1. Field of the Invention
The present invention relates to surgical instruments for laser cardiac ablation procedures. More particularly, the invention relates to an ablation apparatus with a guide member to guide the ablation apparatus in a desired pattern.
2. Description of the Prior Art
A. Atrial Fibrillation
It is known that at least some forms of cardiac arrhythmia are caused by electrical impulses traveling through the cardiac muscle tissue by abnormal routes. In a normal, non-arrhythmic heart, electrical nerve impulses travel in an orderly and well-defined fashion through the sinoatrial node and then through the atrioventricular node in order to create an orderly flow of electrical impulses that lead to contraction in the heart.
In cardiac arrhythmias, cardiac impulses travel along undesirable pathways through the cardiac tissue leading to a rapid heart beat (tachycardia), slow heart beat (bradycardia) or a disorderly heart beat (fibrillation). Atrial fibrillation (AF) is a chaotic heart rhythm of the atrial chambers of the heart. Atrial fibrillation prevents the heart from pumping blood efficiently causing reduced physical activity, stroke, congestive heart failure, cardiomyopathy and death.
B. Maze Procedure—Generally
One technique for treating atrial fibrillation is to surgically create lines in the heart muscle tissue (myocardium) whereby electrical conduction of nerve impulses is blocked or rerouted. This technique for creating lines of electrical blockage is referred to as the Maze procedure.
Initial approaches to performing the Maze procedure involved invasive surgery in which a series of linear incisions are made in the cardiac tissue and then sutured together. The lines of scar tissue that form in the incisions do not conduct electrical impulses and are intended to prevent disorderly contraction of the atrial tissue.
In a typical Maze procedure, up to six non-conductive lines are required. Each of the non-conductive lines is typically several centimeters in length. Once these lines scar and heal, they disrupt electrical pathways that may cause atrial fibrillation. Examples of the Maze procedure and other surgical techniques for treating atrial fibrillation are described in Chiappini, et al., “Cox/Maze III Operation Versus Radiofrequency Ablation for the Surgical Treatment of Atrial Fibrillation: A Comparison Study”, Ann. Thorac. Surg., No. 77, pp. 87-92 (2004) and Cox, “Atrial fibrillation II: Rationale for surgical treatment”, J. Thoracic and Cardiovascular Surg., Vol. 126, No. 6, pp. 1693-1699(2003).
C. Less Invasive Maze Procedure Technologies
Less invasive ablation techniques have also been utilized to perform the Maze procedure. In such techniques, the surgeon typically drags an a radiofrequency (RF) electrode in a linear fashion along the endocardial (internal) or epicardial (external) surface of the heart to produce a series of lesions using heat to desiccated and ultimately kill cardiac cells. The scaring created by the lesions is ideally contiguous and non-conductive of electrical impulses. For endocardial use, standard ablation catheters or catheters with extended distal electrodes are employed. Epicardially, specially designed handheld probes with a distal electrode for the application of ablating energy are often used.
For the greatest likelihood of success in a Maze procedure, it is particularly important that the lesions created be transmural. A transmural lesion extends through the full wall thickness of the cardiac muscle at the location of the lesion. One factor that limits transmurality of lesions from the epicardium is the cooling effect of blood in and around the heart particularly during ‘off-pump’ procedures during which the heart is beating. This is particularly difficult when radio frequency (RF) energy is employed because it relies exclusively on thermal diffusion to create transmural lesions i.e, flow of heat from higher to lower temperature. The cooling effect of blood on the endocardial surface within the atrium limits attainment of the temperature required to form thermal lesions.
The maximum temperature, at electrode/tissue interface, is also limited to something less than the boiling point of water. Higher temperatures cause boiling of interstitial water creating explosions and subsequent tissue perforations. Perforations of the atrial wall leads to a weakening of the heart structure as well as significant bleeding during surgery that must be controlled.
Additionally, high electrode/tissue temperatures can create burns and adhesion between the probe and the heart tissue. Such adhesions can insulate the probe from the heart tissue blocking the efficient application of energy. These procedures are also a problem for the surgeon and staff who often must stop to clean the tip of the probe.
The efficacy of creating transmural lesions with RF can be enhanced by using a second electrode at the endocardial surface. The endocardial electrode provides a more direct electrical path through cardiac tissue which ‘focuses’ the energy more directly at the target site and secondarily protects the endocardial surface from direct cooling by blood flow in the left atrium. This approach requires access into the left atrium which adds complexity and increases risk to the patient.
The same analysis can also be applied to cryogenic methods which freeze interstitial water causing cellular death. However in this application, the blood warms the tissue at the endocardial surface which again limits the attainment of temperatures required to cause cellular death and create transmural lesions.
A discussion of techniques and technologies for treating atrial fibrillation is set forth in Viola, et al., “The Technology in Use for the Surgical Ablation of Atrial Fibrillation”, Seminars in Thoracic and Cardiovascular Surgery, Vol. 14, No. 3, pp. 198-205 (2002). Viola et al. describe numerous ablation technologies for treating atrial fibrillation with the Maze procedure. These include cryosurgery, microwave energy, radiofrequency energy, and laser ablation.
D. Laser Ablation and the Maze Procedure
The use of lasers in treating atrial fibrillation is desirable because laser energy is first and foremost light which is subsequently converted to heat. Thus, the principles for transmission of light can be used to ‘diffuse’ laser energy in cardiac tissue. At selected wavelengths, light diffusion can be significantly faster and penetrate more deeply than thermal diffusion. To achieve this effect, it is important to understand the spectral characteristics of atrial tissue and select a laser wavelength with high transmissivity, i.e., low absorption. Wavelengths in the near infrared region, 700-1200 nanometers are suitable for achieving such results. Ideally the wavelength would be 790 to 830 or 1020 to 1140 nanometers. As a result, laser ablation is fast and results in narrow lesions. Viola, et al., “The Technology in Use for the Surgical Ablation of Atrial Fibrillation”, Seminars in Thoracic and Cardiovascular Surgery, Vol. 14, No. 3, pp. 201, 204 (2002). However, in the prior art, laser ablation for treating atrial fibrillation has been troublesome.
Viola et al. discuss problems associated with the use of laser energy to treat atrial fibrillation. These concerns are directed to safety and reliability and note that lasers are prone to overheating because of the absence of a self-limiting mechanism. The authors note that over-heating with lasers can lead to crater formation and eventually to perforation, especially when using pih-tip devices. Viola, et al., supra, at p. 203. The authors note that the high power of laser ablation (described as 30 to 80 Watts) results in the laser technique not being widely clinically applied. Id., at p. 201. The mechanical effects resulting from direct heating of the myocardial tissue with laser energy results in cellular explosions caused by shock waves. Viola, et al., supra, at p. 201.
The possibility for perforation of the myocardium with laser energy raises a particular concern for treating atrial fibrillation. The myocardial wall of the atria is quite thin (e.g., about 2 mm in thickness in some locations). A coring of the myocardium by a laser could result in a full wall thickness perforation and resulting leakage of blood.
Viola et al. note the development of a long probe laser that allows diffusion of the laser thermal energy over the long probe tip in a unidirectional fashion. Id., at p. 201. While not mentioning the source of this long probe tip, it is believed by the present inventors to be referring to the atrial fibrillation laser of CardioFocus, Inc., Norton, Mass. (USA) as described in U.S. Patent Application Publication No. 2004/6333A1 in the name of Arnold, et al. (published Jan. 8, 2004) and U.S. Pat. No. 6,579,285 issued to Sinosky. This technology as practiced differs in two ways to that of the present invention. First, and most importantly, it defocuses the coherent laser beam by using reflective particles to scatter the light longitudinally and radially before it enters the tissue. This reduces the longitudinal movement required to produce linear lesions but, by decreasing the coherency of the laser beam before entering cardiac tissue, and negates many of the advantages of light to more deeply penetrate cardiac tissue. Secondly, this technology uses laser light in the 910 to 980 nanometer wavelengths which has a significant water absorption peak compared to 810 and 1064. The higher absorption reduces the penetration of the laser light through cardiac tissue. Reducing energy penetration depths increases the risk (particularly on a beating heart) of creating a lesion that is less than transmural.
E. Conductivity Verification
A further difficulty with creating linear nonconductive lesions is the inability to verify that a truly nonconductive lesion has been produced. If a transmural lesion is not properly formed in accordance with the Maze procedure, the treatment for atrial fibrillation may not be successful. This could require a second surgical procedure. If the surgeon can promptly discern whether a particular linear lesion is truly non-conducting at the time of the original procedure, correction could be made at the time of treatment. A method of assessing lesion transmurality is described in U.S. patent application Publication No. US 2005/0209589 A1 published Sep. 22, 2005.
F. Placing and Guiding an Atrial Ablation Tool
U.S. patent application Publication No. US2005/0096643 A1 published May 5, 2005 describes formation of a lesion pattern by a surgeon moving the tip of a wand over the heart surface. Use of a tool to guide or control an ablation tool has been suggested. For example, U.S. Pat. No. 6,579,285 (assigned to CardioFocus, Inc.) shows a diffused light fiber tip in a malleable housing. The housing is bent to form a desired shape and placed against the heart. The diffused light fiber tip is moved through the housing in a series of steps to form a lesion. The lesion is formed by stopping the fiber at a location, energizing the motionless fiber to create a lesion, and moving the fiber to a new location to form a subsequent lesion segment. A similar arrangement for an ablation tool is shown in U.S. patent publication No. 2002/0087151 published Jul. 4, 2002 (assigned to AFx, Inc).
U.S. patent publication No. 2004/0.102771 published May 27, 2004 (assigned to Estech, Inc.) describes a device to guide an ablation tool while maintaining contact between the heart and an ablation device. Other devices for either guiding an ablation element or for maintaining contact for between an ablation element and the heart are shown in U.S. Pat. No. 6,237,605 (assigned to Epicor, Inc.). U.S. Pat. No. 6,237,605 describes using vacuum against an epicardium or an inflatable balloon against a pericardium to maintain ablation devices in a fixed position against the heart. U.S. Pat. Nos. 6,514,250 and 6,558,382 (both assigned to Medtronic, Inc.) describe suction to hold ablation elements against a heart.
Commonly assigned U.S. patent application Publication No. US 2005/0182392 A1 published Aug. 18, 2005, teaches a guided ablation apparatus with a laser emitting ablation element mounted in a carriage advanced through a flexible guide member mounted on the heart.
When moving an ablation element in a guided ablation apparatus, a physician cannot visually inspect the location and rate of movement of an ablation element relative to heart tissue. It is an object of the present to provide a guided ablation with enhanced control.
A method and apparatus are disclosed for forming a lesion in tissue along a desired ablation path. The apparatus includes a guide member having a tissue-opposing surface for placement against a heart surface. A guide carriage is sized to be received within the guide member and moveable along a longitudinal axis of the guide member. A tubular member extends from a proximal end of the carriage and out a proximal end of the guide member. An ablation element is carried in the carriage for movement. The ablation member is connected to a source of ablation energy through the tubular member. A sensor is provided for sensing a safety condition. The sensor is connected to a monitor external the guide member.
Referring now to the several drawing Figures in which identical elements are numbered identically throughout, a description of a preferred embodiment of the present invention will now be provided. In the preferred embodiment, the invention is described as a lesion formation tool for applying laser energy to the epicardial surface of the heart to create a transmural ablation line along the heart. As used in this application, the term “ablation” is used in the context of creating necrosed tissue in the myocardium while avoiding tissue perforation or removal. In the following description, a guide member is described for guiding a lesion formation tool in a Maze pattern. It will be appreciated the teachings of the present application could be applied to other types of ablation tools (e.g., RF ablation, ultrasound or other). Also, this application may refer to a lesion as “linear”. The use of “linear” is not meant to be limited to a straight line but is intended to include a curved or other lesion pattern which is elongated and narrow in width.
Unless otherwise described in reference to a preferred embodiment, all components of the invention can be formed of any suitable material subject to ability of such material to withstand the rigors of sterilization and meet all biocompatibility and other requirements of applicable medical device regulations.
A. Teachings of Prior Publications
a. Laser Ablation
The aforementioned U.S. patent application Publication. No. US2005/0096643 A1 published May 5, 2005 (incorporated herein by reference) describes, in detail, a surgical wand for applying laser energy to either the epicardial or endocardial surface of the heart. For treating atrial fibrillation through the Maze procedure, the wand preferably emits laser energy as coherent light in a wavelength selected to have a very low absorption and very high scatter in myocardial tissue.
Any wavelength suitable to create necrosed tissue in the myocardium without tissue removal could be used. In a preferred embodiment, the wavelength is a near-infrared wavelength selected to have a very low absorption and very high scatter in myocardial tissue. Biological tissue (such as the myocardium) is largely water. Wavelengths in the ranges of between about 470 to about 900 nanometers and between about 1050 to about 1150 nanometers are known to penetrate water with low absorption (e.g., less than about 30% absorption). Lasers in Cardiovascular Medicine and Surgery: Fundamentals and Techniques, George S. Abela, M. D., Editor, Kluwer Academic Publishers, 101 Philip Drive, Assinippi Park, Norwell, Mass. 02061 USA, p. 28 (1990). More preferably, the wavelength is selected from the ranges of 790 to 850 nanometers (which range corresponds to commercially available medical diode lasers) and 1050 to 1090 nanometers (which range corresponds to Nd:YAG lasers commonly used in other medical procedures).
A laser energy source with a wavelength selected from the above ranges will penetrate the full thickness of the myocardium and result in a transmural lesion (i.e., a full-thickness necrosis of myocardial tissue in the atrium). Further, such a wavelength minimizes carbonization of the tissue and perforation of the myocardial tissue. Such laser emissions are substantially coherent.
In the aforesaid U.S. patent application Publication. No. US2005/0096643, the wand is a hand-held device with a distal tip placed against either the epicardial or endocardial surface of the heart. The wand is manipulated so that the distal tip moves along the surface of the heart to create a Maze lesion of a desired pattern. The present invention is directed towards method and apparatus for forming lesions on the heart surface. The invention includes placement of a track on the heart to act as a guide to guide a lesion formation tool in a desired pattern.
b. Guided Member
In U.S. patent application Publication. No. US 2005/0182392 A1 (the “'392 publication”) (incorporated herein by reference), a guide apparatus includes a guide member of an elongated flexible body and having a generally flat bottom surface. A guide channel is formed as a groove centrally positioned within the bottom wall and extending along the longitudinal length of the guide member. A guide carriage is slidably received within the guide channel. The carriage carries a laser emitting tip.
The guide carriage may axially slide within the guide channel but is prevented from moving transverse to its sliding axis as well as being prevented from rotating about the axis. The carriage includes a bottom opening or window. The window may be an open area to pass both emitted light and a flushing fluid or may be a closed window of material selected to pass the wavelength of the emitted light.
A flexible fluid conduit is connected to a proximal end of the carriage. The conduit moves with the carriage within the channel. Pushing the conduit moves the carriage distally. Retraction of the conduit moves the carriage proximally.
An optical fiber passes through the conduit. Spacers hold the fiber coaxially within the conduit with opposing surfaces of the fiber and conduit defining an annular lumen into which cooling fluid from pump may be passed. The fluid both cools components as well as flushing debris which might otherwise accumulate between the fiber and the epicardial surface.
The fiber is carried in the carriage with a distal tip of the fiber positioned to discharge light through the window. Cooling fluid from lumen can also pass through the window. To enhance the atraumatic nature of the carriage, the carriage of the '392 application is formed of a material having a low coefficient of friction or lubricious-like nature against the heart tissue.
The light from the fiber passes through the window in a light path generally perpendicular to the axis and the plane of the guide member bottom surface. As schematically shown in
c. Placement of Guide Member and Formation of Maze Lesions
The guide member is placed on the heart surface and shaped in a desired pattern (e.g., encircling the pulmonary veins on the left atrium). So positioned, the carriage may be moved within the guide channel. The laser fiber may be energized by activating a power source to form a transmural lesion in the heart wall.
The conduit is pushed or pulled as desired to move the carriage distally or proximally, respectively, thereby moving the fiber tip in a desired pattern over the epicardial surface of the heart. The physician moves the carriage along the exterior surface of the heart in order to create lines of ablated (i.e., non-electrically conducting) tissue by raising the temperature of the cardiac tissue to that required to achieve cellular death (typically about 55° C.). It is estimated that, with an operating laser power of about 25 watts, a surgeon can create an ablation line by gliding the moving the carriage over the heart surface at a rate of between about 1 to 5 cm of linear travel per minute. By way of non-limiting example, with a diode laser, power can range from about 5 to about 50 Watts.
While a lesion can be formed by pulling the fiber distally in one pass, it is presently preferred to form the lesion in zones. For example, a desired lesion pattern can be divided into multiple zones. Within a zone, the energized fiber tip is moved back and forth with carriage in the guide member multiple times to apply a desired dosage of energy to tissue in the zone. The carriage and fiber tip are then moved to the next zone and the procedure is repeated.
Throughout this pattern, the carriage holds the laser tip in a constant spacing from the epicardial surface of the heart. The guide member maintains a desired spacing between the end of the ablation tool (i.e., the fiber tip in a preferred embodiment) and the surface of the heart throughout the length of the guide member and avoids direct contact of the ablation member and the heart.
It is desirable to have as close a spacing of the fiber discharge tip to the bottom wall of the guide member as possible to maximize laser energy penetration of myocardial tissue. The power density impinging on cardiac tissue decreases rapidly with increasing spacing. However, a small spacing from the surface of the heart is desirable to prevent coagulation of biological products onto the face of the optical fiber. Build-up of tissue is undesirable. It can cause carbonization and spalling of the optical fiber face which reduces laser energy output from the optical fiber. If sufficient biological material is present in the vicinity of the optical fiber face, overheating and subsequent melting of components can occur. Due to the unobstructed path from the fiber tip to the heart surface, the light is a non-diffused or unmodified beam directed at the heart surface either perpendicularly of at an angle as described above.
The flow of coolant fluid from the window cools the material of the carriage, washes biological material (e.g., blood, tissue debris or the like) from the light path between optical fiber tip and the heart surface, and acts as a lubricant to further facilitate atraumatic gliding movement of the carriage over the surface of the heart.
The washing action of the fluid maximizes the laser energy impinging on the surface of the heart. Additionally, this fluid provides a means to cool the tissue in the region of the carriage to help ensure that tissue carbonization and subsequent vaporization of cardiac tissue do not occur. This substantially reduces the likelihood of perforation of the heart wall. Also, the fluid forms a protective layer at the discharge tip of optical fiber which reduces the likelihood biological residue will impinge on and/or adhere to the discharge tip which can otherwise cause spalling of the fiber tip and reduce optical transmission of laser energy.
Since the fluid flows into the body of the patient, the fluid should be medical grade and biocompatible. Also, the fluid should have a low absorption of the laser energy. A preferred fluid is a physiological saline solution which may be supplied at ambient temperature.
B. Teachings of Parent U.S. Patent Application Ser. No. 11/228,108
Commonly assigned and co-pending U.S. patent application Ser. No. 11/228,108 (filed Sep. 16, 2005) (the “'108 application”) teaches a guided atrial ablation with an end-fire laser.
U.S. Patent Application Publication No. U.S. 2005/0182392 A1 (published Aug. 18, 2005) describes a guided laser ablation with a side-fire laser fiber. The light emerges from the fiber distal tip at an angle (60-90 degrees) to the axis of the fiber at the tip.
A side-fire laser fiber permits a low-profile assembly. A guided fiber assembly can be placed in the pericardial space. Since the laser fiber axis is substantially parallel to the tissue surface, the assembly occupies very little space and can readily fit into the pericardial space. In contrast, a wand with an end-fire fiber requires greater surgical access and dissection of the pericardium.
Unfortunately, side-fire laser fibers are subject to performance limitations. Side-fire lasers are subject to possible performance degradation particularly in use with small fibers (such as 400 micron and 0.37 numerical aperture fibers) coupled to an 810-nanometer diode laser. In such applications, the beam ejected from the side-fire laser fiber is not narrow and a substantial portion of the energy is reflected from the surface of the tissue. The teachings of the '108 application combine the benefits of a guided laser application together with a more direct end-fire laser.
The '108 application embodiments that follow describe an end-fire laser fiber in a low-profile apparatus for minimizing the thickness of the apparatus thereby enjoying the optical benefits of end-fire fibers and the size benefits of a side-fire fiber. Further, such embodiments optimize a spacing of a fiber tip from target tissue to enjoy good power density while also enjoying the benefits of flushing and cooling.
An important issue in penetration of laser energy into myocardial tissue is the power density of the incident laser beam. Power density is a ratio of total power exiting an optical fiber to the irradiated surface area or the delivered power per unit area. Higher power densities by definition are more focused and result in narrower and deeper lesions.
The power density is highest at the exit plane of the optical fiber and decreases as the beam diverges. A beam generally expands in a conical shape with a divergence angle equal to the inverse sine of the numerical aperture of the optical fiber as shown in
As the spacing between the optical fiber and tissue increases, the power density of the incident laser beam decreases by the square of the distance. Table 1 shows such a decrease for different tissue spacing and optical fiber diameters.
Power density can impact laser tissue interaction in two ways. First, there is a critical power density beyond which the interaction no longer obeys the laws of classical physics and becomes non-linear. This effect disperses laser energy more rapidly into myocardial tissue creating deeper lesions. Second, higher power densities compensate more easily for the parasitic losses associated with absorption of laser energy during passage through myocardial tissue and the cooling effect of blood flow at the endocardial surface increasing the probability of creating transmural lesions on a beating heart. For most atrial applications, power densities above 1000 W/cm are desirable for creating transmural lesions.
Power density is a more important design consideration for diode lasers because of the higher incidence angle of laser energy at the input end of the optical fiber. The incidence angle is increased as light traverses the optical fiber until reaching the critical angle of the optical fiber. As an example, most commercial diode lasers have incidence angles of 20 degrees requiring the use of optical fibers with a numerical aperture (NA) of 0.37. This yields a divergence angle 22 degrees at the exit plane of the optical fiber resulting in an increased image diameter equal to the distance from the tissue surface (total cone angle is 2× divergence angle). Table 1 shows a 100-fold decrease in power density with only 3/16 inch spacing (about 4.25 mm) from the tissue.
While direct contact (tissue spacing of 0.00 mm) achieves the greatest power density, it may not be the optimal spacing for ablation of atrial tissue. Higher power densities have a greater potential to carbonize and perforate cardiac tissue especially thinner atrial myocardium. Other variables such as the cooling created by flushing fluids and the divergence angle of the laser light help mitigate the risk of perforations. As will be described, a spacing of about 0.05 inches (about 1.3 mm) achieves a preferred balance of these variables. However, it is believed a spacing between a minimum of 0.25 mm and a maximum of 2.0 mm are acceptable. While greater spacing is possible, the power density drops off significantly and may not be adequate to compensate for the cooling effects on the endocardial surface.
It is possible that effective lesions can be created at a distance greater than 2.0 mm. Myocardial anatomy and positioning of ablation guide along a myocardial surface could result in spacing greater than 2.0 mm from the surface of the tissue, though the flexibility of the guide and follower assembly is such to minimize this distance. Even if 2.0 mm is exceeded, a lesion may still be created at greater than 5 mm spacing, though of less depth. This effect of spacing resulting in decreased penetration and lesion depth may be further minimized by water coupling of optical fiber face to the tissue surface. Water coupling may be enhanced by increased flow rate of flushing solution or by distribution of flow over a greater surface area.
In the embodiment shown in
Preferably, the guide member 420 includes a feature to permit controlled bending of the guide member. In the embodiment shown, this mechanism is a plurality of slits 423 formed through the guide member along its length. The plane defined by each slit 423 is perpendicular to the longitudinal axis of the guide member 420. The slits 423 are formed through all but the bottom wall 422.
The slits 423 permit the guide member 420 to be bent along the surface of the bottom surface 422 as shown in
A carriage 426 is provided in the form of a block of biocompatible plastic material such as Delrin® acetal. Other materials (e.g., stainless steel) could suffice. In
The carriage 426 is sized to be slidably received within the interior of the guide member 420. The guide member 420 retains the carriage throughout such sliding motion with the longitudinal axis of the carriage 426 coaxially aligned with the longitudinal axis of the guide member 420.
An upper surface 427 of the carriage 426 is convex rounded and the bottom surface 425 is concave (as best shown in
The bottom 425 of the carriage 426 is flat to abut the bottom wall 422. The width W (
A conduit 430 extends from a proximal end of the carriage 426 and contains an optical fiber 432. The fiber 432 has a smaller diameter than the conduit 430 to permit passing a cooling and flushing fluid through the conduit 430 during operation as described in early embodiments.
With reference to
Opposing surfaces of the cavity 435 is a passageway for placing and re-directing the fiber 432. The fiber 432 enters the cavity 435 with an entrance axis X-X substantially parallel to the conduit 430 and parallel to the plane P of the bottom surface flats 425a.
At the discharge tip 433, the fiber 432 projects through a lower slot 439 of the carriage 426 with a discharge axis Y-Y. The axis Y-Y is at a lesser-included angle A to the plane P. Preferably, the angle A is greater than 45 degrees and, more preferably, greater than 60 degrees.
With this embodiment, the guide member 420 can be wrapped around heart tissue (such as an atrial dome surrounding and connected to the pulmonary veins) to completely surround the pulmonary veins and with the bottom surface 422 snuggly abutting the atrial tissue. The carriage 426 can be moved through the guide member 420 (preferably in a reciprocating manner as previously described) and with laser energy emitted as an end-fire laser from discharge tip 433 towards atrial tissue. While a snug abutment of the bottom surface 422 to the target tissue is preferred, it will be appreciated that a small separation (e.g., a few millimeters resulting from surface irregularities or the like) can be tolerated.
Within the chamber 435, the fiber is free to assume a natural repose abutting the defining surfaces of the cavity 435 and the hub 437 without excessive bending. Also, it will be noted that the spacing between the hub 437 and the chamber walls 435 is greater than the thickness of the fiber so the cooling and flushing fluid is free to pass around the fiber 432 and through the slot 439 to wash debris away from the tip 433.
The tip 433 is recessed within the bottom surface flat 425a by a distance D (
Preferably, the distance D is about 0.10 inch (about 2.54 mm) and is preferably less than a thickness of the bottom surface 422 of the guide member 420. This maintains a spacing between the discharge tip 433 and the atrial tissue. In a preferred embodiment, such spacing is about 0.05 inches (about 1.3 mm) to provide a clearance for flushing fluid to pass between the discharge tip 433 and the atrial tissue. The flushing fluid can be a gas (such as air or carbon dioxide) or a liquid (such as saline).
In addition to cooling and flushing functions, the fluid acts as a continuous laser light transmissive medium between the discharge tip 433 and the atrial tissue. As result, there is no interface of different materials between the discharge tip 433 and the atrial tissue which might otherwise re-direct laser energy.
The radius of curvature of the fiber 432 within the carriage is about 0.25 inch (about 6.4 mm) for a 400-micron and 0.37 numerical aperture fiber coupled to an 810-nanometer diode laser. This radius is selected to be as tight a radius as possible to maintain as low a profile as possible. At 0.25 inch (about 6.4 mm), there is very little loss of laser energy through the fiber. Such a loss progressively increases as the radius becomes tighter.
With the forgoing embodiment, the radius of the fiber 432 is maintained in the curved shape within the carriage 426 at the time of manufacture. Alternatively, the hub 437 could be a two-position hub such that it can be moved to a downward position in a relaxed state relieving the curvature on the fiber and then moved to the position of
The guide member 520 has slits 523 formed through all sides other than the base 522 and with the plane of the slits 523 substantially perpendicular to the longitudinal axis of the guide member 520. By reason of the slits 523, the guide member 520 can bend around the bottom surface 522 but is resisted from bending in other directions as well as from being twisted.
A carriage 526 includes a distal guide hub 527a and a proximal guide hub 527b. Both of the proximal and distal guide hubs 527a, 527b have extending pins 528a, 528b extending transverse to the longitudinal axis of the guide member 520 (
The pins 528a, 528b reside near the base 522 to prevent lateral movement of the carriage 526 relative the guide member 520 as illustrated in
The carriage 526 also includes a rigid tube 529 connecting the hubs 527a, 527b. The tube 529 is bent upwardly at 529a for the upper end of the bend 529a to abut the apex of the triangular guide member 520 opposing the bottom surface 522. This abutment together with the pins 528a, 528b permits the carriage 526 to move slidably along the longitudinal axis of the guide member 520 but not move laterally or up and down within the guide member 520. Also, this bend represents a maximum radius of curvature of a contained fiber to avoid excessive bending of the fiber.
A conduit 530 is connected to the proximal hub 527b in fluid flow communication with the tube 529. An optical fiber (only the distal tip 533 of which is shown in
Silicone is highly flexible and easily stretched. To resist stretching in the longitudinal direction, flexible metal cables 623 are molded within the guide member 620 extending through its length on opposite sides of the bore 621. To resisting twisting about the longitudinal axis while permitting bending, a split sleeve 625 of polytetrafluoroethylene (PTFE) is molded to the silicone of the guide member 620 within the bore 621 and with the split of the sleeve 625 aligned with the slot 624. PTFE is also more lubricious than silicone for advantages that will be apparent.
A conduit 630 (made, for example, of flexible, thin-walled stainless steel which is flexible but resists stretching) is slidably received within the bore 621. The annular portion of the bore 621 between the opposing surfaces of the PTFE liner 625 and the conduit 630 permits free longitudinal sliding of the conduit 630 within the bore 621. The PTFE liner 625 permits bending in all directions but resists twisting.
A curved tube 629 is secured to a distal end of the conduit 630. A distal end 629′ of the tube 629 resides within the slot 624. The spacing of the distal end 629′ from the sidewalls of the slot 624 may be narrowed to restrict rotation of the tube 629 and conduit 630 about the longitudinal axis of the guide member 620 while permitting free sliding movement.
An optical fiber 632 as described in the previous embodiments resides within the conduit 630 and moves longitudinally therewith. The diameter of the fiber 632 is smaller than the internal diameter of the conduit 630 to permit flushing and cooling fluid to flow through the conduit 630 as described in earlier embodiments. The conduit 630 and tube 629 act as a guide carriage to direct the fiber distal tip during operation.
A distal tip 633 of the fiber 632 terminates within tube 629 near distal end 629′. The tube 629 redirects the fiber 632 from an entrance axis parallel to the guide member's longitudinal axis to a discharge axis. The discharge axis at the fiber distal tip 633 is as described in earlier embodiments as is the spacing of the tip 633 from the guide member bottom wall 622.
The embodiment of
Unlike the embodiment of
With the design of
C. Additional Disclosure of the Present Application
In operating a guided ablation apparatus during a minimally invasive procedure on the heart, the surgeon cannot visually inspect the positioning and movement of the ablation element relative to the heart surface. Instead, the physician can only note the extent to which a proximal end of the apparatus has been pushed or pulled. For example, if the proximal end is pushed five centimeters, the surgeon needs to reliably know that the ablation element has been moved five centimeters.
In the design of a guided ablation apparatus, there may be a possibility of slack or other design characteristics resulting in the ablation element residing in a relatively fixed position even though a proximal end of the apparatus is being manipulated by the position. In such event, it may be possible that an excess amount of energy is applied to a specific location of the heart.
The present invention is directed to a design of an ablation apparatus that ensures one-to-one unit movement of a distal ablation element in response to movement of a proximal end and further includes other safety controls.
With initial reference to
The apparatus 10 includes a flexible guide member 12 and a flexible positioning cord 14 extending from a distal end 16 of the guide member 12. The guide member 12 can be formed of any flexible polymer which can withstand the rigors of sterilization and which is biocompatible for acute use in the human body. By way of non-limiting example, the guide member 12 may be formed of PTFE.
The cord 14 may be formed to be biased to a curved configuration to facilitate placement of the apparatus 10 on a heart. The cord 14 may be releasably attached to the distal end 16 for removal of the cord 14 from the guide member 12. An outer tube 18 extends from the proximal end 19 of the guide member 12.
As shown in
The sidewalls and top of the guide member 12 have a plurality of transverse slits 24 along the length of the guide member 12. The plane of each slit 24 is perpendicular to the longitudinal axis of the guide member 12. The slits 24 do not extend through the bottom surface 20.
By reason of the slits 24, the guide member 12 is highly flexible. As shown in
Be reason of its flexibility, the guide member 12 may be placed over the heart surface in a desired Maze pattern and with the bottom surface 20 opposing the heart's epicardial surface.
In placing the guide member 12, a surgeon can grasp and pull the cord 14 to manipulate the distal end 16. The guide member 12 may be provided with an intermediate connector 160 (schematically shown in
The guide member 12 houses a follower or carriage 26. A flexible inner tube 28 (shown in
A plurality of Teflon® spacer spheres 30 reside in the guide member 12 between the proximal end 19 and the carriage 26. Each of the spheres 30 has an axial bore 31 (
A plurality of springs 32 extends between each opposing sphere 30. Further, a spring 32 extends between the most distal sphere 30 and the carriage 26. Also, a spring 32 extends between the most proximal sphere 30 and the proximal end 19 of the guide member 12.
As an alternative to a plurality of springs 32, a single spring can extend from the proximal end 19 to the carriage 26. In such embodiment, the bores 31 of the spheres 30 are sized to surround the spring so the spheres 30 can slide axially relative to the spring. Also, with a single spring, the spheres 30 can be eliminated and be replaced by providing the spring with a plurality of spaced apart, enlarged diameter portions.
As shown in
With reference to
The carriage 26 includes a main body 40 which is sized to be received within the interior of the guide member 12. A bulge extension 42 is sized to be received within the slot 22.
As shown in
The carriage 26 has an internal channel 50 sized to receive the optical fiber 38 and direct the optical fiber 38 from an inlet end 52 to an outlet end 54. At the inlet end 52, a connector 56 connects the tube 28 (shown in phantom lines in
When moving the carriage 26 over a heart surface, the tissue surface may be irregular or, due to bending, the guide member 12 may be slightly spaced from the tissue. To maintain a constant spacing between tissue to be treated and the fiber tip 39, the bulge 42 is provided. Constancy of spacing controls the energy applied to tissue as well as controlling a layer of cooling fluid between the tissue and the fiber tip 39.
The bulge 42 has a furthest protrusion 43. The optical fiber 38 is held by the carriage 26 with the fiber tip 39 spaced from the furthest protrusion 43 by a distance D. Preferably, the length of distance D is about 0.5 mm. As a result, the fiber tip 39 is always maintained in a spaced distance from the tissue of the heart during an ablation procedure. A length L of the fiber 28 at tip 39 has the outer jacket of the fiber 28 removed to limit incidences of reflected energy flash back. In the preferred embodiment, the length L is 1.25 mm.
The prior publications and parent application describe the fiber connected to a laser source having wavelength ranges of 790 nm to 830 nm or 1020 nm to 1140 nm with a preferred wavelength of about 810 nm. Such wavelengths are preferred for their characteristic low water absorption. As used herein, low absorption means less than 30%. While any wavelength in such range is suitable in a preferred embodiment, a most preferred wavelength is 1064 nm. While an 810 nm wavelength is acceptable, Applicants have found that, in addition to low water absorption, a 1064 nm wavelength also exhibits low absorption in myocardial tissue when directed at such tissue from the epicardial surface of the atrium. Also, such wavelength is readily producible through commercially available lasers (such as Nd:YAG lasers). This wavelength also exhibits low surface reflectivity resulting in reduced thermal stress on the fiber 38. Also, a YAG laser permits use of a smaller fiber with a tighter bending radius in carriage 26 which can result in a lower profile guide member 12.
The pathway 50 has a straight portion S near the outlet 54 with the remainder of the passage 50 being curved. With this geometry, the optical fiber 28 extends coaxially with the axis of the guide member 12 as is bent such that the tip 39 discharges laser energy toward the heart tissue. As in the parent application, a low profile ablation apparatus is provided with the benefits of an end-fire laser fiber 28.
In
The length of the straight segment S is selected to avoid overlapping the regions of mechanical stress and thermal stress on the fiber 28 during operation. Namely, laser energy may be reflected off of the heart tissue back into the laser tip 39. The reflected laser energy imparts a thermal stress to the optical fiber 28. Further, the bending of the fiber 28 within the channel 50 imparts a mechanical stress to the fiber 28.
In order to minimize the total stress on the fiber 28, it is desirable that the area of appreciable thermal stress not overlap with the mechanical stress. The straight segment S does not impart a mechanical stress to the fiber 28.
The length of the straight segment S is selected such that the thermal stress from reflected laser energy is substantially dissipated throughout the length S. The straight length is a function of the fiber size, angle α, the numerical aperture of the fiber, the operating wavelength and the power, the distance D and surface reflectivity of target tissue. In a treatment for atrial fibrillation as described, and using a 400-micron fiber operating at 1064 nanometers with a maximum power of 25 watts and an angle of 72 degrees and numerical aperture of 0.22, this straight length is preferably greater than 0.100 inch (about 2.54 mm).
Since the tube 28 is hollow and may receive a cooling fluid as previously described, a cooling fluid may be flushed through the channel 50 and around the fiber 38 and through the outlet 54 against the tissue during the ablation process for benefits previously mentioned. The cross-sectional geometry of the channel 50 varies throughout its length. In the region of the curved portion of the fiber 38, the channel 50 has a rectangular cross-section illustrated in
With the structure thus described, by pushing on the connector 34 and moving it toward connector 33, the inner tube 34 and fiber 38 are moved distally relative to the outer tube 18. Further, the motion of the tube 28 imparts a distal movement of the carriage 26 relative to the guide member 12. Throughout this movement, laser energy may be applied through the laser tip 39 to ablate tissue.
Since the guide member 12 may be curved or twisted in a wide variety of geometries, it is possible (but for the structure of the present invention) that the tube 28 can become curved within the guide member 12. If such were to occur, movement of the connector 34 would not necessarily result in corresponding movement of the carriage 26. Accordingly, a physician could conclude erroneously that the apparatus was applying laser energy uniformly over a length of the heart tissue when, in fact, all of the energy is being applied to a single location on the heart tissue which could result in excess heating of that location.
The present invention avoids this undesirable effect by reason of the spheres 30 and springs 32. The spheres 30 maintain the tube 28 axially positioned within the guide member 12. Equal spacing of the spheres 30 along the length of the guide member 12 is provided by the springs 32.
A mounting plate 108 is carried on the actuator 104 such that it moves in a linear path in response to rotation of the stepper motor 106. A fixed mount 110 is connected to the platform 102. The mounting plate 108 carries a catheter mount 112 aligned in the same plane as the fixed mount 110. Accordingly, as the stepper motor 106 is rotated, the catheter mount 112 moves toward or away from the fixed mount 110.
The coupling 33 may be fixed to the fixed mount 110 through any suitable means and the connector 34 fixed to the moving mount 1112. Such positioning is shown in phantom lines in
The fiber 38 extends to a power source 114 with enough slack and excess length in the fiber 38 to accommodate movement of the mounting plate 112 toward and away from the fixed mount 110. The fluid inlet 36 is connected via a line 115 to a pumped fluid source 116 for delivery of a cooling fluid into the tube 28 as described. If desired, a bubble trap can be included to avoid airflow into the tube 28.
The moving mount 112 is connected to a load cell 118 which acts as a sensor to sense the amount of force being applied to the mount 112. As a further sensor, the amount of reflected laser energy reflected back through the fiber 28 can be measured by a monitor 120 as known to one of ordinary skill in the art. Further, the amount of force measured by the load cell 118 can also be directed to monitor 120 and the flow rate and coolant fluid pressure at the pump 116 can be measured and displayed by monitor 120.
As a result, an operator can measure the amount of force applied to movement of the carriage 26 within the guide member 12. If the force exceeds a predetermined minimum, the operator may presume that, for whatever reason, the follower or carriage 26 is snagged within the guide member 12 and laser energy may be stopped to prevent overheating the tissue.
A further sensor is provided in the form of a thermocouple 122 (shown schematically in
Reflection displayed by monitor 120 may also provide an indication of overheating of tissue. As tissue overheats, it can carbonize resulting in blackened tissue. Such blackened tissue has a different reflectance than tissue which has not been carbonized. The difference in reflection is displayed on the monitor 120. If the monitor 120 indicates carbonization, laser energy can be discontinued. Also, the amount of fluid flowing to the tube 28 can be measured. If the flow or coolant pressure falls below a desired minimum (which could result in overheating of the fiber as well as overheating of the tissue being treated by the fiber), laser energy can be discontinued.
In addition to the controls thus described, movement of the carriage 26 within the guide member 12 can be measured by any suitable means. For example, sensing elements 150 (such as Hall-effect transistors) (
It has been shown how the objects of the invention have been achieved in a preferred embodiment. It is intended that such modifications and equivalents which will appear to one of ordinary skill in the art with the benefit of the teachings of the present invention shall be included within the scope of the claims.
This patent application is a continuation-in-part application of commonly assigned U.S. patent application Ser. No. 11/228,108 filed Sep. 16, 2005 titled “Guided Ablation With End-Fire Fiber”. The present patent application discloses and claims subject matter disclosed in commonly assigned and concurrently filed U.S. patent application Ser. No. ______ (Attorney Docket No. 14825.1 US15) titled “Guided Ablation With Motion Control” and ______ (Attorney Docket No. 14825.1US16) titled “End-Fire Guided Ablation”.
Number | Date | Country | |
---|---|---|---|
Parent | 11228108 | Sep 2005 | US |
Child | 11385317 | Mar 2006 | US |