctagctcagtcctagggattatgctagc




member





605
BBa_J23113
constitutive promoter family
ggctagctcagtcctagggattatgctagc




member





606
BBa_J23114
constitutive promoter family
ggctagctcagtcctaggtacaatgctagc




member





607
BBa_J23115
constitutive promoter family
agctagctcagcccttggtacaatgctagc




member





608
BBa_J23116
constitutive promoter family
agctagctcagtcctagggactatgctagc




member





609
BBa_J23117
constitutive promoter family
agctagctcagtcctagggattgtgctagc




member





610
BBa_J23118
constitutive promoter family
ggctagctcagtcctaggtattgtgctagc




member





611
BBa_J23119
constitutive promoter family
agctagctcagtcctaggtataatgctagc




member





612
BBa_J23150
1bp mutant from J23107
ggctagctcagtcctaggtattatgctagc





613
BBa_J23151
1bp mutant from J23114
ggctagctcagtcctaggtacaatgctagc





614
BBa_J44002
pBAD reverse
aaagtgtgacgccgtgcaaataatcaatgt





615
BBa_J48104
NikR promoter, a protein of
gacgaatacttaaaatcgtcatacttattt




the ribbon helix-helix family of




trancription factors that repress




expre





616
BBa_J54200
lacq_Promoter
aaacctttcgcggtatggcatgatagcgcc





617
BBa_J56015
lacIQ - promoter sequence
tgatagcgcccggaagagagtcaattcagg





618
BBa_J64951

E. Coli CreABCD phosphate

ttatttaccgtgacgaactaattgctcgtg




sensing operon promoter





619
BBa_K088007
GlnRS promoter
catacgccgttatacgttgtttacgctttg





620
BBa_K119000
Constitutive weak promoter of
ttatgcttccggctcgtatgttgtgtggac




lacZ





621
BBa_K119001
Mutated LacZ promoter
ttatgcttccggctcgtatggtgtgtggac





622
BBa_K137029
constitutive promoter with
atatatatatatatataatggaagcgtttt




(TA)10 between −10 and −35




elements





623
BBa_K137030
constitutive promoter with
atatatatatatatataatggaagcgtttt




(TA)9 between −10 and −35




elements





624
BBa_K137031
constitutive promoter with
ccccgaaagcttaagaatataattgtaagc




(C)10 between −10 and −35




elements





625
BBa_K137032
constitutive promoter with
ccccgaaagcttaagaatataattgtaagc




(C)12 between −10 and −35




elements





626
BBa_K137085
optimized (TA) repeat
tgacaatatatatatatatataatgctagc




constitutive promoter with 13




bp between −10 and −35




elements





627
BBa_K137086
optimized (TA) repeat
acaatatatatatatatatataatgctagc




constitutive promoter with 15




bp between −10 and −35




elements





628
BBa_K137087
optimized (TA) repeat
aatatatatatatatatatataatgctagc




constitutive promoter with 17




bp between −10 and −35




elements





629
BBa_K137088
optimized (TA) repeat
tatatatatatatatatatataatgctagc




constitutive promoter with 19




bp between −10 and −35




elements





630
BBa_K137089
optimized (TA) repeat
tatatatatatatatatatataatgctagc




constitutive promoter with 21




bp between −10 and −35




elements





631
BBa_K137090
optimized (A) repeat
aaaaaaaaaaaaaaaaaatataatgctagc




constitutive promoter with 17




bp between −10 and −35




elements





632
BBa_K137091
optimized (A) repeat
aaaaaaaaaaaaaaaaaatataatgctagc




constitutive promoter with 18




bp between −10 and −35




elements





633
BBa_K256002
J23101:GFP
caccttcgggtgggcctttctgcgtttata





634
BBa_K256018
J23119:IFP
caccttcgggtgggcctttctgcgtttata





635
BBa_K256020
J23119:HO1
caccttcgggtgggcctttctgcgtttata





636
BBa_K256033
Infrared signal reporter
caccttcgggtgggcctttctgcgtttata




(J23119:IFP:J23119:HO1)





637
BBa_K292000
Double terminator +
ggctagctcagtcctaggtacagtgctagc




constitutive promoter





638
BBa_K292001
Double terminator +
tgctagctactagagattaaagaggagaaa




Constitutive promoter + Strong




RBS





639
BBa_K418000
IPTG inducible Lac promoter
ttgtgagcggataacaagatactgagcaca




cassette





640
BBa_K418002
IPTG inducible Lac promoter
ttgtgagcggataacaagatactgagcaca




cassette





641
BBa_K418003
IPTG inducible Lac promoter
ttgtgagcggataacaagatactgagcaca




cassette





642
BBa_M13101
M13K07 gene I promoter
cctgtttttatgttattctctctgtaaagg





643
BBa_M13102
M13K07 gene II promoter
aaatatttgcttatacaatcttcctgtttt





644
BBa_M13103
M13K07 gene III promoter
gctgataaaccgatacaattaaaggctcct





645
BBa_M13104
M13K07 gene IV promoter
ctcttctcagcgtcttaatctaagctatcg





646
BBa_M13105
M13K07 gene V promoter
atgagccagttcttaaaatcgcataaggta





647
BBa_M13106
M13K07 gene VI promoter
ctattgattgtgacaaaataaacttattcc





648
BBa_M13108
M13K07 gene VIII promoter
gtttcgcgcttggtataatcgctgggggtc





649
BBa_M13110
M13110
ctttgcttctgactataatagtcagggtaa





650
BBa_M31519
Modified promoter sequence of
aaaccgatacaattaaaggctcctgctagc




g3.





651
BBa_R1074
Constitutive Promoter I
caccacactgatagtgctagtgtagatcac





652
BBa_R1075
Constitutive Promoter II
gccggaataactccctataatgcgccacca





653
BBa_S03331
--Specify Parts List--
ttgacaagcttttcctcagctccgtaaact
















TABLE 3.4







Exemplary Constitutive E. coli σs Promoters










SEQ





ID


NO:
Name
Description
Sequence





654
BBa_J45992
Full-length stationary phase
ggtttcaaaattgtgatctatatttaacaa




osmY promoter





655
BBa_J45993
Minimal stationary phase osmY
ggtttcaaaattgtgatctatatttaacaa




promoter
















TABLE 3.5







Exemplary Constitutive E. coli σ32 Promoters










SEQ





ID


NO:
Name
Description
Sequence





656
BBa_J45504
htpG Heat Shock Promoter
tctattccaataaagaaatcttcctgcgtg
















TABLE 3.6







Exemplary Constitutive B. subtilis σA Promoters










SEQ





ID


NO:
Name
Description
Sequence





657
BBa_K143012
Promoter veg a constitutive
aaaaatgggctcgtgttgtacaataaatgt




promoter for B. subtilis





658
BBa_K143013
Promoter 43 a constitutive
aaaaaaagcgcgcgattatgtaaaatataa




promoter for B. subtilis





659
BBa_K780003
Strong constitutive promoter
aattgcagtaggcatgacaaaatggactca




for Bacillus subtilis





660
BBa_K823000
PliaG
caagcttttcctttataatagaatgaatga





661
BBa_K823002
PlepA
tctaagctagtgtattttgcgtttaatagt





662
BBa_K823003
Pveg
aatgggctcgtgttgtacaataaatgtagt
















TABLE 3.7







Exemplary Constitutive B. subtilis σB Promoters










SEQ





ID


NO:
Name
Description
Sequence





663
BBa_K143010
Promoter ctc for B. subtilis
atccttatcgttatgggtattgtttgtaat





664
BBa_K143011
Promoter gsiB for B. subtilis
taaaagaattgtgagcgggaatacaacaac





665
BBa_K143013
Promoter 43 a constitutive
aaaaaaagcgcgcgattatgtaaaatataa




promoter for B. subtilis
















TABLE 3.8







Exemplary Constitutive Promoters from miscellaneous prokaryotes










SEQ





ID


NO:
Name
Description
Sequence





666
a_K112706
Pspv2 from Salmonella
tacaaaataattcccctgcaaacattatca





667
BBa_K112707
Pspv from Salmonella
tacaaaataattcccctgcaaacattatcg
















TABLE 3.9







Exemplary Constitutive Promoters from bacteriophage T7










SEQ





ID


NO:
Name
Description
Sequence





668
BBa_I712074
T7 promoter (strong
agggaatacaagctacttgttctttttgca




promoter from T7




bacteriophage)





669
BBa_I719005
T7 Promoter
taatacgactcactatagggaga





670
BBa_J34814
T7 Promoter
gaatttaatacgactcactatagggaga





671
BBa_J64997
T7 consensus −10 and rest
taatacgactcactatagg





672
BBa_K113010
overlapping T7 promoter
gagtcgtattaatacgactcactatagggg





673
BBa_K113011
more overlapping T7
agtgagtcgtactacgactcactatagggg




promoter





674
BBa_K113012
weaken overlapping T7
gagtcgtattaatacgactctctatagggg




promoter





675
BBa_R0085
T7 Consensus Promoter
taatacgactcactatagggaga




Sequence





676
BBa_R0180
T7 RNAP promoter
ttatacgactcactatagggaga





677
BBa_R0181
T7 RNAP promoter
gaatacgactcactatagggaga





678
BBa_R0182
T7 RNAP promoter
taatacgtctcactatagggaga





679
BBa_R0183
T7 RNAP promoter
tcatacgactcactatagggaga





680
BBa_Z0251
T7 strong promoter
taatacgactcactatagggagaccacaac





681
BBa_Z0252
T7 weak binding and
taattgaactcactaaagggagaccacagc




processivity





682
BBa_Z0253
T7 weak binding promoter
cgaagtaatacgactcactattagggaaga
















TABLE 3.10







Exemplary Constitutive Promoters from yeast










SEQ





ID


NO:
Name
Description
Sequence





683
BBa_I766555
pCyc (Medium) Promoter
acaaacacaaatacacacactaaattaata





684
BBa_I766556
pAdh (Strong) Promoter
ccaagcatacaatcaactatctcatataca





685
BBa_I766557
pSte5 (Weak) Promoter
gatacaggatacagcggaaacaacttttaa





686
BBa_J63005
yeast ADH1 promoter
tttcaagctataccaagcatacaatcaact





687
BBa_K105027
cyc100 minimal promoter
cctttgcagcataaattactatacttctat





688
BBa_K105028
cyc70 minimal promoter
cctttgcagcataaattactatacttctat





689
BBa_K105029
cyc43 minimal promoter
cctttgcagcataaattactatacttctat





690
BBa_K105030
cyc28 minimal promoter
cctttgcagcataaattactatacttctat





691
BBa_K105031
cyc16 minimal promoter
cctttgcagcataaattactatacttctat





692
BBa_K122000
pPGK1
ttatctactttttacaacaaatataaaaca





693
BBa_K124000
pCYC Yeast Promoter
acaaacacaaatacacacactaaattaata





694
BBa_K124002
Yeast GPD (TDH3)
gtttcgaataaacacacataaacaaacaaa




Promoter





695
BBa_K319005
yeast mid-length ADH1
ccaagcatacaatcaactatctcatataca




promoter





696
BBa_M31201
Yeast CLB1 promoter
accatcaaaggaagctttaatcttctcata




region, G2/M cell cycle




specific
















TABLE 3.11







Exemplary Constitutive Promoters from miscellaneous


eukaryotes










SEQ





ID


NO:
Name
Description
Sequence





697
BBa_I712004
CMV promoter
agaacccactgcttactggcttatcgaaat





698
BBa_K076017
Ubc Promoter
ggccgtttttggcttttttgttagacgaag









The above-referenced promoters are provided by way of non-limiting example only. The skilled artisan will readily recognize that many variants of the above-referenced promoters, and many other promoters (including promoters isolated from naturally existing organisms, variations thereof, and fully synthetic promoters) can readily be used in accordance with some embodiments herein.


Regulation of Gene Activity


Gene activity can be regulated to either increase or decrease activity of the gene product. In some embodiments, the gene product for which activity is regulated comprises a bacteriocin, immunity modulator, industrially useful molecule, poison molecule, or antidote molecule. In some embodiments, two or more of such gene products are regulated under a single gene regulation system. In some embodiments, gene activity is regulated at the level of gene expression. In some embodiments, gene activity is regulated at the transcriptional level, for example by activating or repressing a promoter. In some embodiments, gene activity is regulated at the post-transcriptional level, for example through regulation of RNA stability. In some embodiments, gene activity is regulated at the translational level, for example through regulation of initiation of translation. In some embodiments, gene activity is regulated at the post-translational level, for example through regulation of polypeptide stability, post-translational modifications to the polypeptide, or binding of an inhibitor to the polypeptide.


In some embodiments, gene activity is increased. In some embodiments, activity of at least one of a bacteriocin, immunity modulator, industrially useful molecule, poison molecule, or antidote molecule is increased. Conceptually, gene activity can be increased by directly activating gene activity, or by decreasing the activity of an inhibitor of gene activity. In some embodiments, gene activity is activated by at least one of: inducing promoter activity, inhibiting a transcriptional repressor, increasing RNA stability, inhibiting a post-transcriptional inhibitor (for example, inhibiting a ribozyme or antisense oligonucleotide), inducing translation (for example, via a regulatable tRNA), making a desired post-translational modification, or inhibiting a post-translational inhibitor (for example a protease directed to a polypeptide encoded by the gene). In some embodiments, a compound present in a desired environment induces a promoter. For example, the presence of iron in culture medium can induce transcription by an iron-sensitive promoter as described herein. In some embodiments, a compound present in a desired culture medium inhibits a transcriptional repressor. For example, the presence of tetracycline in an environment can inhibit the tet repressor, and thus allow activity from the tetO promoter. In some embodiments, a compound found only outside of a desired culture medium induces transcription.


In some embodiments, gene activity is decreased. Conceptually, gene activity can be decreased by directly inhibiting gene activity, or by decreasing the activity of an activator of gene activity. In some embodiments, gene activity is reduced, but some level of activity remains. In some embodiments, gene activity is fully inhibited. In some embodiments, gene activity is decreased by at least one of inhibiting promoter activity, activating a transcriptional repressor, decreasing RNA stability, activating a post-transcriptional inhibitor (for example, expressing a ribozyme or antisense oligonucleotide), inhibiting translation (for example, via a regulatable tRNA), failing to make a required post-translational modification, inactivating a polypeptide (for example by binding an inhibitor or via a polypeptide-specific protease), or failing to properly localize a polypeptide (e.g. failing to secrete a bacteriocin). In some embodiments, gene activity is decreased by removing a gene from a desired location, for example by excising a gene using a FLP-FRT or cre-lox cassette, or through loss or degradation of a plasmid. In some embodiments, a gene product (e.g. a polypeptide) or a product produced by a gene product (e.g. the product of an enzymatic reaction) inhibits further gene activity (e.g. a negative feedback loop).


Genetic Modification of Microbial Organisms


Techniques of genetically modifying microorganisms are well known in the art. In some embodiments, a microorganism is genetically modified to comprise nucleic acid sequence regulating the expression of, and encoding, at least one of bacteriocins, immunity modulators, industrially useful molecules, poison molecules, or antidote molecules. Polynucleotides can be delivered to microorganisms, and can be stably integrated into the chromosomes of these microorganisms, or can exist free of the genome, for example in a plasmid, extrachromosomal array, episome, minichromosome, or the like.


Exemplary vectors for genetic modification of microbial cells include, but are not limited to, plasmids, viruses (including bacteriophage), and transposable elements. Additionally, it will be appreciated that entire microbial genomes comprising desired sequences can be synthesized and assembled in a cell (see, e.g. Gibson et al. (2010), Science 329: 52-56). As such, in some embodiments, a microbial genome (or portion thereof) is synthesized with desired features such as bacteriocin polynucleotide(s), and introduced into a microbial cell.


It can be useful to flexibly genetically modify a microbial cell, for example to engineer or reengineer a microbial cell to have a desired type and/or spectrum of bacteriocin or immunity modulator activity. In some embodiments, a cassette for inserting one or more desired bacteriocin and/or immunity modulator polynucleotides into a polynucleotide sequence is provided. Exemplary cassettes include, but are not limited to, a Cre/lox cassette or FLP/FRT cassette. In some embodiments, the cassette is positioned on a plasmid, so that a plasmid with the desired bacteriocin and/or immunity modulator combination can readily be introduced to the microbial cell. In some embodiments, the cassette is positioned in the genome of the microbial cell, so that a cassette with the desired bacteriocin and/or immunity modulator combination can be introduced to the desired location.


In some embodiments, plasmid conjugation can be used to introduce a desired plasmid from a “donor” microbial cell to a recipient microbial cell. Goñi-Moreno, et al. (2013) Multicellular Computing Using Conjugation for Wiring. PLoS ONE 8(6): e65986, hereby incorporated by reference in its entirety. In some embodiments, plasmid conjugation can genetically modify a recipient microbial cell by introducing a conjugation plasmid from a donor microbial cell to a recipient microbial cell. Without being limited by any particular theory, conjugation plasmids that comprise the same or functionally same set of replication genes typically cannot coexist in the same microbial cell. As such, in some embodiments, plasmid conjugation “reprograms” a recipient microbial cell by introducing a new conjugation plasmid to supplant another conjugation plasmid that was present in the recipient cell. In some embodiments, plasmid conjugation is used to engineer (or reengineer) a microbial cell with a particular combination of one or more bacteriocins and/or immunity modulators. According to some embodiments, a variety of conjugation plasmids comprising different combinations of bacteriocins and/or immunity modulators is provided. The plasmids can comprise additional genetic elements as described herein, for example promoters, translational initiation sites, and the like. In some embodiments the variety of conjugation plasmids is provided in a collection of donor cells, so that a donor cell comprising the desired plasmid can be selected for plasmid conjugation. In some embodiments, a particular combination of bacteriocins and/or immunity modulators is selected, and an appropriate donor cell is conjugated with a microbial cell of interest to introduce a conjugation plasmid comprising that combination into a recipient cell. In some embodiments, the recipient cell is a “newly engineered” cell, for example to be introduced into or for initiating a culture. In some embodiments, the recipient cell is a “reengineered cell,” for example to introduce a new bacteriocin (and optionally immunity modulator) activity to an existing culture that has encountered a new type of invader cell, and/or to remove a bacteriocin activity that is no longer desired in the culture.


Culture Media


Microbial culture environments can comprise a wide variety of culture media, for example feedstocks. The selection of a particular culture medium can depend upon the desired application. Conditions of a culture medium include not only chemical composition, but also temperature, amounts of light, pH, CO2 levels, and the like.


In some embodiments, a genetically engineered microorganism as described herein is added to a culture medium that comprises other microorganisms and at least one feedstock. In some embodiments, the culture medium comprises a compound that induces the activity or expression of a bacteriocin and/or immunity modulator. In some embodiments, the culture medium comprises a compound that represses the activity or expression of a bacteriocin and/or immunity modulator. In some embodiments, a compound that induces the activity of the bacteriocin is present outside of the feedstock, but not in the feedstock. In some embodiments, a compound that represses the activity of the immunity modulator is present outside the feedstock, but not in the feedstock.


The term “feedstock” is used herein in a broad sense to encompass material that can be consumed, fermented, purified, modified, or otherwise processed by microbial organisms, for example in the context of industrial processes. As such, “feedstock” is not limited to food or food products. As used herein a “feedstock” is a category of culture medium. Accordingly, as used herein “culture medium” includes, but it is not limited to feedstock. As such, whenever a “culture medium” is referred to herein, feedstocks are also expressly contemplated.


Genetically Engineered Microbial Cells


In some embodiments, genetically modified microbial cells are provided. Genetically modified microbial cells can be configured for a wide variety of purposes. In some embodiments, microbial cells comprise genetic modifications to regulate the expression of at least one of bacteriocins, immunity modulators, industrially useful molecules, poison molecules, or antidote molecules. In some embodiments, microbial cells comprise genetic modifications to regulate the expression of bacteriocins. In some embodiments, microbial cells comprise genetic modifications to regulate the expression of immunity modulators.


In some embodiments, the genetically modified microbial cells are modified to produce a product. In some embodiments, the product is a gene product, for example a polypeptide or RNA. As such, polynucleotide “coding” sequence as referred to herein can refer to sequence encoding either a polypeptide or an RNA. In some embodiments, microbial cells can be configured to produce one or more gene products that contribute to synthesis of a desired product, for example a carbohydrate, biofuel, lipid, small molecule, or metal. In some embodiments, the product is synthesized via the activity of one or more gene products of the microbial cell. Optionally, synthesis of the product can also involve the activity of one or more gene products of one or more other microbial cells. In some embodiments, microbial cells can be configured to decontaminate or decompose one or more substances in a culture media, for example a feedstock. The decontamination can be mediated wholly, or partially by one or more gene products of the microbial cells. In some embodiments, microbial cells can be configured to scavenge for a material, for example a metal such as iron or a rare earth metal.


Controlling the Growth of Microbial Cells


In some embodiments, genetically modified microbial cells are modified to regulate the growth of other microbial cells. In some embodiments, the microbial cells regulate the growth of other microbial cells of the same species or strain, for example their own clones. In some embodiments, the microbial cells regulated the growth of microbial cells of a different species or strain, for example invaders. In some embodiments, a microbial cell secretes a bacteriocin to regulate other microbial cells. The regulation of each of the other microbial cells can depend on its expression (or lack thereof) of an immunity modulator having protective effects against the particular the secreted bacteriocin.


As used herein “desired cell” and the like refer to a microbial cell with at least one characteristic for which survival, growth, and/or proliferation of the microbial cell is desired, or at least an absence of negative control of the cell's growth is desired. In some embodiments, a desired cell is in an appropriate environment, for example its industrially-applicable feedstock. In some embodiments, a desired cell is a cell that is positively selected for, for example a cell that has undergone a particular recombination even, or is expressing high levels of a useful gene product. In some embodiments, a desired cell is a cell configured to neutralize contaminating cells, for example pathogenic cells. In some embodiments a desired cell is positively selected for by its expression of an immunity modulator corresponding to at least one bacteriocin that can be present in the environment. Without being bound by any particular theory, it is contemplated that a microbial cell capable of neutralizing other microbial cells which lack a similar neutralizing function will have a competitive advantage. As such, in some embodiments, a desired cell is selected for through its ability to neutralize other cells. In some embodiments a desired cell is positively selected for by expressing both a bacteriocin and a corresponding immunity modulator.


As used herein “undesired cell” and the like refer to a microbial cell with at least one characteristic making survival, growth, or proliferation undesirable. In some embodiments, the undesired cell is an invading microbial cell, for example a contaminating cell that has entered a culture environment. In some embodiments, an undesired cell has escaped from an appropriate culture medium, for example its industrially-applicable feedstock. In some embodiments, an undesired cell has lost a particular plasmid, or has failed to undergo a particular recombination event. In some embodiments, an undesired cell has failed to produce, or produces low levels of desired gene product. In some embodiments, an undesired cell is selected against. In some embodiments, an undesired cell is selected against through by reducing the cell's expression or activity of an immunity modulator that protects against a bacteriocin in the environment. In some embodiments, an undesired cell is selected against through by reducing the cell's expression or activity of an immunity modulator that protects against a bacteriocin secreted by the cell and clones thereof. In some embodiments, an undesired cell is selected against by reducing the cell's expression of a bacteriocin, thereby putting the cell at a competitive disadvantage against other microbial cells.



FIG. 1 is a flow diagram depicting options for configuring a microbial cell to control the growth of a second microbial cell according to some embodiments herein. In some embodiments, a first microbial cell is provided. In some embodiments, the first microbial cell secretes an active bacteriocin 100. In some embodiments, the first microbial cell is not desired 102. For example, in some embodiments, one or more of the first microbial cell being outside its industrial environment, a desired environmental conditional for the first microbial cell being absent, the first microbial cell having made sufficient product, or the first microbial cell lacking a recombination event or vector can make the first microbial cell undesirable in a particular environment at a particular time 112. As such, when the first microbial cell is not desired, its immunity modulator (corresponding to the bacteriocin) can be inactive 122. For example, one or more of an immunity modulator promoter can be inactive, an immunity modulator transcriptional repressor can be active, post-transcriptional silencing (e.g. by a ribozyme or antisense) can occur, a regulatable tRNA can not be induced, post-transcriptional silencing can occur (e.g. by a site-specific protease, or a silencing post-translational modification), or a vector encoding an immunity modulator can be absent 132. In some embodiments, when the first cell does not have an active immunity modulator, the first cell is neutralized by the bacteriocin 142 produced by other cells in the culture. In some embodiments, a second microbial cell proceeds with growth 192 as a result of the first cell being neutralized.


In some embodiments, the first microbial cell is desired 106. For example, one or more of the first microbial cell being inside of its industrial environment, a desired environmental condition for the first microbial cell being present, the first microbial cell having not yet made sufficient product yet, or the first microbial cell having undergone a recombination event or comprising a particular vector can make the microbial cell desirable in a particular environment at a particular time 116. As such, when the first microbial cell is desired, it can produce an active immunity modulator 126. For example, in some embodiments, the first microbial cell can be configured to have one or more of a constitutive promoter for the immunity modulator polynucleotide, an activated (but not necessarily constitutive) promoter for the immunity modulator polynucleotide, an inactive repressor of immunity modulator transcription, a regulatable tRNA that is induced to facilitate production of the immunity modulator, an absence of post-translational and post-transcriptional silencing of the immunity modulator, or a vector encoding the immunity modulator can be present 136. As such, the first microbial cell can survive 146 in the presence of bacteriocin secreted by the first microbial cell. As a result of the bacteriocin secreted by the first microbial cell, a second microbial cell can grow 192 or be neutralized 196, depending on whether the second microbial cell has 172 or does not have 176 immunity modulator activity.


In some embodiments, the second microbial cell is desired 152. For example, one or more of a desired recombination event having occurred in the second microbial cell, a desired vector present in the second microbial cell, the second microbial cell producing a product of which more is desired (e.g. a positive feedback loop), or the immunity locus and the desired product being under the same transcriptional control when appropriate levels of desired product are being transcribed can a make the second microbial cell desirable 162. When the second microbial cell is desired, it can provide immunity modulator activity to protect against the particular bacteriocin (or bacterocins) produced by the first microbial cell 172. For example, in some embodiments, the second microbial cell can be configured such that an immunity modulator promoter is active (for example, a constitutive promoter), an immunity modulator transcriptional repressor is inactive, there is a lack of post-transcriptional silencing, a regulatable tRNA being induced to facilitate the expression of the immunity modulator, a lack of post-translational silencing (e.g. by a site-specific protease) of the immunity modulator, or a vector encoding an immunity modulator can be present 182. As such, in some embodiments, when immunity modulator activity is provided, the second microbial cell can survive 192.


In some embodiments, a second microbial cell is not desired 156. For example, one or more of the second microbial cell being an invader (e.g. a contaminating cell), an undesired environmental condition for the second microbial cell (e.g. the presence of an undesired compound or condition, or the absence of a desired compound or condition), the second microbial cell having produced product, but no more product being desired (e.g. a negative feedback loop), or an immunity modulator locus and desired product locus being under the same transcriptional control and transcript levels being undesirably low (e.g. indicating an inability to produce a desired product) can make the second microbial cell undesirable 166. As such, in some embodiments, there can be no immunity modulator activity or an insufficient amount of an immunity modulator to protect against the action of the bacteriocin in the second microbial cell 176. For example, one or more of an immunity modulator promoter can be inactive, an immunity modulator transcriptional repressor can be active, post-transcriptional silencing of the immunity modulator (e.g. by a ribozyme or antisense oligonucleotide) can occur, a regulatable tRNA can not be induced (so that expression of the immunity modulator is not facilitated), post-transcriptional silencing of the immunity modulator can occur (e.g. by a site-specific protease, or a silencing post-translational modification), or a vector encoding an immunity modulator can be absent 186. In some embodiments, the first microbial cell provides secreted bacteriocin activity 100. As such, in some embodiments, the second microbial cell can be killed by the bacteriocin 196.


One skilled in the art will appreciate that, for this and other functions, structures, and processes, disclosed herein, the functions, structures and steps may be implemented or performed in differing order or sequence. Furthermore, the outlined functions and structures are only provided as examples, and some of these functions and structures may be optional, combined into fewer functions and structures, or expanded into additional functions and structures without detracting from the essence of the disclosed embodiments.


For a large variety of genetically modified microbial cells, it can be useful to control the growth of other microbial cells in the culture. In some embodiments, a microbial cell controls the growth of other microbial cells in the culture. Exemplary functions and configurations by which a first microbial cell can control the growth of one or more other microbial cells according to some embodiments herein are described in Table 4.









TABLE 4







Exemplary uses of bacteriocin systems in genetically modified


microbial cells according to some embodiments herein








Exemplary
Exemplary configurations


Function
(according to some embodiments)





Biological
Immunity modulator activity


containment:
only in the desired culture



medium, but not outside and



bacteriocin activity at least



outside of the desired culture



medium; escape of the



bacteriocin producing cell



outside the desired culture



environment results in cytotoxicity



or growth inhibition of



the bacteriocin producing cell


Genetic guard
Bacteriocin constitutively produced;



genetic guard microbial organism does



not produce gene products for



modulating industrial process



of interest; immunity



modulator constitutively produced



(e.g under control of



constitutive promoter) and/or



genetic guard microbial



organism is insensitive to



the bacteriocin (e.g. a S.




cerevisiae genetic guard




producing bacteriocins that



target E. coli)


Selection of
Desired recombination event


recombinants:
causes an immunity



modulator to be restored in a



bacteriocin-expressing host.



Alternatively the immunity modulator



can be restored only



after the desired recombination event.


Vector stability:
Immunity modulator (or at least



one gene essential for



immunity is encoded on a



plasmid, and a corresponding



bacteriocin locus is encoded on



chromosome); clones that



lose the desired plasmid lack



immunity and are neutralized



by the bacteriocin


Minimization of
Immunity modulator activity


genetic drift
dependent on production of



industrial product (e.g. immunity



modulator expression



controlled by an operon, in which



a repressor is active in



the absence of industrial product,



and inactive in the



presence of industrial product);



if a mutation causes the



microbial organism's production



of industrial product to



fall below a desired level or



cease, the microbial organism



ceases to produce immunity



modulator, and is neutralized



by the bacteriocin.


Selection for
Immunity modulator is


microbes presenting
co-expressed with the gene of


a high yield
interest; microbial organisms


of expression
producing high levels of


expression (and/or
gene product of interest can


expressing
be selected by increasing


clones)
bacteriocin concentration;



microbial organisms producing



low levels of gene product of



interest (e.g. having a low



“industrial fitness”) are neutralized


Destruction during
Desired microbial cells


fermentation
constitutively express at least one


of contaminating
type of bacteriocin; secreted


microbes.
bacteriocins neutralize



invading microbial cells



Desired microbial cells express



at least one type of



bacteriocin when in the



desired environment (e.g.



bacteriocin is under the control



of an inducible promoter



that is activated by an



intermediate of the fermentation



process); secreted bacteriocins



neutralize contaminating



cells


Control of the
Immunity modulator activity


ratio of a
is repressed by accumulated


microbial flora,
product made by a microbial



cell; bacteriocins secreted by



the microbial cell (or other cells)



neutralize the microbial



cell










FIG. 2 is a schematic diagram depicting a genetically engineered microbial cell controlling the growth of at least one other microbial cell according to some embodiments herein. A first microbial cell 200 can comprise a bacteriocin polynucleotide and a corresponding immunity modulator polynucleotide. The bacteriocin polynucleotide can optionally be integrated into the cell's genome, while the immunity modulator polynucleotide can optionally be integrated into a plasmid present in the cell. In some embodiments an undesired clone of the cell 210 (a “non-expressing clone”) can lack immunity modulator activity, and optionally can lack bacteriocin activity. The bacteriocin activity of the first microbial cell 200 can neutralize the non-expressing clone 210. In some embodiments, an undesired clone of the cell 220 can lose a plasmid comprising the immunity modulator polynucleotide. The bacteriocin activity of the first microbial cell 200 can neutralize the undesired clone 220. In some embodiments, the microbial cell 230 can escape from the desired environment, causing the clone to lack immunity modulator activity. Bacteriocin activity from the escaped cell 230 and/or clones of the escaped cell can neutralize the escaped cell 230. In some embodiments, the escaped cell 230 further comprises a poison-antidote system to facilitate killing of the escaped cell upon its escape.



FIG. 3 is a schematic diagram of a first genetically engineered microbial cell 300 controlling the growth of a second genetically engineered microbial cell 310 and an invader cell 320 in a desired environment according to some embodiments herein. The first genetically engineered microbial cell 300 can comprise a first bacteriocin polynucleotide. The second genetically engineered microbial cell 310 can comprise a second bacteriocin polynucleotide. Each of the first and second genetically engineered microbial cells (300 and 310) can comprise a first immunity modulator polynucleotide encoding resistance to the first bacteriocin, and a second immunity modulator polynucleotide encoding resistance to the second bacteriocin. If the second genetically engineered microbial cell 310 becomes undesired, it can lose first immunity modulator activity via any of the mechanisms discussed herein, and thus be controlled by the first bacteriocin activity from the first genetically engineered microbial cell 300. If an invader cell 320 enters the desired environment, the first bacteriocin from the first genetically engineered microbial cell 300 and the second bacteriocin from the second genetically engineered microbial cell 310 can neutralize the invader cell.



FIG. 4 is a schematic diagram of a first genetically engineered microbial cell 400 controlling the growth of a first invader cell 410 and a second invader cell 420 in a desired environment according to some embodiments herein. The first genetically engineered cell 400 can comprise at least a first bacteriocin polynucleotide encoding a first bacteriocin, and at least a second bacteriocin polynucleotide encoding a second bacteriocin. The first genetically engineered cell 400 can produce the first bacteriocin to neutralize a first invader cell 410. The first genetically engineered cell 410 can produce the second bacteriocin to neutralize a second invader cell 420. In some embodiments, the first invader cell is of a different strain or species from the second invader cell. In some embodiments, the first invader cell responds to a different spectrum of bacteriocin activity than the second invader cell. In some embodiments, the first invader cell typically occupies a different ecological niche than the second invader cell.



FIG. 5 is a flow diagram illustrating methods of controlling the growth of at least a second microbial cell in culture according to some embodiments herein. The method can comprise culturing a first microbial cell in a culture medium comprising a second microbial cell under conditions in which the first microbial cell produces a bacteriocin at a level sufficient to control the growth of the second microbial cell 510. The culturing of the first microbial cell can optionally be continually maintained for a period of time 520. In some embodiments, the culturing of the first microbial cell is maintained continually for at least 3 days, for example at least 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 150, 200, 250, 300, 350, 400, 450, or 500 days, including ranges between any two of the listed values. A change in the culture medium comprising a presence or increase in the levels or activity of a third microbial cell can be detected 530. The first microbial cell can be re-engineered in response to the change to produce a second bacteriocin at a level sufficient to control the growth of the third microbial cell 540. The re-engineered first microbial cell can be cultured in the culture under conditions in which the first microbial cell produces a bacteriocin at a level sufficient to control the growth of the third microbial cell 550. The culture of the re-engineered microbial cell can be repeated continually for a period of time 560. In some embodiments, the culturing of the re-engineered microbial cell is maintained continually for at least 3 days, for example at least 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 150, 200, 250, 300, 350, 400, 450, or 500 days, including ranges between any two of the listed values.


In some embodiments, a first microbial cell can control the growth of a second microbial cell. In some embodiments, a first microbial cell can control the growth of a second microbial cell of the same strain as the first microbial cell. Each cell of the strain can comprise a bacteriocin polynucleotide and an immunity modulator polynucleotide, such that the immunity modulator, if expressed, protects against the bacteriocin. As such, if a clone of the strain loses expression of the immunity modulator, it will be neutralized by bacteriocin activity from the same strain. In some embodiments, the immunity modulator polynucleotide is in cis to the bacteriocin polynucleotide. As such, even if the bacteriocin polynucleotide and immunity modulator polynucleotide are both eliminated (e.g. if a plasmid is lost or a FLP-FRT cassette is excised), bacteriocin activity from other cells can still neutralize the cell. In some embodiments, the immunity modulator polynucleotide is in trans to the bacteriocin polynucleotide. The immunity modulator activity can be lost when the microbial cell is undesired (for example, if a plasmid is lost, or if a particular environmental condition induces a loss of immunity modulator activity). Accordingly, bacteriocin activity from both the microbial cell and also other cells of the strain can induce the neutralizing of the microbial cell.


In some embodiments, a ratio of two or more microbial species or strains is controlled. An exemplary control of ratios is illustrated in FIG. 3 (see cells 300 and 310). In some embodiments, a first microbial strain or species loses an immunity modulator activity via any of the mechanisms discussed herein when it is less desired than a bacteriocin-producing second strain or species, increasing the ratio of second strain or species to the first strain or species. In some embodiments in which the ratio of a first and second strain or species is controlled, a bacteriostatic bacteriocin or bacteriocins are selected (as opposed to bacteriocitic bacteriocins) so that the control of growth can be readily reversible, and/or to minimize the risk of eliminating either of the strains or species. In some embodiments, a first microbial strain or species produces a first bacteriocin under the control of a promoter that is activated in the presence of a compound or substance of interest, for example an intermediate or a product such as an industrially useful molecule. As such, levels of the bacteriocin increase as the levels of the compound of interest increase. In some embodiments, a second microbial strain or species produces (or catalyzes the production of) the compound or substance of interest, but does not have immunity modulator activity for the bacteriocin. As levels of the compound or substance of interest increase, levels of the bacteriocin increase, thus neutralizing the second strain (which lacks an appropriate immunity modulator or which has an insufficient amount of an appropriate immunity modulator to protect against the action of the bacteriocin). As such, relative levels of the first strain compared to the second strain increase. In some embodiments, a first microbial strain produces a first product and first bacteriocin activity, and a second microbial strain produces a second product and second bacteriocin activity. In some embodiments, the first product and the second product are intermediates in the same biosynthetic pathway. The first microbial strain can provide a first and second immunity modulator activity, in which the second immunity modulator activity can protect against the second bacteriocin and is negatively regulated by accumulation of the first product (e.g. expression of the second immunity modulator is repressed by the presence of the first product), and the first immunity modulator activity can protect against the first bacteriocin. The second microbial strain can also provide a first and second immunity modulator activity, except that the first immunity modulator activity is negatively regulated by accumulation of the second product (e.g. expression of the first immunity modulator is repressed by the presence of the second product). As such, when a relatively high amount of the first product has accumulated, the second immunity modulator in the first microbial strain is inactivated, and the microbial cells of the first strain are neutralized by the second bacteriocin, thus increasing the ratio of the second strain to the first strain, and increasing the relative amount of second product to first product. When a relatively high amount of the second product has accumulated, the first immunity modulator in the second microbial strain is inactivated, and the microbial cells of the second strain are neutralized by the first bacteriocin, the increasing the ratio of the first strain to the second strain and increasing the relative amount of first product to second product. As such, the ratio of the first stain to the second strain can be adjusted, depending on relative levels of product. In some embodiments, an equilibrium of ratios of the first strain to the second strain is maintained. In some embodiments, an equilibrium of ratios of the first product to the second product is maintained. In some embodiments, the first microbial strain's second immunity modulator responds to a first environmental condition or compound, and the ratio between the first and second microbial strain is otherwise controlled as above. In some embodiments, the second microbial strain's first immunity modulator responds to a second environmental condition or compound, and the ratio between the first and second microbial strain is otherwise controlled as above.


In some embodiments, it is desired that a microbial cell be contained within a particular environment, for example so that the first microbial cell can only survive in a particular culture medium such as industrial feedstock. In some embodiments, a microbial cell comprises a bacteriocin polynucleotide and an immunity modulator polynucleotide, such that the immunity modulator corresponds to the bacteriocin. In some embodiments, when the microbial cell is in a desired environment, the microbial cell produces an active bacteriocin and corresponding immunity modulator, but when the microbial cell escapes the desired environment, the microbial cell produces the active bacteriocin but no active immunity modulator. As a result, the microbial cell can grow in the desired environment, but is neutralized by its own bacteriocin when it escapes. For example, in some embodiments, the bacteriocin encoded by the bacteriocin polynucleotide is constitutively expressed, while the immunity modulator is expressed only when the microbial cell is in a desired environment. For example, in some embodiments, the bacteriocin encoded by the bacteriocin polynucleotide is constitutively expressed, while the immunity modulator is expressed only when the microbial cell is in an environment. For example, in some embodiments, a transcriptional activator of the immunity modulator is only present in the desired environment. For example, in some embodiments, the bacteriocin encoded by the bacteriocin polynucleotide and the immunity modulator is constitutively expressed, but if the microbial cell escapes, the immunity modulator is deleted (for example via the FLP-FRT system). Without being limited to any particular theory, if a genetic system for neutralizing an escaped microbial cell is not used within the culture itself, there may be little or no selective pressure to maintain the system within the culture, so that mutations can accumulate which reduce or eliminate the functioning of that genetic system. As such, if the microbial cell escapes from the culture, there is a possibility that the genetic system will no longer function. In contrast, it is appreciated herein that if a bacteriocin/immunity modulator system is useful both within a culture (for example, to control the growth of other genetically engineered cells in the culture, and/or to neutralize invading microbial cells), and also outside of a culture (for example, to neutralize a microbial cell that has escaped from culture), the use within the culture can provide selective pressure for the bacteriocin system to continue to function. Such selective pressure in accordance with some embodiments herein can minimize genetic drift. Such selective pressure in accordance with some embodiments herein can help to ensure that if the microbial cell escapes from the desired culture environment, the bacteriocin/immunity modulator system will be functioning to appropriately neutralize the escaped cell. As such, in some embodiments a single genetically engineered circuit, for example a bacteriocin/immunity modulator system is useful both to neutralize other microbial cells within a desired culture environment, and further to neutralize a microbial cell and/or its clones upon escape from a desired culture environment. It is contemplated in accordance with some embodiments herein, any or all of the configuration of bacteriocins disclosed herein can be tuned so that upon escape from the desired culture environment, the escaping microbial organism will be neutralized by its own bacteriocins (and/or bacteriocins of its direct or indirect progeny, and/or bacteriocins of another escaped cell and/or its direct or indirect progeny).


In some embodiments, a microbial cell can control growth in two or more ways. In some embodiments, a microbial cell can perform two or more of the functions described in Table 4. In some embodiments, the microbial cell uses the same bacteriocin/immunity modulator pair for two or more different functions. In some embodiments, the microbial cell uses a first bacteriocin/immunity modulator pair for a first function, and a second bacteriocin/immunity modulator pair for a second function. For example, in some embodiments, a microbial cell can express a bacteriocin which limits the growth of “non-expressing” clones that have lost immunity modulator activity in a desired environment, and can also provide containment within the desired environment by failing to express its own immunity modulator (while still expressing bacteriocin) if the microbial cell is outside of a desired environment. A schematic illustration of such two forms of growth regulation is illustrated in FIG. 2. For example, in some embodiments, a first microbial cell can express a bacteriocin which limits the growth of a second microbial cell, and can also neutralize the invading cell. A schematic illustration of such two forms of growth regulation is illustrated in FIG. 3. In some embodiments, two or more forms of growth control are provided using the same bacteriocin-immunity modulator pair. In some embodiments, each form of growth control is provided using a different bacteriocin immunity modulator pair. For example, a first immunity locus can be present on a plasmid that also includes a polynucleotide encoding a desired product. A clone that loses the plasmid will be neutralized by a corresponding first bacteriocin. A second immunity modulator polynucleotide (corresponding to a second immunity modulator) can be integrated into the genome of the microbial cell and can be silenced when the microbial cell escapes from its desired environment (for example, the second immunity modulator polypeptide can be in a FLP-FRT cassette that is excised upon escape). As such, upon escape, the microbial cell can be neutralized by the second bacteriocin.


It is noted that some embodiments described herein are compatible with poison-antidote systems. As such, in some embodiments a microbial cell, in addition to a bacteriocin and immunity modulator further comprises a poison-antidote system configured to kill or arrest the cell when it is not in a desired environment.


It can be useful to control the growth of two or more different types of microbial cells. For example, an environment can comprise, or can potentially comprise, two or more different types of undesired microbial organisms. As different microbial organisms can have different susceptibility to bacteriocins (for example, by possessing different profiles of immunity modulators), a combination of two or more bacteriocins (e.g. a “cocktail” of bacteriocins) can be useful for controlling the growth of two or more microbial organisms. In some embodiments, a single microbial cell produces two or more different bacteriocins for example, at least 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 25, 30, 35, 40, 45, or 50 different bacteriocins, including ranges between any two of the listed values. In some embodiments, a mixture of two or more different bacteriocin-producing microbial cells are provided, for example, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 25, 30, 35, 40, 45, or 50 different bacteriocin-producing microbial cells, including ranges between any two of the listed values. Optionally, one or more of the bacteriocin-producing microbial cells can produce two or more different bacteriocins.


It can be useful for a single microbial cell to regulate the growth of two or more different types of microbial cells. For example, it can be possible for a first type of invading cell to possess immunity to a first type of bacteriocin but not a second type of bacteriocin. As such, in some embodiments, a microbial cell comprises two or more bacteriocin polynucleotides, each of which encodes a different bacteriocin (see, e.g. FIG. 4). In some embodiments, the microbial cell comprises polynucleotides encoding at least three different bacteriocins, for example at least three, four five, six, seven, eight, nine, ten, eleven, twelve, thirteen, fourteen, fifteen, sixteen, seventeen, eighteen, nineteen, twenty, or more different bacteriocins, including ranges between any two of the listed values. In some embodiments, two or more bacteriocin polynucleotides are under control of a single promoter. In some embodiments, each bacteriocin polynucleotide under the control of a single promoter comprises its own translational initiation site. In some embodiments, each bacteriocin polynucleotide is under the control of a different promoter. In some embodiments, two different bacteriocins are under the control of two different but structurally or functionally identical promoters.


It can be useful for a microbial cell to control the growth of other microbial cells in its industrial environment, so as to help ensure the consistent production of an industrial product, regardless of the geographical location of the culture environment. Without being limited by any particular theory, certain industrial products manufactured via microbial culture may have certain characteristics that result from local microbial flora associated with a certain region (for example, Camembert cheese can have particular characteristics that result from local microbial flora in Camembert, France, or sourdough bread can have particular characteristics that result from local microbial flora in San Francisco, Calif.). As such, it can be desirable to control the microbial flora in a particular feedstock, so that a consistent industrial product can be produced in a variety of geographical locations. In some embodiments, a microbial cell is engineered to produce bacteriocins to neutralize invading microbial cells found in a variety of geographical locations, which can ensure more consistent industrial product characteristics for product produced in a variety of locations. For example, a microbial cell designed to be used in a particular industrial process and to be grown in a first geographic location may be engineered to express one or more bacteriocins effective against one or more invading organisms commonly encountered in the first geographic location. A microbial cell designed to be used in the same industrial process and to be grown in a second geographic location may be engineered to express one or more bacteriocins effective against one or more invading organisms commonly encountered in the second geographic location. Alternatively, a microbial cell designed to be used in a particular industrial process and to be grown in two different geographical locations may be engineered to express on or more bacteriocins effective against one or more invading organisms commonly encountered in each of the two geographical locations.


Frequently in industrial biotechnology, the goal is to work in continuous process, and it is contemplated that the longer the process continues, the higher the probability of contamination. Accordingly, the capacity to fight against contaminants can be useful for a continuous industrial process. Synthetic microorganisms designed in laboratories are frequently used in industrial processes. As such, it can be useful for these lab-engineered “champions” to fight against undesired invading microbial strains (for example wild-type strains from the environment and/or cross-contaminants from another industrial process) and also control their potential genetic drift and escape in the environment. In accordance with some embodiments herein, invading microbial strains can be fought, genetic drift can be minimized, and escape can be minimized by inducing suicidal bacteriocins based genetic circuits.


It can be useful for a microbial culture to remain stable for a continuous period of time, for example to ensure consistent industrial product characteristics over a continuous period of time. In some embodiments, a culture is stably maintained, at least in part, by bacteriocin-mediated neutralization of invading microbial cells. In some embodiments, a culture is stably maintained, at least in part, by bacteriocin-mediated control of ratios of two or more types of genetically engineered microbial cell in the culture. In some embodiments, a culture is stably maintained, at least in part, by reengineering a microbial cell already present in the culture. In some embodiments, the microbial cell is reengineered to add at least one additional bacteriocin activity (for example by adding a new bacteriocin, or expanding the expression of a bacteriocin already present) to neutralize a new type of invading microbial organism. In some embodiments, the microbial cell is reengineered to remove at least one bacteriocin activity that is no longer needed. Exemplary methods of maintaining a stable culture according to some embodiments herein are illustrated in FIG. 5. In some embodiments, a stable culture is maintained for at least about 3 days, for example about 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 150, 200, 250, 300, 350, 400, 450, or 500 days, including ranges between any two of the listed values.


Method for Detection of Ratios of Microbial Organisms


According to some embodiments herein, the ratios of two or more microbial strains or species can be controlled, depending on relative quantities of product, and/or compounds in the environment. Accordingly, in some embodiments, the ratios of the two or more microbial strains or species can be indicative of relative quantities of the product and/or compounds in the environment. In some embodiments, relative quantities of microbes of a first strain or species and second strain or species as described herein are detected, thereby indicating relative ratios or quantities of a first product or compound to a second product or compound. Relative quantities of each microbial strain or species can be detected in a variety of ways. In some embodiments, each strain or species comprises a unique oligonucleotide or polypeptide “bar code” sequence to facilitate specific detection. In some embodiments, each strain or species comprises a different bacteriocin (and thus a different bacteriocin polynucleotide), which can serve as a bar code. In some embodiments, at least one of quantitative PCR, oligonucleotide array analysis, flow cytometry, immunocytochemistry, in situ hybridization, ELISA, immunoblotting, oligonucleotide spot blotting, or the like is performed to determine relative quantities of the two different microbial strains or species.


Method for Determining Modulation of Growth of Microbial Organisms in Industrial Medium


In some embodiments, growth of microbial organisms in industrial medium is modulated. Before adding a particular genetically engineered microbial cell or combination of genetically engineered cells to an existing industrial culture of microbial cells, it can be useful to determine the effects, if any, of the bacteriocins on the growth of the microbial cells in the existing industrial culture. In some embodiments, the effect of a particular bacteriocin or combination of bacteriocins produced by genetically engineered cells on microbial organisms is assessed. A medium or other composition comprising one or more bacteriocins produced by genetically engineered microbial cells as described herein can be provided. In some embodiments, the medium comprises a supernatant comprising one or more bacteriocins. In some embodiments, the composition comprises one or more enriched or purified bacteriocins. In some embodiments, the supernatant or composition is thermally stable, for example to facilitate elimination of any microbes therein through high-temperature incubation, while retaining the function of any bacteriocins therein. In some embodiments, the medium or composition comprises a lyophilized material comprising bacteriocins. In some embodiments, the medium or composition comprises a substrate bound to bacteriocins, for example a gel, a matrix, or beads. The medium or compositions comprising bacteriocins can be added to the existing culture. In some embodiments, the medium or composition is added to a culture in an industrial culture environment. In some embodiments, the medium or composition is contacted with a sample of a culture from an industrial culture environment. The growth or absence of growth of microbial organisms in the industrial culture can be assessed for example to determine whether the one or more bacteriocins are effective against a new invading organism which has appeared in the culture or to determine the effects of the one or more bacteriocins on the existing organisms in the culture.


Before a genetically engineered microbial cell is produced, it can be useful to simulate the effects of one or more bacteriocins on a particular culture environment. In some embodiments, a particular bacteriocin or combination of bacteriocins with desired activity in a known culture environment is identified, and a microbial cell is constructed to produce the desired bacteriocin combination of bacteriocins. In some embodiments, a candidate bacteriocin or combination of bacteriocins is contacted with a portion of an industrial culture of interest, and effects of the bacteriocin or bacteriocins on microbial organisms in the culture are identified. In some embodiments, a variety of bacteriocins is provided. In some embodiments, the variety of bacteriocins is provided in a kit. In some embodiments, the bacteriocins were produced by microbial cells. In some embodiments, the bacteriocins are in supernatant from one or more microbial cells as described herein. In some embodiments, the bacteriocins were chemically synthesized. One or more candidate bacteriocins or mixtures of bacteriocins can be prepared, and can be contacted with a portion of the industrial culture environment. In some embodiments, one or more bacteriocins are added to the supernatant of a bacteriocin-producing genetically engineered cell that is already present in culture, for example to ascertain the effects of engineering the cell to produce at least one additional bacteriocin. In some embodiments, a sample from the industrial culture environment is contacted with each candidate bacteriocin or mixture of bacteriocins. In some embodiments, each candidate bacteriocin or mixture of bacteriocins is added to the culture environment. In some embodiments, effects of each candidate bacteriocin or mixture of bacteriocins are observed, for example as effects on the growth of at least one desired microbial cell in the culture, and/or the growth of at least one undesired microbial cell in the culture.


Upon identification of a desired combination of bacteriocins, a microbial cell can be constructed to produce the desired combination of bacteriocins. In some embodiments, an existing microbial cell, for example a microbial cell that is producing a desired product or intermediate in industrial culture is reengineered to produce the desired combination of bacteriocins. In some embodiments, the microbial cell is reengineered via plasmid conjugation. In some embodiments, a new cell is engineered to produce the desired combination of bacteriocins and added to the industrial culture.


Genetic Guard Microbial Organisms and Systems


It can be useful for a bacteriocin-producing microbial organism to protect other microbial organisms from undesired microbial organisms. Accordingly, in some embodiments, a “genetic guard microbial organism” is provided (which, as a shorthand, may also be referred to herein as a “genetic guard”). As used herein, a “genetic guard” refers to a microbial organism or collection of microbial organisms that produces one or more bacteriocins so as to protect a “protected” microbial organism that is immune to neutralizing effects of the bacteriocins, but does not itself produce the bacteriocins. The “protected” microbial organism can perform a desired industrial process (for example, fermentation), while, as used herein, the “genetic guard” itself does not perform the desired industrial process. The genetic guard microbial organisms can express and secrete one or more bacteriocins. Optionally, the genetic guard microbial organisms can constititvely express and secrete one or more of the bacteriocins. The genetic guard microbial organism can be non-susceptible to the bacteriocins produced by the genetic guard, for example by producing immunity modulator(s) to the bacteriocin(s) secreted by the genetic guard, and/or by being a type of microbial organism that is not susceptible to the to the bacteriocin(s) produced by the genetic guard (e.g. if the genetic guard comprises a yeast and secretes bacteriocins that specifically neutralize particular bacteria such as lactic acid bacteria). In some embodiments, the protected microbial organism produces immunity modulator(s) to the bacteriocin(s) produced by the genetic guard. In some embodiments, the protected microbial organism is not susceptible to the bacteriocins produced by the genetic guard (e.g. if the protected microbial organism comprises a yeast, and the genetic guard microbial organism produces bacteriocins that specifically neutralize particular bacteria). In some embodiments, the protected microbial organism is not genetically modified (“non-GMO”). In some embodiments, the protected microbial organism is non-GMO, but is from a strain selected to have desired properties, for example via selective pressure, and/or classical mutagenesis. It is contemplated that even if the protected microbial organism has desirable industrial properties, the protected microbial organism may be insufficient at fighting-off one or more undesired microbial organisms, for example invading local flora. Accordingly, in some embodiments herein, a genetic guard protects a protected microbial organism from undesired microbial organisms. By way of example, non-GMO microbial organisms can be useful in a number of processes, for example food production, or purification such as water purification. In some embodiments, non-GMO “protected” microbial organisms are selected based on their ability to destroy one or more contaminants (for example, known water contaminants), and a genetic guard is provided to protect the protected microbial organisms from known or potential invading undesired microbial organisms. In some embodiments, systems comprising a genetic guard as described herein are provided.


It can be useful to maintain a culture medium that does not contain genetically modified organisms, for example to perform particular industrial processes, and/or to comply with certain production standards or specifications. It is contemplated that in accordance with some embodiments herein, genetic guards can be separated from the “protected” microbial organism by a membrane that is permeable to bacteriocins, but not to the genetic guard microbial organisms. As such, bacteriocins produced by the genetic guard can enter a culture medium occupied by the protected microbial organisms, thus protecting the protected organisms from one or more undesired microbial organisms while the genetic guard remains separated from the microbial organism.


It is contemplated herein that a particular culture medium can be invaded by and/or subject to a variety of undesired microbial organisms, which may susceptible to different bacteriocins or combinations of bacteriocins. Accordingly, in some embodiments, the genetic guard microbial organism produces two or more different bacteriocins, for example, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 2, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, or 100 different bacteriocins, including ranges between any two of the listed values, for example 2 to 100, 2 to 50, 2 to 20, 2 to 10, 5 to 100, 5 to 50, 5 to 20, 5 to 10, 10 to 100, 10 to 50, 10 to 20, 20 to 100, 20 to 50, or 50 to 100 different bacteriocins. By way of example, in some embodiments, the genetic guard comprises a single E. coli strains, which produces 20 different bacteriocins. In some embodiments, the genetic guard produces a cocktail of bacteriocins. In some embodiments, the genetic guard comprises a mixture of two or more different bacteriocin-producing microbial organisms, for example, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 2, 30, 35, 40, 45, or 50 different bacteriocin-producing microbial organisms, so as to provide a desired combination of bacteriocins. By way of example, in some embodiments, the genetic guard comprises a combination of 4 different E. coli strains, each of which produces 5 different bacteriocins (for a total of 20 different bacteriocins). In some embodiments, the genetic guard produces a cocktail of bacteriocins that target a particular category of microbial organism, for example lactic acid bacteria.


It can be useful for the genetic guard to be separated from a particular environment or culture medium, for example to maintain an industrial culture environment or feedstock free of genetically modified organisms (GMOs). In some embodiments, the genetic guard is physically separated from the protected microbial organism. Optionally, the protected microbial organism is non-GMO. In some embodiments, the genetic guard is temporally separated from the protected microbial organism. Optionally, the protected microbial organism is non-GMO. For example, temporal separation in accordance with some embodiments can comprise adding the genetic guard to a culture medium to neutralize invading organisms, and subsequently adding the protected microbial organism to the culture medium. Optionally, the genetic guard can be neutralized prior to adding the protected microbial organism, for example via bacteriocins or a poison-antidote system as described herein. Optionally, the genetic guard can be neutralized by their own bacteriocins, for example by repressing expression of the corresponding immunity modulator or immunity modulators in the genetic guard. For example, temporal separation in accordance with some embodiments can comprise culturing the protected microbial organism in a culture medium, and subsequently adding the genetic guard to the culture medium.


In some embodiments, the genetic guard is positioned in a first environment, and the protected microbial organism or organisms are positioned in a second environment. The first environment can be separated from a second environment by a membrane permeable to bacteriocins produced by the genetic guard but not the genetic guard itself. In some embodiments, the membrane is not permeable to the protected microbial organism. In some embodiments, the first environment is in fluid communication with the second environment. Without being limited by any theory it is contemplated that as bacteriocins typically comprise diffusible stable peptide molecules, the bacteriocins can readily move in aqueous solution from the first environment to the second environment. In some embodiments, the first environment comprises a first chamber, tank, or pond and the second environment comprises a second chamber, tank, or pond. In some embodiments, the second environment comprises an open-air environment. Optionally, an industrial process, for example fermentation, is taking place in the second environment. In some embodiments, the first environment comprises a capsule positioned inside of the second environment. A variety of membranes are suitable for arrangements and systems in accordance with embodiments herein, so long as the membranes are permeable to bacteriocins, but not to genetic guards. In some embodiments, the membrane comprises at least one of a mesh, strainer, filter, selective valve, unidirectional valve, or porous membrane. In some embodiments, the membrane comprises one or more pores having a diameter smaller than the diameter of the genetic guard. In some embodiments, the bacteriocins diffuse through the membrane. In some embodiments, fluidic motion from the first environment to the second environment drives the movement of the bacteriocins. In some embodiments, the genetic guard is selected based on known or likely undesired microbial organisms in the culture medium. In some embodiments, the genetic guard is changed after a period of time. For example, in response to changes in the invading undesired microbial organisms, the genetic guard can be adjusted so that additional bacteriocins are added, and/or some bacteriocins are removed.


In some embodiments, an existing microbially-mediated industrial process is performed in a new location, which is characterized by one or more potential undesired microbial organisms. As the microbial organisms of the existing industrial process may not produce bacteriocins against some or all of the undesired microbial organisms of the new location, a genetic guard producing bacteriocins targeting the undesired microbial organisms can be added to the culture medium in the new location. As such, the bacteriocins of the genetic guard can neutralize one or more undesired microbial organisms, if present in the culture medium.


In some embodiments, the genetic guard produces a cocktail of bacteriocins. The cocktail of bacteriocins can be collected while the genetic guard is not, and the cocktail of bacteriocins can be contacted with a culture medium of interest. As such, separation can be maintained between the culture medium and the genetic guard. The skilled artisan will appreciate that a number of methods are suitable for separating the bacteriocins from the genetic guard, so long as the methods do not substantially damage, denature, or destroy the bacteriocins. In some embodiments, the cocktail of bacteriocins is collected by filtering out the genetic guard. In some embodiments, the cocktail of bacteriocins is collected by centrifuging to separate the genetic guard from the bacteriocins. In some embodiments, the cocktail of bacteriocins is collected by neutralizing the genetic guard. In some embodiments, the cocktail is stored prior to contact with the culture medium.



FIG. 6 is a schematic diagram illustrating a system 600 comprising a genetic guard in accordance with some embodiments herein. The system 600 can comprise a first environment 610 and a second environment 620. Optionally, the second environment 620 can comprise an inlet 622 and/or an outlet 624. A fluid or culture medium to be treated, for example polluted water or feedstock can enter 626 via the inlet 622, and exit 628 via the outlet. The first environment 610 can be separated from the second environment 620 by a membrane 630 that is permeable to bacteriocins, but is not permeable to genetic guard microbial organisms 640. The first environment 610 can comprise genetic guard microbial organisms 640, which produce bacteriocins that can move 650 between the first environment 610 and the second environment 620. The second environment 620 can comprise protected microbial organisms 660, which are not susceptible to the neutralizing effects of the bacteriocins produced by the genetic guard 640. Optionally, the protected microbial organisms 660 can be non-GMO. However, if undesired microbial organisms 670, 675 are present, the undesired microbial organisms 670, 675 can be neutralized by the bacteriocins. In some embodiments, the system 600 comprises a treatment system for polluted water. In some embodiments, the system comprises a second inlet 623 so that fluid to be treated enters 627 the first environment 610 before entering the second environment 620. Optionally, the system can comprise the second inlet 623 but not the first inlet 622. Optionally, the system can comprise the second inlet 623 and the first inlet 622. As such, the genetic guard microbial organisms 640 can secrete bacteriocins to neutralize invading undesired organisms 670, 675, while maintaining physical separation between the genetic guard microbial organisms 640 and protected microbial organisms 660.



FIG. 7 is a schematic diagram illustrating a genetic guard system 700 that can be useful for photosynthetic production in accordance with some embodiments herein. The system 700 can comprise a first environment 710. Optionally, the first environment 710 can comprise an inlet 715. The first environment 710 and optional inlet 715 can be in fluid and gas communication with a second environment 720. The first environment 710 can be separated from the second environment 720 by a membrane 730 that is permeable to bacteriocins and gas, but is not permeable to genetic guard microbial organisms 640. The first environment 710 can comprise genetic guard microbial organisms 640, which produce bacteriocins 740 that can move between the first environment 710 and the second environment 720. The second environment can comprise photosynthetic microbial organisms 750, for example photosynthetic microalgae. Optionally, the photosynthetic microbial organisms 750 are non-GMO. A source of light 760 can be in optical communication with the second environment 720. It is contemplated that the source of light 760 can comprise sunlight and/or artificial light. CO2 770 can enter the second environment 720, and can be used in combination with light from the light source 760 for photosynthetic production by the photosynthetic microbial organisms 750. Optionally the CO2 770 can enter the inlet 715 of the first environment 710, and enter the second environment 720 through the membrane 730. Bacteriocins 740 produced by the genetic guard microbial organisms 740 can enter the second environment 720 through the membrane 730, and can neutralize undesired microbial organisms 780, 785 in the second environment. Optionally, the second environment can comprise an outlet 780, and biomass 790 produced by the photosynthetic microbial organism 760 can exit the second environment 720 via the outlet 790. As such, the genetic guard microbial organisms 640 can secrete bacteriocins to neutralize invading undesired organisms 670, 675, while maintaining physical separation between the genetic guard microbial organisms 640 and photosynthetic microbial organisms 750 and biomass 790.


Preservation and/or Storage of Feedstock


It can be useful to store a feedstock without performing an industrial process in the feedstock, for example to build up a reserve in case additional output is needed later on, to decrease output for the time being, and/or to transport the feedstock to a different location. For example, a feedstock for feeding animals can be harvested in the summer, and stored until winter, when it is used to feed animals. For example, a feedstock may undergo an initial round of fermentation to produce a desired component in the feedstock, or to destroy or remove a desired component in the feedstock, and/or to stabilize the feedstock for storage, and the feedstock may then be preserved until it is to be consumed.


It is contemplated herein that undesired microbial organisms can contaminate a feedstock during storage, and/or consume or destroy one or more components of the feedstock. For example, microbial organisms can be selected or engineered to produce glucose from cellulose in a feedstock. However, in a feedstock comprising glucose, undesired microbial organisms can catabolize the glucose. Accordingly, in some embodiments, a genetic guard is added to a feedstock so as to protect the feedstock from one or more undesired microbial organisms during storage. In some embodiments, the feedstock undergoes an initial round of processing (e.g. fermentation) to produce, remove, or destroy at least one component (for example to stabilize the feedstock for storage and/or to provide a desired component in the feedstock such as glucose from cellulose), and the genetic guard then protects the feedstock from subsequent undesired microbial organisms. In some embodiments, the genetic guard is physically separated from the feedstock by a bacteriocin-permeable membrane during fermentation and/or during storage. It is contemplated that bacteriocin-mediated neutralization of undesired microbial organisms in a feedstock in accordance with some embodiments herein can permit a feedstock to be stored stably for long periods of time. In some embodiments, the feedstock is stably stored for at least one month, for example, at least one month, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, or 24 months.


In some embodiments, the genetic guard is contacted with the feedstock. In some embodiments, the genetic guard is already present in the feedstock, and proliferation of the genetic guard is induced prior to or during storage so that the genetic guard produces bacteriocins to neutralize undesired microbial organisms in the feedstock.


Methods of Preparing and Using Bacteriocin-Producing Microbial Organisms:


In accordance with some embodiments herein, bacteriocin-producing microbial organisms can be prepared for use in an industrial process which is subject to, or at risk of contamination or interference by undesired microbial organisms. In some embodiments, a circuit for desired production of bacteriocins is designed, nucleic acid sequences are engineered, and the circuit is assembled and introduced to a host microbial organism.



FIG. 8 is a flow diagram illustrating methods of preparing and using bacteriocin. The method can comprise identifying a set of genes coding for bacteriocins targeting the undesired microbial organisms 810. An approach for identifying genes in accordance with some embodiments herein comprises identifying bacteriocin genes using an electronic database, for example bactibase, accessible on the world wide web at bactibase.pfba-lab-tun.org/main.php. The method can comprise designing a construct for expressing a bacteriocin, comprising integrating the gene set, promoter(s), and genetic regulatory elements 820. As such, a construct can be designed. Approaches for designing an appropriate construct in accordance with some embodiments herein can comprise using parts databases, for example electronic databases such as the Biobricks foundation parts database. It is contemplated herein that in accordance with some embodiments, the skilled artisan can selected desired components (including, but not limited to bacteriocin nucleotides, promoters, and genetic regulatory elements) based on their identified functions, and engineer a construct with a desired functionality based upon the identified functionality of these components. By way of example, functionalities of different possible components can be found in one or more databases, such as the Biobricks catalog. A catalog of Biobricks components is accessible on the world wide web at parts.igem.org. The method can comprise engineering the gene set with compatible integration sites 830, which can allow the genes to be assembled in a desired manner and/or appropriately introduced to a desired host. A variety of suitable integration sites can be used, for example restriction sites, substrates for an enzymatic recombination reaction, or sequences for homologous recombination. In some embodiments, the gene set is synthesized. In some embodiments, a nucleic acid comprising the gene set is synthesized. In some embodiments, the gene set is provided in one or more vectors such as plasmids. The method can comprise assembling the circuits 840. The circuits can include one or more bacteriocin nucleic acids, and a suitable promoter(s) and regulatory element(s). A variety of configurations of circuits can be suitable. In some embodiments, a single promoter drives expression of multiple bacteriocins and optional gene products of interest. In some embodiments, different bacteriocin nucleic acids are under the control of different promoters. In some embodiments, a circuit is comprised in a single construct such as a plasmid. In some embodiments, a circuit is comprised in two or more constructs such as plasmids. In some embodiments, a nucleic acid comprising the complete circuit is synthesized. In some embodiments, the circuit is assembled using conventional molecular cloning techniques, or a combination of nucleic acid synthesis and molecular cloning. Molecular cloning techniques are well known to the skilled artisan. Many suitable molecular cloning techniques are described in Green and Sambrook “Molecular Cloning: A Laboratory Manual” (2012) Cold Spring Harbor Laboratory Press; 4th edition, which is hereby incorporated by reference in its entirety. The method can comprise introducing the circuits into the desired host 850. Suitable hosts include, but are not limited to, naturally occurring, genetically engineered, and fully synthetic microbial organisms, including, but not limited to the exemplary microbial organisms described herein. Optionally, the method includes performing phenotypic characterization 860, for example strain behavior. For example, it can be useful to select for desired transformants or recombinants, confirm that a strain is producing the desired bacteriocins, and/or confirm that a regulatory circuit is responsive to an appropriate stimulus such as industrial precursor or product. The method can comprise industrial application comprising using the produced strain in the production plan 870. For example, a bacteriocin-producing strain can be introduced to an existing culture medium, or can be used as a starter culture for a new culture medium.


Kits


Kits are provided according to some embodiments herein. In some embodiments, the kits contain at least one of bacteriocins, bacteriocin polynucleotides, immunity modulators, immunity modulator polynucleotides, other genetic elements (such as promoters, expression vectors, conjugation plasmids, and the like), genetically engineered microbial cells, and/or culture medium as described herein. In some embodiments, the kits further contain packaging, and/or instructions for use of the contents therein. In some embodiments, the kits comprise a variety of bacteriocins, for example for use in ascertaining the effects of a candidate bacteriocin or combination thereof on a culture environment. In some embodiments, the kits comprise a variety of bacteriocin polynucleotides and immunity modulator polynucleotides, for example for constructing a microbial cell with desired characteristics. In some embodiments, the kits comprise a variety of donor microbial cells that comprise donor plasmids encoding a variety of combinations of at least one bacteriocin and/or at least one immunity modulator.


Example 1: Protection of Cyanobacteria and Neutralization Upon Escape

A cyanobacterium comprising a biosynthetic pathway for a lipid is provided. The cyanobacterium has been genetically engineered to comprise a bacteriocin polynucleotide under the control of a first promoter that is constitutively active. The cyanobacterium comprises an immunity modulator polynucleotide for an immunity modulator that protects against the bacteriocin, and that is under the control of a second promoter that is only active in the presence of a precursor found in an industrially useful feedstock. The cyanobacterium is placed in the feedstock. While it is producing lipids in the feedstock, the cyanobacterium also secretes active bacteriocin, thus neutralizing invading microorganisms. Upon escape from the feedstock, the cyanobacterium no longer possesses immunity modulator activity, but still produces bacteriocin, and thus is neutralized by the bacteriocin.


Example 2: Protection of Bacillus, Maintenance of a Plasmid, and Neutralization Upon Escape

A genetically engineered Bacillus cell is provided, comprising a bacteriocin polynucleotide integrated into its chromosomal genome, and a plasmid comprising an immunity modulator polynucleotide for an immunity modulator that protects against the bacteriocin as well as a polynucleotide encoding a polypeptide to be manufactured. The bacteriocin is under the control of a constitutive promoter. The immunity modulator polynucleotide is under the control of a promoter that is only active in the presence of a precursor found in the industrially useful feedstock. As such, when the Bacillus is in the feedstock, it produces the bacteriocin to kill invading microbial cells. Moreover, when Bacillus clones lose the plasmid, they become undesirable (as they no longer can produce the polypeptide to be manufactured), and as a result of also losing the immunity modulator, are killed by the bacteriocin. Upon escape from the feedstock, the Bacillus cell no longer possesses immunity modulator activity, but still produces bacteriocin, and thus is neutralized by the bacteriocin produced by the other genetically engineered Bacillus cells in its environment.


Example 3: Regulation of Levels of Two Partner Strains of S. cerevisiae

A first S. cerevisiae strain is provided. The first strain comprises a bacteriocin polynucleotide under the control of a first promoter that is induced by the presence of a metabolite. As such, the bacteriocin is expressed more strongly as levels of the metabolite increase. The encoded bacteriocin arrests the S. cerevisiae cell cycle, but is bacteriostatic, not bacteriolytic. The first strain also comprises an immunity modulator polynucleotide for conferring immunity to the first bacteriocin under control of a promoter that is activated by a compound present only in the industrial feedstock. A second, partner strain of S. cerevisiae comprises a polynucleotide encoding an enzyme that produces the metabolite, but does not comprise a corresponding immunity modulator activity. As levels of the metabolite increase through activity of the second strain, the first strain produces more and more bacteriocin, thus arresting the cell cycle of the second strain, and reducing the relative amount of cells of the second strain available. Meanwhile, the first strain continues to proliferate. Accordingly, the relative ratio of the first strain to the second strain is increased, and buildup of the metabolite is reduced.


Example 4: Regulation of A. Ferrooxidans by E. coli

An Acidithiobacillus ferrooxidans strain is engineered to produce stored energy from the oxidation of Fe(II) to Fe(III) in a feedstock comprising an iron source that diffuses Fe(II) into the feedstock. An E. coli strain is engineered to control the growth of the first strain of A. ferrooxidans. The A. ferroxidans strain comprises a nucleic acid encoding Colicin-Ia (SEQ ID NO: 56) under the control of a rus operon promoter (SEQ ID NO: 549), and a nucleic acid encoding a Colicin-Ia immunity modulator (SEQ ID NO: 464) under the control of a constitutive promoter (B. subtilis ctc promoter, SEQ ID NO: 663). However, the ferroxidans strain does not produce any Colicin-E1 immunity modulator. The E. coli strain comprises a nucleic acid encoding Colicin-E1 (SEQ ID NO: 54) and Colicin-E1 immunity modulator (SEQ ID NO: 465) under the control of a constitutive promoter (SEQ ID NO: 651) integrated into its genome. However, the E. coli strain does not produce Colicin-Ia immunity modulator (SEQ ID NO: 464). As the A. ferroxidans oxidizes Fe(II) to Fe(III), levels of Fe(II) decrease. As such, activity of the rus promoter decreases, and the A. ferroxidans produces lower levels of Colicin-Ia (SEQ ID NO: 54). Accordingly, any neutralization of the E. coli strain is minimized. The second strain of E. coli proliferates, producing higher levels of Colicin-E1 (SEQ ID NO: 54). The Colicin-E1 neutralizes the A. ferroxidans, so that less A. ferroxidans is present to oxidize Fe(II) into Fe(III). Accordingly levels of Fe(II) increase again. As Fe(II) accumulates, the A. ferroxidans produce higher levels of Colicin-Ia (SEQ ID NO: 56), neutralizing organisms the second strain of E. coli. Accordingly, there in minimal E. coli producing Colicin-E1, and neutralization of A. ferroxidans is minimal as well. The A. ferroxidans proliferates, oxidizing the Fe(II) into Fe(III) and storing energy.


Example 5: Genetic Guard for Ethanol Synthesis by Non-GMO Microbial Organism

A genetic guard in accordance with some embodiments herein is used to protect a non-GMO microbial organism that produces ethanol from glucose in a feedstock. The genetic guard comprises an E. coli strain comprising and expressing 20 different bacteriocin nucleic acids under the control of a single constitutive promoter, and as such, produces 20 different bacteriocins in approximately stoichiometric ratios. It is also contemplated that in accordance with some embodiments herein, another suitable option is to provide a genetic guard comprising five different E. coli strains, each of which comprise and express five different bacteriocins. The genetic guard is disposed in the first environment 610 of a system as illustrated in FIG. 6. The bacteriocins diffuse through a porous membrane to enter the second environment. The porous membrane is made of porous polytetrafluoroethylene that is permeable to bacteriocins and liquid, but is not permeable to the genetic guard. Non-GMO fermenting S. cerevisiae are cultured in the second environment. The non-GMO fermenting S. cerevisiae produce ethanol from glucose in the feedstock. The bacteriocins from the genetic guard neutralize invading microbial organisms, preventing contamination of the feedstock and consumption of the ethanol by invading microbial organisms. The porous membrane maintains physical separation between the genetically-engineered genetic guard and non-GMO fermenting yeast. As such, the fermenting yeast is protected from undesired microbial organisms, while a portion of the feedstock is keep free of GMO's.


Example 6: Protection of Non-GMO Photosynthetic Microalgae by Genetic Guard

A genetic guard in accordance with some embodiments herein is used to protect a non-GMO photosynthetic microalgae that produces biomass. The biomass can be suitable for a variety of downstream applications, for example extracting compounds of interest, energy, or animal feed. The genetic guard comprises a mixture of 50 different B. subtilis strains, each of which produces a different bacteriocin. The genetic guard is disposed in an aqueous first environment 710 of a system as illustrated in FIG. 7. The system further comprises an aqueous second environment 720, which contains non-GMO photosynthetic microalgae, which yield biomass. The first environment is separated from the second environment by a 0.5 μm fiberglass filter, so as to allow gas, liquid, and bacteriocins to pass between the first environment and second environment, while blocking bacteriocins from passing between the first environment and second environment. CO2 enters the system through an inlet in the first environment, and diffuses through the first environment and second environment. Sunlight enters the second environment, and drives the photosynthetic microalgae to produce biomass. As a result, a high-glucose biomass is produced in the second environment. The 50 different bacteriocins also diffuse from the first environment to the second environment. The bacteriocins neutralize invading undesired microbial organisms, thus preventing contamination the biomass and preventing undesired microbial organisms from interfering with biomass production and/or catabolizing the biomass. Biomass is harvested from the second environment via an outlet. As such, physical separation is maintained between genetically engineered genetic guard and non-GMO photosynthetic microalgae, while neutralizing invading microorganisms in the second environment.


Example 7: Protection of Saccharomyces cerevisiae Against Lactic Acid Bacteria Family (LAB)

A Saccharomyces cerevisiae is engineered to produce multiple bacteriocins active on Lactic Acid Bacteria (LAB). Leucococin C (SEQ ID NO: 368) and Diversin V41 (SEQ ID NO: 74) are shown to be active on LAB bacteria according to the bactibase database, which is accessible on the world wide web at bactibase.pfba-lab-tun.org/main.php. It is appreciated that as S. cerevisiae are not sensitive to Leucococin or Diversin V41, there is no need to integrate corresponding immunity loci into the S. cerevisiae. As such, Leucococin C (SEQ ID NO: 368) and Diversin V41 (SEQ ID NO: 74) are selected, and polynucleotides are encoding Leucococin C (SEQ ID NO: 369) and Diversin V41 (SEQ ID NO: 75) are provided. The polynucleotides encode Leucococin C (SEQ ID NO: 368) and Diversin V41 (SEQ ID NO: 74), each fused to signal peptide from yeast mating factor alpha to facilitate secretion by the S. cerevisiae. The polynucleotides are integrated into the genome of a single S. cerevisiae strain under the control of a strong constitutive promoter, PPGK1 (3-Phosphoglyceratekinase) (SEQ ID NO: 692). The transformation is performed using standard homologous recombination. It is contemplated herein that other suitable strong constitutive promoters include, but are not limited to PTEF1 (translation elongation factor) and PGAP (glycerinaldehyde-3-phosphate dehydrogenase) (a list of constitutive yeast promoters is accessible on the world wide web at parts.igem.org/Promoters/Catalog/Yeast/Constitutive). The bacteriocin activity expressed by the transformed S. cerevisiae is measured by inhibitory assays on LAB cultures invading the production plan. As the makeup of undesired microbial organisms invading the feedstock changes over time, S. cerevisiae strains producing additional, fewer, and/or different bacteriocins can be produced and introduced into the industrial feedstock.

Claims
  • 1. A genetically engineered microbial cell comprising: a first nucleic acid under the control of a first promoter, the first nucleic acid encoding a secreted bacteriocin capable of inhibiting or preventing reproduction of at least one of the genetically engineered microbial cell, or a second microbial cell; anda second nucleic acid comprising a nucleic acid sequence which encodes an immunity modulator that protects against the secreted bacteriocin, wherein the genetically engineered microbial cell has been genetically engineered to decrease or eliminate at least one of transcription, post-transcriptional expression or post-transcriptional activity of the immunity modulator concurrent with expression of the secreted bacteriocin, thereby causing the secreted bacteriocin to inhibit or prevent reproduction of the genetically engineered microbial cell.
  • 2. The genetically engineered microbial cell of claim 1, wherein the first promoter is constitutive.
  • 3. The genetically engineered microbial cell of claim 1, wherein the first promoter is regulatable.
  • 4. The genetically engineered microbial cell of claim 1, wherein the genetically engineered microbial cell comprises at least one of the following to decrease or eliminate at least one of transcription, post-transcriptional expression, or post-transcriptional activity of said immunity modulator: (a) a second promoter operably linked to the second nucleic acid which encodes the immunity modulator, the second promoter genetically engineered to be inactive concurrent with transcription of the first nucleic acid by the first promoter;(b) a second promoter operably linked to the second nucleic acid which encodes the immunity modulator; and a nucleic acid encoding a transcriptional repressor configured to repress the second promoter while the first promoter is active;(c) a ribozyme or antisense oligonucleotide complementary to the second nucleic acid which encodes the immunity modulator, the ribozyme or antisense oligonucleotide genetically engineered to be expressed while the first promoter is active;(d) a regulatable tRNA specific for a transcript of the second nucleic acid which encodes the immunity modulator, and genetically engineered to not be induced while the first promoter is active;(e) a site-specific protease specific for a site on the immunity modulator;(f) a FLP-FRT or cre-lox cassette comprising the second nucleic acid which encodes the immunity modulator; or(g) a plasmid comprising the second nucleic acid which encodes the immunity modulator.
  • 5. The genetically engineered microbial cell of claim 1, further comprising a third nucleic acid encoding a second secreted bacteriocin capable of inhibiting or preventing reproduction of a third microbial cell.
  • 6. The genetically engineered microbial cell of claim 5, wherein the third microbial cell is of a different species than the genetically engineered microbial cell.
  • 7. The genetically engineered microbial cell of claim 5, wherein the third microbial cell is pathogenic.
  • 8. The genetically engineered microbial cell of claim 5, wherein the third nucleic acid is in cis with the first nucleic acid.
  • 9. The genetically engineered microbial cell of claim 5, wherein the third nucleic acid is under the control of the first promoter.
  • 10. The genetically engineered microbial cell of claim 5, further comprising a third promoter, wherein the third nucleic acid is under the control of the third promoter.
  • 11. The genetically engineered microbial cell of claim 5, further comprising a fourth nucleic acid which encodes a second immunity modulator that protects the genetically engineered microbial cell against said second secreted bacteriocin.
  • 12. The genetically engineered microbial cell of claim 11, wherein the fourth nucleic acid is in cis to the second nucleic acid.
  • 13. The genetically engineered microbial cell of claim 1, wherein the engineered microbial cell is selected from the group consisting of: Bacillus species, Paenibacillus species, Streptomyces species, Micrococcus species, Corynebacterium species, Acetobacter species, Cyanobacteria species, Salmonella species, Rhodococcus species, Pseudomonas species, Lactobacillus species, Enterococcus species, Alcaligenes species, Klebsiella species, Paenibacillus species, Arthrobacter species, Corynebacterium species, Brevibacterium species, Thermus aquaticus, Pseudomonas stutzeri, Clostridium thermocellus, and Escherichia coli.
  • 14. The genetically engineered microbial cell of claim 1, wherein the engineered microbial cell is of the genus Enterococcus.
  • 15. The genetically engineered microbial cell of claim 1, wherein the engineered microbial cell is of the genus Lactobacillus.
  • 16. The genetically engineered microbial cell of claim 1, wherein the engineered microbial cell is of the species Escherichia coli.
  • 17. The genetically engineered microbial cell of claim 1, wherein the second microbial cell is of a different species or strain than the genetically engineered microbial cell.
  • 18. The genetically engineered microbial cell of claim 1, wherein the second microbial cell is of the same species or strain as the genetically engineered microbial cell.
RELATED APPLICATIONS

This Application is a continuation of U.S. patent application Ser. No. 15/087,706, filed Mar. 31, 2016, which is a divisional of U.S. patent application Ser. No. 14/459,810, filed Aug. 14, 2014, issued May 10, 2016 as U.S. Pat. No. 9,333,227, which claims the benefit of U.S. Provisional Application Ser. No. 61/867,510, filed on Aug. 19, 2013, each of which is hereby incorporated by reference in its entirety.

US Referenced Citations (35)
Number Name Date Kind
5300431 Pierce et al. Apr 1994 A
5549895 Lyon et al. Aug 1996 A
5631153 Capecchi et al. May 1997 A
5670370 Molin et al. Sep 1997 A
5855732 Yoshida Jan 1999 A
5888732 Hartley et al. Mar 1999 A
5910438 Bernard et al. Jun 1999 A
5922583 Morsey Jul 1999 A
6143557 Hartley et al. Nov 2000 A
6171861 Hartley et al. Jan 2001 B1
6180407 Bernard et al. Jan 2001 B1
6270969 Hartley et al. Aug 2001 B1
6271359 Norris et al. Aug 2001 B1
6528285 Biet et al. Mar 2003 B1
7176029 Bernard et al. Feb 2007 B2
7183097 Gerdes et al. Feb 2007 B1
7595185 Gerdes et al. Sep 2009 B2
7595186 Gerdes et al. Sep 2009 B2
8318497 Szpirer et al. Nov 2012 B2
8470580 Gabant et al. Jun 2013 B2
8476048 Caimi et al. Jul 2013 B2
8697426 Leana et al. Apr 2014 B2
8877504 Gabant et al. Nov 2014 B2
9333227 Gabant May 2016 B2
10188114 Gabant Jan 2019 B2
20040115811 Gabant Jun 2004 A1
20050130308 Bernard Jun 2005 A1
20050260585 Szpirer Nov 2005 A1
20100330041 Bayrock Dec 2010 A1
20130115658 Szpirer et al. May 2013 A1
20130280810 Gabant et al. Oct 2013 A1
20140148379 Liu et al. May 2014 A1
20140178956 Leana et al. Jun 2014 A1
20150050253 Gabant Feb 2015 A1
20210070812 Gabant et al. Mar 2021 A1
Foreign Referenced Citations (17)
Number Date Country
10038573 Feb 2002 DE
1 111 061 Jun 2001 EP
2 543 255 Jan 2013 EP
WO 9403616 Feb 1994 WO
WO 9713401 Apr 1997 WO
WO 9714805 Apr 1997 WO
WO 9902555 Jan 1999 WO
WO 9921977 May 1999 WO
WO 9958652 Nov 1999 WO
WO 0131039 May 2001 WO
WO 0142509 Jun 2001 WO
WO 0146444 Jun 2001 WO
WO 0212474 Feb 2002 WO
WO 0266657 Aug 2002 WO
WO 2004022745 Mar 2004 WO
WO 2010060057 May 2010 WO
WO 2019121983 Jun 2019 WO
Non-Patent Literature Citations (200)
Entry
(1992) Journal of Cellular Biochemistry, Keystone Symposia on Molecular & Cellular Biology, 104.
Abremski, et al. (1984) Bacteriophage P1'Site-specific Recombination. J. Bio. I. Chem. 259(3):1509-1514.
Acuna, et al., FEBS Open Bio, 2: 12-19, 2012.
Adetunji and Olaoye, Malaysian Journal of Microbiology 9: 130-13, 2013.
Aizenman, et al. (1996) An Escherichia coli chromosomal “addiction module” regulated by 3′, 5′-bispyroohosohate: A modayk for programmed bacterial cell death. Proc. Nail. Acad. Sci. 93:6059-6063.
Allison et al., “Functional Analysis of the Gene Encoding Immunity to Lactacin F, lafl, and Its Use as a Lactobacillus-Specific, Food-Grade Genetic Marker”, Applied and Environmental Microbiology, vol. 62, No. 12, pp. 4450-4460, Dec. 1996.
Altschul, S.F., et al., “Basic local alignment search tool”, J. Mol. Biol. 215:403-410, 1990.
Backman, et al., (1983), “Tetracycline Resistance Determined by pBR322 is Mediated by one Polypeptide.” Gene 26. pp. 197-203.
Bacteriocin, Wikipedia, http://en.wikpedia.org/wiki/Bacteriocin Printed on Oct. 3, 2014.
Bahassi, et al. (1995) F plasmid CcdB killer protein: ccd8 gene mutants coding for non-cy1otoxic proteins which retain their regulatory functions. Molecular Microbiology 15(6\:1031 -1037.
Baum, “Tn5401, a New Class II Transposable Element from Bacillus thuringiensis,” Journal of Bacteriology, vol. 176. No. 10, May 1994, pp. 2835-2845.
Baunonis, et al. (1993) Genomic Targeting with Purified Cre Recombinase. Nucleic Acids Research 21 (9):2025-2029.
Bech et al., “Sequence of the reLB transcription unit from Escherichia coli and Identification of the reLB gene,” The EMBO Journal, vol. 4, No. 4 00.1059-1066 1985.
Bernard (1996) Positive Selection of Recombinant DNA by CcdB. BioTechniques 21(2)320-323.
Bernard et al., 1992 “Cell killing, by the F plasmid CcdB protein involves poisoning of DNA-topoisomerase II complexes,” J. Mol. Biol. 226:735-745.
Bernard, et al. (1991) The 41 carboxy-terminal residues of the miniF plasmid CcdA protein are sufficient to antagonize the killer activity of the CcdB protein. Mol. Gen Genet 226:297-304.
Bernard, P., et al. (1994) Positive-Selection Vectors Using the F Plasmid cedB Killer Gene. Gene 148, pp. 71-74.
Bex, et al. (1983) Mini-F encoded proteins: identification of a new 10.5 kilodalton species. The EMBO Journal,2(11):1853-1861.
Biswas, et al. (1993) High-Efficiency Gene Inactivation and Replacement System for Gram-Positive Bacteria. J. Bacteriology 175(11):3628-3635.
Bochner, et al. (1980) Positive Selection for loss of Tetracycline Resistance. J. Bacteriology 143(2):923-933.
Boyd (1993) Turbo Cloning: A Fast, Efficient Method for Cloning PCR Products and Other Blunt-Ended DNA Fragments into Plasmids. Nucleic Acids Research 21(4):817-821.
Bravo, et al. (1988) Killing of Escherichia coli cells modulated by components of the stability system ParD of plasmid R1. Mol. Gen. Genet. 215:146-151.
Bubeck, et al. (1993) Rapid Cloning by Homologous Recombination in vivo. Nucleic Acids Research 21(15):3601-3602.
Bult, “Complete Genome Sequence of the Methanogenic Archaeon, Methanococcus Jannaschii,” SCIENCE, vol. 273 Aug. 23, 1996.00.1058-1073.
Burns, et al. (1984) Positive Selection Vectors: A Small Plasmid Vector Useful for the Direct Selection of Sau2A-aenerated overlapping DNA Fragments. Gene 27:323-325.
Campelo et al., “A bacteriocin gene cluster able to enhance plasmid maintenance in Lactococcus lactis”, Microbial Cell Factories 2014, 13:77. Accessible on the world wide web at www.microbialcellfactories.com/content/13/1/77. 9 pages.
Cole et al., “Deciphering the Biology of Mycobacterium Tuberculosis from the Complete Genome Sequence,” Nature vol. 393, Jun. 11, 1998 Do.537-544.
Communication under Rule 164(2)(a) EPC dated Oct. 17, 2018 in European Application No. 14758511.1.
Cotter, P. D. et al., “Bacteriocins-a viable alternative to antibiotics”, Nature Reviews Microbiology 11:95-105.
Couturier, et al. (1998) Bacterial death by DNA gyrase poisoning. Trends in Microbiology 6(7):269-275.
Craine, (1982) Novel Selection for Tetracycline-or Chloramphenicol—Sensitive Escherichia coli. J. Bacteriology 151(1):487-490.
Cui et al., “Class IIa Bacteriocins: Diversity and New Developments”, Int. J. Mol. Sci., vol. 13, pp. 16668-16707, 2012.
D'Souza, S.F., “Microbial biosensors”, Biosensors & Bioelectronics, vol. 16, 2001, pp. 337-353.
Daw et al., “Bacteriocins: Nature, Function and Structure”, Micron, vol. 27, No. 6, pp. 467-479, 1996.
Ebert et al. “A Moloney MLV-Rat Somatotropin Fusion Gene Produces Biologically Active Somatotropin in a transgenic pig.” Molecular Endocrinology. 2:277-283, 1988.
File History of U.S. Appl. No. 13/919,952.
File History of U.S. Appl. No. 10/468,536.
File History of U.S. Appl. No. 10/526,525.
File History of U.S. Appl. No. 13/660,907.
File History of U.S. Appl. No. 09/700,130.
File History of U.S. Appl. No. 11/558,856.
File History of U.S. Appl. No. 11/837,456.
Fleischmann et al., “Whole-Genome Random Sequencing and Assembly of Haemophilus Influenza Rd,” Science, vol. 269. 00.496-512 Jul. 28, 1995.
Gabant et al., 1997 “Bifunctional lacZ a-ccdB genes for selective cloning of PCR products,” Biotechniques 23:938-941.
Gabant et al., 1998 “Direct selection cloning vectors adapted to the genetic analysis of gram-negative bacteria and their plasmids,” Gene 207:87-92.
Gabant et al., 2000 “New positive selection system based on the parD (kislkid) system of the R1 plasmid,” Biotechniques 28:784-788.
Gabant et al., 2001 “Use of poison/antidote systems for selective cloning,” in Plasmid Biology 2000: International, Symposium on Molecular Bioloy of Bacterial Plasmids, Meeting Abstracts, 00.135-170, Plasmid 45:160-161.
Gajic et al., “Novel Mechanism of Bacteriocin Secretion and Immunity Carried Out by Lactococcal Multidrug Resistance Proteins*”, The Journal of Biological Chemistry, Sep. 5, 2003, vol. 278, No. 36, pp. 34291-34298.
Gerard et al., “Bactericidal Activity of Colicin V Is Mediated by an Inner Membrane Protein, SdaC, of Escherichia coli”, Journal of Bacteriology, vol. 187, No. 6, pp. 1945-1950, Mar. 2005.
Gerdes (2000) Toxin-Antitoxin modules may regulate synthesis of macromolecules during nutritional stress. Journal of Bacteriology 182:561-572.
Gerdes, et al. “RNA antitoxins.” (2007) Current Opinion in Microbiology, vol. 10, p. 117-124.
Gibson et al, “Creation of a Bacterial Cell Controlled by a Chemically Synthesized Genome”, Science, vol. 329, pp. 52-56, 2010.
Goni-Moreno, et al., “Multicellular Computing Using Conjugation for Wiring”, PLoS ONE 8(6): e65986, 2013.
Gossen, J. A., et al. (1992) Application of Galactose-Sensitive E.coli Strains as Selective Hosts for LacZ Plasmids. Nucleic Acids Res. 20.0.3254.
Gotfredsen, et al., “The Escherichia coli relBE genes belong to a new toxin-antitoxin gene family” Molecular Microbiology (1998) 29(4): 1065-1076.
Green and Sambrook, “Molecular Cloning: a Laboratory Manual”, Cold Spring Harbor Laboratory Press; 4th edition, 2012.
Gronenborn (1978) Methylation of single-stranded DNA in vitro introduces new restriction endonuclease cleavage sites. Nature, 272:375-377.
Gronlund et al., “Toxin-Antitoxin Systems Homologous with relBE of Escherichia coli Plasmid P307 are Ubiquitous in Prokaryotes,” Journal of Molecular Biology, vol. 285, No. 4, Jan. 29, 1999, pp. 1401-1415.
Guilfoyle, R.A., and I.M. Smith (1994) “A Direct Selection Strategy for Stotgun Cloning and Sequencing in the Bacteriophage M13.” Nucleic Acids Res.22, pp. 100-107.
Guzman et al. 1995 “Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAO promoter,” J. Bacteriol. 177:4121-4130.
Hammer et al. “Genetic Engineering of Mammalian Embryos.” J. Anim. Sci. 63:269-278, 1986.
Hartley et al., DNA cloning using in vitro site-specific recombination: Genome Res. 10:1788-1795, 2000.
Hasan et al., Gene, vol. 56, pp. 145, 1987.
Hebsgaard, S.M., et al. (1996) “Splice Site Prediction in Arabidopsis Thaliana Pre-mRNA by Combining Local and Global Sequence information.” Nucleic Acids Research, 24(17) 3439-3452.
Henrich et al. 1986 “Use of the lysis gene of bacteriophage X174 for the construction of a positive selection vector,” Gene 42:345-349.
Herrero, M., et al., (1990) “Transposon Vectors Containing Non-Antibiotic Resistance Selection markers for Cloning and Stable Chromosomal Insertion of Foreign Genes in Gram-Negative Bacteria.” J. Bact. 172,11, pp. 6557-6567.
Holt, et al. (1993) A Novel Phage A Replacement Cre-lox Vector that has Automatic Subcloning Capabilities, Gene 133:95-97.
Inglis, et al., “The Role of Bacteriocins as Selfish Genetic Elements”. Biology Letters, Issue 9, vol. 3 Jun. 2013. Published Apr. 24, 2013, DOI: 10.1098/rsbl.2012.1173. 6 pages.
International Search Report and Written Opinion dated Feb. 5, 2015 in PCT Application No. PCT/EP2014/067418.
International Search Report from PCT/BE02/00151, dated May 22, 2001.
International Search Report from PCT/BE02/00021, dated Jul. 12, 2002.
International Preliminary Examination Report from PCT/BE02/00021, dated Feb. 19, 2003.
International Preliminary Examination Report from PCT/BE03/00045, dated Feb. 24, 2004.
Ioannou, et al. (1994) A new bacteriophage P1-derived vector for the propagation of large human DNA fragments, Nature Genetics 6:84-89.
Jaramillo, A., “Synthetic Biology—Engineered stable ecosystems”, Nature Microbiology, vol. 2, No. 17119, pp. 1-2, Jul. 25, 2017.
Jensen et al., 1995 “Comparison of ccd of F, parDE of RP4, and parD of R1 using a novel conditional replication control system of plasmid R1,” Molecular Microbiology 17:211-220.
Jensen et al., 1995 “Programmed cell death in bacteria: protect plasmid stabilization systems,” Molecular Microbiology 17:205-210.
Kaneko et al., “Sequence Analysis of the Genome of the Unicellular Cyanobacterium Synechocystis sp. Strain PCC6803. II. Sequence Determination of the Entire Genome and Assignment of Potential Protein-Coding Regions ” DNA Research, vol. 3, 00.109-136.1996.
Karoui, et al. (1983) Ham22, a mini-F mutation which is lethal to host cell and promotes recA-dependent induction of lambdoid prophage. The EMBO Journal. 2(11): 1863-1868.
Kristoffersen et al. “Bacterial Toxin-Antitoxin Gene Systems as Containment Control in Yeast Cells” Applied and Environmental Microbiology, vol. 66 No. 12, Dec. 2000, p. 5524-5526.
Kuhn et al. 1986 “Positive-selection vectors utilizing lethality of the EcoRI endonuclease,” Gene 44:253-263.
Landy, Arthur, 1989 Dynamic, structural, and regulatory aspects of A site-specific recombination: Annu. Rev. Biochem 58:913-949.
Lehnherr, et al. (1993) Plasmid Addiction Genes of Bacteriophage P1: doc, which cause cell death on curing of prophage, and phd, which prevents host death when prophage is retained. J. Mol. Biol. 233:414-428.
Liu (1989) DNA Topoisomerase poisons as antitumor drugs. Annu. Rev. Biochem. 58:351-375.
Maki, et al (1992) Modulation of DNA Supercoiling Activity of Escherichia coli DNA Gyrase by F Plasmid Proteins, The Journal of Biological Chemistry vol. 267(17): 12244-12251.
Maloy, et al. (1981) Selection for Loss of Tetracycline Resistance by Escherichia coli, Journal of Bacteriology, 145(2):1110-1112.
Manning, P.A., “Nucleotide Sequence encoding the Mannose-fucose-resistant Hemagglutinin of Vibrio Cholerae 01 and Construction of a Mutant,” EMBL Sequence Database, Aug. 7, 1993. pp. 1-7.
Maxwell, et al. (1986) Mechanistic aspects of DNA Topoisomerases. Advan. Protein Chem. 38:69-107.
McAuliffe et al., “Identification and overexpression of ltnl, a novel gene which confers immunity to the two-component lantibiotic lacticin 3147”, Microbiology, 2000, vol. 146, pp. 129-138.
McBride, et al., “Contamination management in Low Cost Open Algae Ponds for Biofuels Production”, Industrial Biotechnology, vol. 10, pp. 221-227, 2014.
Messing, et al. (1977) Filamentous coliphage M13 as a cloning vehicle: Insertion of a Hindll Fragment of the lac regulatory region in M13 replicative form in vitro. Proc Nail. Acad. Sci. 74(9):3642-3646.
Miki, et al. (1984) Control of Cell Division by Sex Factor F in Escherichia coli. J. Mol. Bioi. 174:627-646.
Miki, et al. (1984) Control of Cell Division by Sex Factor F in Escherichia coli. J. Mol. Biol. 174:605-625.
Moreadith et al. “Gene Targeting in Embryonic Stem Cells: The new Physiology and metabolism.” J. Mol. Med. 75:208-216 1997.
Mori, Hirotada, et al., “Prophage λ Induction Caused by Mini-F Plasmid Genes.” (1984) Mol Gen Genet 196:185-193.
Mullins et al. “Perspective Series: Molecular Medicine in Genetically-Engineered Animals.” J. Clin. Invest. 98 (Suppl.): 837-S40, 1996.
Murphy, et al. (1991), pλZd39: A New Type of cDNA Expression Vector for Low Background, High Efficiency Directional Cloning. Nucleic Acids Research 19(12):3403-3408.
Muyrers et al. 2001 “Techniques: recombinogenic engineering—new 'options for cloning and manipulating DNA,” Trends in Biochem. Sci. 26:325-331.
Nilsson, et al. (1983) An Improved Positive Selection Plasmid Vector Constructed by Oligonucleotide Mediated Mutagenesis. Nucleic Acids Research 11 (22):8019-8029.
Nomura M., “Colicins and Related Bacteriocins”, Annual Review of Microbiology, vol. 21, pp. 257-284, Oct. 1967.
Norrander, et al. (1983) Construction of improved M13 vectors using oligodeoxynucleotide-directed mutagenesis. Gene 26:101-106.
Notice of Allowability from U.S. Appl. No. 08/379,614, dated Mar. 3, 1998.
Notice of Allowance dated Feb. 11, 2016 in U.S. Appl. No. 14/459,810.
Office Action dated Sep. 29, 2006 in U.S. Appl. No. 10/468,536.
Office Action dated Jun. 19, 2007 in U.S, U.S. Appl. No. 10/468,536.
Office Action dated Mar. 25, 2008 in U.S. Appl. No. 10/468,536.
Office Action dated Jan. 29, 2009 in U.S. Appl. No. 10/468,536.
Office Action dated Nov. 16, 2009 in U.S. Appl. No. 10/468,536.
Office Action dated Jul. 27, 2012 in U.S. Appl. No. 10/468,536.
Office Action dated Apr. 20, 2009 in U.S. Appl. No. 10/526,525.
Office Action dated Jun. 14, 2010 in U.S. Appl. No. 10/526,525.
Office Action dated Mar. 2, 2011 in U.S. Appl. No. 10/526,525.
Office Action dated Sep. 9, 2011 in U.S. Appl. No. 10/526,525.
Office Action dated Feb. 10, 2012 in U.S. Appl. No. 10/526,525.
Office Action dated Jun. 14, 2005 in U.S. Appl. No. 09/700,130.
Office Action dated Jan. 5, 2006 in U.S. Appl. No. 09/700,130.
Office Action from U.S. Appl. No. 08/379,614, dated Aug. 27, 1996.
Office Action from U.S. Appl. No. 08/379,614, dated Aug. 4, 1997.
Office Action from U.S. Appl. No. 09/225,152, dated Sep. 13, 1999.
Office Action from U.S. Appl. No. 09/634 039, dated Dec. 20, 2001.
Office Action from U.S. Appl. No. 09/634,039, dated Jan. 15, 2003.
Office Action from U.S. Appl. No. 09/634,039, dated Sep. 24, 2003.
Office Action from U.S. Appl. No. 09/634,039, dated Dec. 16, 2004.
Office Action from U.S. Appl. No. 09/634,039, dated Jun. 29, 2005.
Office Action dated Oct. 25, 2013 in U.S. Appl. No. 13/919,952.
Office Action dated May 5, 2014 in U.S. Appl. No. 13/919,952.
Office Action dated Aug. 28, 2015 in U.S. Appl. No. 14/459,810.
Office Action dated Nov. 30, 2017 in Chinese Application No. 201480057387.2 with English translation.
Office Action dated Nov. 5, 2018 in Chinese Patent Application No. 201480057387.2; 4 pages.
Ogura, et al. (1983) Mini-F plasmid genes that couple host cell division to plasmid proliferation. Proc. Natl. Acad. Sci. USA 80:4734-4788.
Opinion of the Scientific Panel on Food Additives, Flavourings, Processing Aids and Materials in Contact with Food on a Request from the Commission Related to the use of Nisin (E 234) as a food additive. Question No. EFSA-Q-2005-031. Adopted on Jan. 26, 2006. The EFSA Journal (2006) 314, pp. 1-16.
Pag et al., “Molecular Analysis of Expression of the Lantibiotic Pep5 Immunity Phenotype”, Applied and Environmental Microbiology, Feb. 1999, vol. 65, No. 2, pp. 591-598.
Partial International Search Report dated Jan. 13, 2015 in Application No. PCT/EP2014/067418.
Peakman, et al. (1992) Highly Efficient Generation of Recombinant Baculoviruses by Enzymatically Mediated Site-Specific in vitro Recombination. Nucleic Acids Research 20(3):495-500.
Pecota, et al. “Combining the hok/sok, parDE, and pnd Postsegregational Killer Loci to Enhance Plasmid Stability.” (1997) Applied and Environmental Microbiology, vol. 63, p. 1917-1924.
pGT-N28 Vector DNA (catalog #N3728) New England Biolabs Online Catalog, Jun. 2, 1999, p. 1, www.neb.comlneb/products/nucleicJ307-28.html the whole document.
Pierce et al. 1992 “A positive selection vector for cloning high molecular weight DNA by the bacteriophage P1 system: improved cloning efficacy,” PNAS USA 89:2056-2060.
pKO Scrambler Series Gene Targeting Vectors for Knockout Mice. Stratagene Online Catalog, Jan. 1998, pp. 1-3; www.stratagene.com/cellbio/toxicology/pko.htm, the whole document.
Pomares et al., “Potential Applicability of Chymotrypsin-Susceptible Microcin J25 Derivatives to Food Preservation”, Applied and Environmental Microbiology, vol. 75, No. 17, pp. 5734-5738, Sep. 2009.
Pre-Interview Communication dated Jan. 28, 2015 in U.S. Appl. No. 14/459,810.
Reeves et al., “Engineering Escherichia coli into a Protein Delivery System for Mammalian Cells”, ACS Synth. Biol., vol. 4, pp. 644-654, 2015.
Riley et al., “BACTERIOCINS: Evolution, Ecology, and Application”, Annu. Rev. Microbiol., 2002, vol. 56, pp. 117-137.
Roberts, et al. (1994) The parDE operon of the broad-host-range plasmid RK2 specifies growth inhibition associated with plasmid loss. J. Mol. Biol. 18; 237 (1): 35-51.
Roberts, et al. (1992) Definition of a Minimal Plasmid Stabilization System from the Broad-Host-Range Plasmid RK2. Journal of Bacteriology Dec. 1992:8119-8132.
Roca, et al. (1992) A Hit-and-Run System for Targeted Genetic Manipulations in Yeast. Nucleic Acid Research 20(17):4671-4672.
Ruiz-Echevarria et al. (1991) Structural and functional comparison between the stability systems ParD of plasmid R1 and Ccd of plasmid. F. Mol. Gen. Genet 225:355-362.
Ruiz-Echevarria et al. 1995 A mutation that decreases the efficiency of plasmid R1 replication leads to the activation of parD, a killer stability system of the plasmid: FEMS Microb. Letters 130: 129-136.
Ruiz-Echevarria, et al. (1991) The kis and kid genes of the parD maintenance system of plasmid R1 form an operon that is autoregulated at the level of transcription by the co-ordinated action of the Kis and Kid proteins. Molecular Microbiology 5(11):2685-2693.
Sadler, et al. (1980) Plasmids containing many tandem copies of a synthetic lactose operator. Gene 8:279-300.
Salmon et al., “The Antidote and Autoregulatory Functions of the F Plasmid CcdA Protein: a Genetic and biochemical Survey” Molecular and General Genetics vol. 244, pp. 530-538. 1994.
Sambrook, et al. (1989) Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp. xi-xxxviii.
Sambrook, et al. (1989) Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp. 4.12 A.9-A.13.
Saul, et al., “Nucleotide Sequence and Replication Characteristics of RepFIB, a Basic Replicon of IncF Plasmids,” Journal of Bacteriology. vol. 171 No.5 00.2697-2707, May 1989.
Schlieper et al. 1998 “A positive selection vector for cloning of long polymerase chain reaction fragments based on a lethal mutant of the crp gene of Escherichia coli,” Anal. Biochem. 257:203-209.
Seamark R.F. “Progress and Emerging Problems in Livestock Transgenesis: a Summary perspective.” Repod. Fert. Dev. 6:653-657, 1994.
Shalani and Srivastava (2008) The Internet Journal of Microbiology. vol. 5 No. 2. DOI: 10.5580127dd—accessible on the worldwide web at archive.ispub.comljournallthe-internet-journal-of-microbiology/volume-5-number-2/screening-for-antifungal-activity-of-pseudomonas-fluorescens-against-phytopathogenic-fungi.html#sthash.dOYs03UO.1DKuT1US.dpuf.
Shekh and Roy, BMC Microbiology 12: 132, 2012.
Shenin et al., “Characteristics of Alirin B1, the major component of a fungicidal substance produced by Bacillus subtilis 10-VIZR”. Antibiot Khimioter 1995 vol. 50: pp. 3-7.
Sierra et al. 1998 “Functional interactions between chpB and parD, two homologous conditional killer systems found in the Escherichia coli chromosome and in plasmid R1,” FEMS Microb. Letters 168:51-58.
Simons, R. W., et al. (1987) “Improved Single and Multicopy Lac-Based Cloning Vectors for Protein and Operon Fusions.” Gene 53 Do.85-96.
Smith, et al. (1985) Modification and Selection of Human Interleukin 2 Produced in Insect Cells by Baculovirus Expression Vector. Nalt Acad. Sci. 82:8404-8408.
Smith, et al. (1997) The poison-antidote stability system of the broad-host-range Thiobacilus ferroxidans plasmid pTF-FC2. Molecular Microbioloav 26(5):961-970.
Thisted, et al., “Mechanism of Post-segregational Killing by the hok/sok System of Plasmid R1; Sok Antisense RNA Regulates hok Gene Expression Indirectly Through the Overlapping mok Gene.” (1992) J. Mol. Biol., vol. 223, p. 41-54.
Tomb et al., “The Complete Genome Sequence of the Gastric Pathogen Helicobacter Pylori,” Nature. vol. 388 Aug. 7, 1997 pp. 539-547.
Trudel et al., (1996), pGATA: a positive selection vector based on the toxicity of the transcription factor GATA-1 to bacteria: BioTechniques 20:684-693.
Tsuchimoto et al. (1988) Two Genes, pelK and peml, responsible for stable maintenance of resistance plasmid R100. J. of Bateriol., 170(4):1461-1466.
Tsuchimoto et al.,“The Stable Maintenance System pern of Plasmid R100: Degradation of Peml Protein May Allow PemK Protein To Inhibit Cell Growth.” Journal of Bacteriology, vol. 174, No. 13, pp. 4205-4211 Jul. 1992.
Tsuchimoto, et al. (1993) Autoregulation by cooperative binding of the Peml and PemK proteins to the promoter region of the pern operon. 237:81-88.
Union Nationale des Groupements de Distillateurs D'Alcool, “Kamoran”, 2005.
U.S. Appl. No. 09/634,039, filed Aug. 8, 2000 by Bernard, et al.
Van Melderen, et al., “Bacterial Toxin-Antitoxin Systems: More Than Selfish Entities?”, PLoS Genetics, vol. 5, No. 3, Mar. 2009, pp. 1-6.
Van Reeth, T., et al. (1998) “Positive Selection Vectors to Generate Fused Genes for the Expression of His-Tagged Proteins.” BioTechniques. 25(5):898-904.
Vernet, T., et al. (1985) “A Direct-Selection Vector Derived from pColE3-CA38 and adapted for Foreign Gene Expression.” Gene 34:87-93.
Wang, (1985), DNA Topoisomerases. Ann. Rev. Biochem. 54:665-697.
Wang et al., Genome Mining Demonstrates the Widespread Occurrence of Gene Clusters Encoding Bacteriocins in Cyanobacteria. PLoS ONE 6(7): e22384, 2011.
Wright et al., “Building-in biosafety for synthetic biology”, Microbiology, vol. 159, pp. 1221-1235, 2013.
Yanisch-Perron, et al. (1985) Improved M13 phage closing vectors and host strains: Nucleotide sequence of the M13mp18 and DUC19 vectors. Gen, 33:103-119.
Yarmolinsky (1995) Programmed cell death in bacterial populations. Science, 267:836-837.
Yu et al. 2000 “An efficient recombination system for chromosome engineering in Escherichia coli,” PNAS USA 97:5978-5983.
Zuber, P et al., “Peptide Antibiotics”, in Sonenshein ed, “Bacillus subtilis and Other Gram-Positive Bacteria”, 1993 American Society for Microbiology, Washington D.C. pp. 897-916.
Office Action dated Apr. 28, 2017 in U.S. Appl. No. 15/087,706.
Office Action dated Sep. 14, 2017 in U.S. Appl. No. 15/087,706.
Office Action dated Apr. 5, 2018 in U.S. Appl. No. 15/087,706.
Notice of Allowance dated Sep. 12, 2018 in U.S. Appl. No. 15/087,706.
Borrero et al., “Cloning, Production, and Functional Expressing of the Bacteriocin Enterocin A, Produced by Enterococcus faecium T136, by the Yeasts Pichia pastoris, Kluyveromyces lactis, Hansenula polymorpha, and Arxula adeninivorans”, Applied and Environmental Microbiology, vol. 78, No. 16, pp. 5956-5961, Aug. 2012.
Basanta et al., “Development of Bacteriocinogenic Strains of Saccharomyces cerevisiae Heterologously Expressing and Secreting the Leaderless Enterocin L50 Peptides L50A and L50B from Enterococcus faecium L50”, Applied and Environmental Microbiology, vol. 75, No. 8, pp. 2382-2392, Apr. 2009.
Bondaryk et al., “Natural Antimicrobial Peptides as Inspiration for Design of a New Generation Antifungal Compounds”, J. Fungi, vol. 3, No. 46, pp. 1-36, 2017.
Communication pursuant to Article 94(3) EPC in European Application No. 14 758 511.1.
Lum et al., “Activity of Novel Synthetic Peptides against Candida albicans”, Scientific Reports, vol. 5, No. 9657, pp. 1-12, 2015.
Office Action dated Aug. 15, 2019 in Brazilian Application No. BR 11 2016 003533 0 with English Translation.
Schoeman et al., “The Development of Bactericidal Yeast Strains by Expressing the Pediococcus acidilactici Pediocin Gene (ped A) in Saccharomyces cerevisiae”, Yeast, vol. 15, pp. 647-656, 1999.
Office Action dated Mar. 12, 2021 in Indian Patent Application No. 201617008769 with English translation.
Office Action dated Apr. 20, 2021 in Brazilian Application No. BR 11 2016 003533 0 with English Translation.
Office Action dated Sep. 10, 2020 in European Application No. 14758511.1.
Communication pursuant to Rule 45 EPC dated Aug. 9, 2021 in European Application No. 21178464.0.
Communication pursuant to Article 94(3) EPC in European Application No. 14 758 511.1 dated Feb. 5, 2020.
European Search Report dated Mar. 8, 2022, in European Patent Application No. 21178464.0 in 12 pages.
Sanchez, J. et al., Cloning and Heterologous Production of Hiracin JM79, a Sec-Dependent Bacteriocin Produced by Enterococcus Hirae DCI-I5, in Lactic Acid Bacteria and Pichia Pastoris, Applied And Environmental Microbiology, vol. 74, No. 8, pp. 2471-2479, 2008.
Borrero, J. et al., Protein Expression Vector And Secretion Signal Peptide Optin1ization To Drive The Production, Secretion, And Functional Expression Of The Bacteriocin Enterocin A In Lactic Acid Bacteria, Journal of Biotechnology, vol. 156, pp. 76-86, 2011.
Office Action with English Translation dated Apr. 21, 2022 in Chinese Patent Application No. 201910882176.7 in 8 pages.
Related Publications (1)
Number Date Country
20190191709 A1 Jun 2019 US
Provisional Applications (1)
Number Date Country
61867510 Aug 2013 US
Divisions (1)
Number Date Country
Parent 14459810 Aug 2014 US
Child 15087706 US
Continuations (1)
Number Date Country
Parent 15087706 Mar 2016 US
Child 16227371 US