Controlled high efficiency lesion formation using high intensity ultrasound

Information

  • Patent Grant
  • 8622937
  • Patent Number
    8,622,937
  • Date Filed
    Wednesday, October 8, 2008
    16 years ago
  • Date Issued
    Tuesday, January 7, 2014
    11 years ago
Abstract
An ultrasound system used for both imaging and delivery high intensity ultrasound energy therapy to treatment sites and a method for treating tumors and other undesired tissue within a patient's body with an ultrasound device. The ultrasound device has an ultrasound transducer array disposed on a distal end of an elongate, relatively thin shaft. In one form of the invention, the transducer array is disposed within a liquid-filled elastomeric material that more effectively couples ultrasound energy into the tumor, that is directly contacted with the device. Using the device in a continuous wave mode, a necrotic zone of tissue having a desired size and shape (e.g., a necrotic volume selected to interrupt a blood supply to a tumor) can be created by controlling at least one of the f-number, duration, intensity, and direction of the ultrasound energy administered. This method speeds the therapy and avoids continuously pausing to enable intervening normal tissue to cool.
Description
FIELD OF THE INVENTION

This invention relates generally to methods and apparatus for efficiently heating biological tissues with high intensity ultrasound for therapeutic purposes, and in particular, to endoscopic devices for applying ultrasound energy to uterine fibroids and other pathologic tissues that are inside body or organ cavities, to destroy the tumor or the diseased tissue.


BACKGROUND OF THE INVENTION

Fibroids are benign tumors in women's uteri. There are different types of fibroids, including submucosal, which are inside the uterine cavity; intramural, which are in the uterine wall; and subserosal, which are outside the uterus. Fibroids may cause excessive bleeding and pain. For symptomatic fibroids, surgery is the predominate treatment. Every year in the U.S., there are more than 200,000 cases of fibroid-caused hysterectomies. To preserve the uterus, the patient may choose myomectomy, which removes the fibroids only. There are more than 80,000 abdominal myomectomies each year in the U.S. These surgical procedures cause significant trauma to the patients and result in significant costs. Consequently, patients need several days of hospital stay and suffer from the prolonged recovery.


Minimally invasive surgical (MIS) procedures have been explored to treat uterine fibroid trans-abdominally or trans-cervically under laparoscopic or hysteroscopic guidance. Many MIS apparatus have been developed to make the procedure less difficult. Several prior art devices are described in U.S. Pat. No. 5,304,124; U.S. Pat. No. 5,662,680; and U.S. Pat. No. 5,709,679. Besides surgically resecting and removing the tumor tissue, alternative treatments include using different energy forms, such as laser, radio frequency (RF), and cryo-therapy, to thermally ablate or necrose the fibroid tissue. Most of these techniques require the insertion of needles or other types of devices into the body of the fibroid. The mechanical damage to the fibroid and the uterus can cause bleeding during the treatment and adhesions after the treatment. Suturing the damage in the uterus is very difficult in the laparoscopic MIS procedure. Also, most of these alternative treatments are time consuming and technically challenging.


Uterine arterial embolization (UAE) has been investigated as an alternative treatment for uterine fibroids. In UAE, a catheter is inserted into the patient's femoral artery. The catheter is then advanced until its tip reaches the uterine artery. Many small particles are then injected into the uterine artery to block the blood flow. Both left and right uterine arteries are treated. Blood vessels supplying uterine fibroids are typically larger than the vessels in the normal uterine tissue. With properly sized particles, the blood vessels feeding the uterine fibroids are embolized, but not those in the normal uterine tissue. The fibroids then starve and die due to lack of a blood supply. The uterus survives, however, on the blood supplied from the ovarian artery and other collateral circulation. The embolization procedure may cause severe pain in the first few days after the treatment. Other disadvantages of UAE may include long X-ray radiation exposure during the procedure and other long-term potential adverse effects. The procedure is not recommended if the patient seeks a future pregnancy.


Ultrasound is a term that refers to acoustic waves having a frequency above the high limit of the human audible range (i.e., above 20 KHz). Ultrasound waves have the capability of penetrating into the human body. Based on this property, ultrasound in the frequency range of 2-20 MHz has been widely used to image internal human organs for diagnostic purposes. Ultrasound imaging has also been suggested as a tool for guidance during a resectoscopic surgery (U.S. Pat. No. 5,957,849).


When ultrasound energy is absorbed by tissue, it becomes thermal energy, raising the temperature of the tissue. To avoid thermal damage to tissue, the power level in diagnostic ultrasound imaging is kept very low. The typical ultrasound intensity (power per unit area) used in imaging is less than 0.1 watt per square centimeter. High intensity focused ultrasound, which can have an intensity above 1000 watts per square centimeter, can raise the tissue temperature at the region of the spatial focus to above 60-80 degrees Celsius in a few seconds and can cause tissue necrosis almost instantaneously.


High intensity ultrasound has been proposed to treat and destroy tissues in the liver (G. ter Haar, “Ultrasound Focal Beam Surgery,” Ultrasound in Medicine and Biology, Vol. 21, No. 9, pp. 1089-1100, 1995); in the prostate (N. T. Sanghvi and R. H. Hawes, “High-intensity Focused Ultrasound,” Experimental and Investigational Endoscopy, Vol. 4, No. 2, pp. 383-395, 1994); and in other organs. In U.S. Pat. Nos. 5,080,101, 5,080,102, 5,735,796, 5,769,790, and 5,788,636, for example, ultrasound imaging is combined with a high intensity ultrasound treatment to target the treatment region and to monitor the treatment process. In U.S. Pat. Nos. 5,471,988, 5,492,126, 5,666,954, 5,697,897, and 5,873,828, endoscopic ultrasound devices with both imaging and therapeutic capabilities are disclosed. These devices all have an elongated tube or shaft, so that they can be inserted in organ cavities (e.g., into the rectum) or into the abdominal cavity through a puncture hole in the abdominal wall to bring the ultrasound imaging and treatment sources closer to the disease sites. Some of them have flexible ends, which can be bent to fit the anatomy of a specific patient.


The therapeutic ultrasound beam is focused inside tissue to a small spot of a few millimeters in size. At the focus, tissue temperature rapidly exceeds a level sufficient to cause tissue necrosis, thus achieving the desired therapeutic effect. Outside of the focus, ultrasound energy is less concentrated, tissue temperature rise remains below the necrosis level during the typically short exposure times employed. To treat a tissue volume larger than the focal spot, in the prior art, the ultrasound focus is deflected mechanically or electronically to scan, or incrementally expose, the target tissue volume. One disadvantage of the current high intensity ultrasound therapy is its inefficiency when treating large tumors or heating a large volume of tissue Even though a three-second ultrasound pulse can increase the temperature of tissue at its focus dramatically, the ultrasound treatment must typically pause 40-60 seconds between two subsequent pulses to allow the intermediate tissue between the focus and the ultrasound transducer to cool sufficiently to avoid thermally damaging the tissue. The volume of tissue necrosis for each treatment pulse is very small (˜0.05 cm3). For example, to treat a volume of tissue within a 3 cm diameter sphere, it will take more than 4 hours, too long to be practical in most clinical situations. Many symptomatic uterine fibroids are larger than 2-3 cm in diameter, and multiple fibroids are also common. To be acceptable for clinicians and patients, the ultrasound treatment time must be significantly reduced.


Large device size is the second disadvantage of the therapeutic ultrasound apparatus in much of the prior art. Most of these devices have two separated ultrasound transducers, including one for imaging and the other for therapy. For effective treatment, the diameter of the treatment transducer is approximately equal to the maximum depth, where the f-number (transducer diameter divided by its focal length) of the transducer is about one (f/l). The transducer surface area must also be sufficiently large to generate high ultrasound power. In some prior art endoscopic devices (for example, in U.S. Pat. Nos. 5,471,988 and 5,873,828), there is a large orifice in the center of the therapy transducer for positioning an imaging transducer. This orifice reduces the area of the treatment transducer and increases its effective f-number. In this case, the size of the treatment transducer must be increased to maintain its effectiveness, so that the overall dimensions of the device are increased. For endoscopic (trans-cervical or trans-abdominal) uterine fibroid treatments, the maximum acceptable diameter of an ultrasound device is about 10 mm. It is seen that it is very difficult to meet this requirement with the large two-transducer configuration.


There is another disadvantage of the two-transducer configuration in which there is an orifice in the center of the treatment transducer. In endoscopic uterine fibroid treatment, the ultrasound device is directly brought against the surface of the fibroid tumor. The tumor surface near the orifice of the transducer will not be treated unless the transducer is moved away or aside from its initial position. Oftentimes, the space is very limited, especially inside the uterus. There may not be sufficient space to permit the device to move, a limitation that results in incomplete treatment of the tumor.


What is needed is a minimally invasive or noninvasive device for treating uterine fibroids. The device should preferably cause minimal or no trauma to the patient body so that the patient requires minimum or no recovery time; it should be easy to use; and, the treatment should be quickly administered. The device should preferably not cause blood loss during the treatment procedure; it should not mechanically damage the treated organ (e.g. uterus) to avoid the need for complicated organ repair (such as suturing or extensive cauterization); and, it should not increase the risk of post-operative adhesions and other complications. In addition, the device should be capable of carrying out the following functions:

    • (1) Ultrasonically increase the tissue temperature in the uterine fibroid to cause tumor necrosis. Shrinkage of the necrosed tissue will reduce the blood supply to the tumor. This occlusion effect will further reduce the chance of survival for the tumor.
    • (2) Significantly reduce the ultrasound treatment time and thereby improve physician and patient acceptance. A positive feedback heating process can be provided to efficiently and rapidly raise the temperature in a large volume of tissue.
    • (3) Combine the ultrasound imaging and therapy transducer in one to enable the dimensions of the apparatus to be more compact so that the device can be inserted into patient's uterine cavity or permit practical laparoscopic use (e.g., be inserted trans-abdominally).
    • (4) Include a treatment transducer that does not have an orifice in its center, so that the tumor tissue can be treated thoroughly.
    • (5) Provide ultrasound imaging capability for treatment guidance. The imaging capability should provide real-time assessment of the anatomy before, during, and after the treatment. Doppler imaging can be advantageously employed to aid targeting and the assessment of treatment.
    • (6) Use ultrasound to detect and differentiate the tissue property changes before and after the treatment to make an assessment of the treatment result possible.
    • (7) Create an acoustic absorption barrier inside the treated tissue to prevent the tissue beyond the desired treatment zone from being thermally damaged.
    • (8) Provide a feedback control mechanism to turn the treatment transducer element off when the transducer is not properly coupled to the tissue to prevent the device from being damaged by reflected ultrasound power.
    • (9) Provide an effective cooling mechanism to prevent the device from being thermally damaged.
    • (10) Use an ultrasound contrast agent (micro-bubbles) to enhance the treatment effect.


(11) Provide effective means to acoustically couple an ultrasound source to targeted tissue structures.

    • (12) Use elasticity imaging to assess the state of tissues prior, during, and after ultrasonic treatment.
    • (13) Employ cavitation as a therapeutic means to necrose selected tissues.


Currently, an endoscopic ultrasound probe is not available that can provide the above-noted functions. Accordingly, it will be apparent that both such a device and an effective and efficient method for treating uterine fibroid tumors and other internal tissues and diseased tissue masses is needed that overcomes the problems with prior art apparatus and methods.


SUMMARY OF THE INVENTION

The present invention is directed to a method and apparatus for efficiently treating uterine fibroids and other diseases with high intensity ultrasound, where the apparatus is small enough to fit in the limited space in a patient organ cavity or a limited puncture size on an abdominal wall.


Specifically, an ultrasonic system for destroying undesired tissue at an internal site within a body of a patient includes a probe that is sized to be inserted within a body of a patient. An ultrasonic transducer is mounted proximate a distal end of the probe and is adapted to couple to a power supply used to selectively energize the ultrasonic transducer so that it produces a focused beam of high intensity ultrasonic energy. An ultrasound transmissive interface is coupled to the distal end of the probe and is disposed and adapted to conform to a surface of the undesired tissue. The interface provides a liquid layer that more efficiently transmits the high intensity ultrasonic energy produced by the ultrasonic transducer into the undesired tissue. The high intensity ultrasonic energy increases a temperature of the undesired tissue sufficiently to cause the tissue to necrose.


In one form of the invention, the ultrasound transmissive interface comprises an elastomeric cavity that is adapted to contain a liquid. The elastomeric cavity is disposed between the ultrasonic transducer and the surface of the undesired tissue so that the high intensity ultrasonic energy passes through the liquid within the elastomeric cavity and into the undesired tissue. The elastomeric cavity is formed at least in part from a semi-permeable membrane, so that the liquid from within the elastomeric cavity weeps onto a surface of undesired tissue to increase the efficiency with which the high intensity ultrasonic energy is coupled into the undesired tissue.


In another form of the present invention, the ultrasound transmissive interface comprises a cap made of an elastomeric material, which is disposed to surround the ultrasonic transducer. The cap is adapted to seal against the undesired tissue and to contain a liquid that increases an efficiency with which the high intensity ultrasonic energy is coupled into the undesired tissue. In addition, the cap preferably includes a rim having a double lip seal formed around a perimeter. A passage in the cap is adapted to couple the double lip seal to a vacuum line so that the rim of the cap is held against a surface of the undesirable tissue, sealing the liquid inside of the cap.


Another aspect of the present invention is directed to a method for administering an ultrasonic therapy to destroy at least a portion of an undesired tissue mass. The method includes the steps of providing an ultrasonic transducer that emits a focused high energy ultrasonic energy when energized, and positioning the ultrasonic transducer proximate the undesired tissue mass. The ultrasonic transducer is directed toward a desired focal point within the undesired tissue mass. Then, the ultrasonic transducer is energized so that it emits the focused high energy ultrasonic energy at the desired focal point, causing necrosis of a portion of the undesired tissue mass disposed at the desired focal point. At least one of an f-number, an intensity, a time, and a direction of the high intensity ultrasonic energy emitted into the undesired tissue mass is controlled to achieve a desired shape and size of a necrotic zone of undesired tissue, destroyed as a result of being heated by the high intensity ultrasonic energy. The necrotic zone substantially blocks the high intensity ultrasonic energy from penetrating beyond the necrotic zone. The desired shape and size of the necrotic zone are preferably selected and formed so as to cause substantially of the undesired tissue mass to ultimately be destroyed.


The step of controlling preferably includes the step of repositioning the ultrasonic transducer to direct the high intensity ultrasonic energy at a different portion of the undesired tissue mass, to achieve the desired shape and size of the necrotic zone. In one application of the method, the desired shape and size of the necrotic zone are selected so that formation of the necrotic zone substantially deprives the undesired tissue mass of a blood supply, causing the ultimate destruction of the undesired tissue mass. In another application of the method, the desired shape and size of the necrotic zone are selected to control bleeding at a treatment site.





BRIEF DESCRIPTION OF THE DRAWING FIGURES

The foregoing aspects and many of the attendant advantages of this invention will become more readily appreciated as the same becomes better understood by reference to the following detailed description, when taken in conjunction with the accompanying drawings, wherein:



FIG. 1 is a block diagram of the positive feedback mechanism of the improved tissue heating process;



FIGS. 2A-2D illustrate different thermal lesion shapes;



FIG. 3A is a cross-sectional view of a portion of a patient's body, illustrating application of an endoscopic device in accord with the present invention, which can both acquire ultrasound images and generate high intensity therapeutic ultrasound at its distal end;



FIGS. 3B and 3C are side elevational views of a portion of the device shown in FIG. 3A, illustrating an imaging field and a treatment field of the device;



FIGS. 4A and 4B are schematic diagrams of different treatment beam forming techniques used to control the lesion geometry and illustrating spatial lesion formation;



FIGS. 5A and 5B are schematic diagrams of different treatment beam forming techniques used to control the lesion geometry and illustrating spatial-temporal lesion formation;



FIG. 6 is a schematic diagram of the trans-cervical ultrasound device with an articulated end;



FIGS. 7A and 7B are schematic diagrams showing transcervical hemostasis treatment performed in combination with resectoscopic removal of submucosal fibroids;



FIGS. 8A and 8B are schematic diagrams respectively showing the trans-cervical and the trans-abdominal ultrasound device treating intramural fibroids from inside and from outside of the uterus;



FIGS. 9A and 9B are schematic diagrams respectively showing laparoscopic occlusion treatment of subserosal fibroids, and a wedge of necrosed tissue produced thereby;



FIG. 10 is a block diagram of the trans-cervical ultrasound device connected with its control unit, display, and fluid management unit;



FIG. 11 is a side elevational view of the ultrasound device and a cross-sectional view of a liquid-filled vacuum cap that provides coupling between the fibroid tumor and the ultrasound transducer;



FIG. 12 is a system block diagram of the control electronics in the control unit; and



FIG. 13 is an isometric view of a portion of an ultrasound device that includes a structure to maintain a gap between the tissue being treated and an ultrasound transducer array, to convey a coolant liquid.





DESCRIPTION OF THE PREFERRED EMBODIMENT

In the following description of the present invention, its application in treating uterine fibroid tumors is discuss in some detail. However, it should be emphasized that the device and methods described herein may also be used to apply ultrasound therapy treatment to other organ systems, lesions, and disease states. The therapy delivered may be thermal ablation, where a temperature rise is established to a level at which tissues are no longer viable; mechanical ablation, where cavitation is employed as the primary ablative means; or may achieve hemostasis wherein bleeding or blood flow in intact organs is arrested. Such applications of the present invention may be accomplished in open, invasive surgery, by way of established minimally invasive techniques (for example, by way of body entry through one or more small incisions or punctures), or in some cases, noninvasively, through the skin surface or through the linings of body cavities such as the rectum, vagina, or esophagus. Ablative treatment with the present invention may be applied to a wide range of benign or cancerous lesions of the liver, kidney, pancreas, spleen, prostate, breast, bowel, rectum or similar organ systems, wherein the device described herein may be placed in close proximity to the disease location. Also, acoustic hemostasis treatment may be employed to deprive a disease lesion of its blood supply or used to facilitate surgical procedures by arresting bleeding or blood flow.


Many tumors, such as uterine fibroids, locate superficially inside or outside the organ. During hysteroscopic or laparoscopic surgeries, surgeons can easily reach the surfaces of those tumors with an intra-cervical or intra-abdominal instrument. For an ultrasound transducer at the tip of the intra-cavity instrument touching the tumor directly, there will be little or no intermediate tissue that needs to be spared and cooled, so that pauses in the treatment for this purpose may become unnecessary.


According to conventional wisdom, the pre-focal heating is considered to be a negative effect and needs to be minimized. In the case of intra-cavity treatment of uterine fibroids, however, this pre-focal heating can provide significant enhancement to the efficiency of tissue heating when the ultrasound transducer can be disposed in close contact with the tumor surface. A positive feedback mechanism of tissue heating (illustrated in FIG. 1) is preferably used to improve the efficiency of the treatment provided by the present invention. The positive feedback indicated by a block 2 of FIG. 1 enhances acoustic absorption. The acoustic energy is converted to heat, as noted in a block 4, resulting in a greater temperature rise in the tissue, as indicated in a block 6. Tissue acoustic absorption increases significantly when its temperature rises above 50° C. Referencing FIG. 2A, a small f-number, high intensity ultrasound transducer 10, running in continuous-wave (CW) mode, raises the temperature in tissue 12 at its focus to 70-90° C. in less than two seconds and forms a small lesion 14. This isolated thermal lesion serves two purposes. First, it is the initial seed to start the positive feedback heating process; and, secondly, its high acoustic absorption blocks ultrasound energy from penetrating beyond the focal depth to cause undesirable damage to normal tissue. In an experimental study, it was observed that after the lesion started at the focus, it first grew along the central axis of the transducer and towards the transducer to form an elongate lesion. Then, the end of the elongate lesion closer to transducer began growing laterally wider. Eventually, the lesion became a wedge shape 16 (FIG. 2B). The tissue layer near the surface, adjacent to transducer 10, was the last portion to necrose.


In an experimental study, a wedge-shaped lesion of tissue necrosis was generated with this mechanism by running the ultrasound power continuously, while keeping the transducer position fixed. The volume of the thermal lesion was about 4.5 cm3, and the treatment time was approximately two minutes. The average treatment rate was about 2.25 cm3/min, which was 45 times faster than provided by a conventional pulse-pause treatment strategy.


Using the present invention, the size and the shape of the large thermal lesion can be readily controlled. To form a thin elongate lesion column 20 in the tissue (FIG. 2C), a circular transducer 18 with a relatively large f-number (˜2) is used to treat the tissue over a relatively short time. To create a conical shaped lesion, a circular transducer with a small f-number (˜1) is used to treat the tissue for a relatively long time. To form a thin, wedge-shaped lesion, i.e., shaped like a slice of pie (FIG. 2B), a cylindrical or truncated circular transducer is used to treat the tissue over a relatively long time. A generally rectangular lesion plane 21 (FIG. 2D) can be generated by forming a row of tightly spaced lesion columns 22, 24, and 26. Each column is formed from a fixed transducer position in a short time. The transducer may then be quickly shifted laterally to generate the next adjacent column, moving from position “A” to “B” to “C” as shown in FIG. 2D. Thermal diffusion in the tissue fuses the columns together to form rectangular lesion plane 21. It is also possible to create a large lesion in the tissue without damaging the organ surface. One approach is to cool the tissue surface with circulating water or saline. The other approach is to use an attenuation measurement technique described below, to monitor lesion progress (growth) and control power, accordingly.


The basic concept and configuration of a high intensity ultrasound device 29 in accord with the present invention are shown in FIGS. 3A and 3B. The device has a thin, elongate shaft 28 that can be inserted through the cervix into the uterine cavity, or, as shown in FIG. 3A, through a laparoscopic opening 34 in the abdominal wall and into the abdominal cavity. A distal end 30 of the shaft contains a concave-shaped ultrasound transducer array 36 (FIG. 3B) and may be formed into different curves to fit different anatomies of individual patients. The distal end that is thus formed can be permanently fixed or articulated by turning a control knob 32 on a handle 33 of the device. Transducer array 36 in FIG. 3B is operable for both ultrasound imaging and treatment. To form an ultrasound image, the transducer array generates ultrasound pulses and receives echoes from the imaged anatomy in a cross-sectional area 40. The two-dimensional (2D) ultrasound image displays the cross-sectional view of the anatomy. The image can be updated rapidly in real-time with a frame rate of, for example, 10-30 frames per second. Physicians can then view this real-time image to locate the tumor or other tissue that needs to be treated or spared from treatment. When the treatment area is identified in the image, the transducer array is employed to generate high intensity ultrasound focused in a treatment area 38. After the tissue in the treatment area has been necrosed, the distal end of the ultrasound device is moved to a new location to sequentially treat another part of the tumor tissue. The imaging and the treatment are interleaved in time so that the treatment process and the progress of the treatment may be monitored.


Doppler flow imaging (spectral Doppler or power mode Doppler) may be utilized to assist targeting and to monitor treatment effects and to determine the endpoint of the therapy. Imaging blood flow is particularly useful when a blood flow occlusion strategy is being utilized, since the cessation of blood flow can be directly monitored. Doppler imaging facilitates localization of the vascularity typically surrounding uterine fibroid tumors or other tumor masses.


There are many possible combinations of the imaging and treatment capabilities. Imaging and therapy may be one-, two-, or three-dimensional in various combinations; scan geometries may be fixed or selectable; and imaging and therapy may proceed either simultaneously or sequentially in time. A preferred embodiment of the ultrasound intra-cavity device discussed herein has the capability to carryout 2D real-time imaging and the capability to produce tissue necrosis in a substantially 2D slice (thickness of this slice is nominally less than one centimeter). Including the lesion-control techniques discussed above, there are many ways to control treatment geometry with this device. Different spatial beam patterns can be generated from by the ultrasound transducer array included on the device to form a specific lesion shape, or potentially, to reduce treatment time. Multiple sequential exposures of different spatial beam patterns can also be used to control the treatment dosage at different locations to form lesion shapes that cannot be generated by fixed beam patterns.


As shown in FIG. 6, a trans-cervical ultrasound device 68 is adapted to treat submucosal fibroids. The device is inserted into a patient's uterine cavity through the vagina and the cervical canal. The uterine cavity is distended with sterile water or saline under 50-80 mm Hg pressure delivered through internal channels inside a shaft 70 of the device and connected to couplings 78 and 76. The water provides working space for manipulation of the device, and the water thus infused also serves as a transducer coupling and cooling medium.


The fibroid is visualized by ultrasound imaging using trans-cervical ultrasound device 68. As a function of the tumor size and shape, the physician selects the appropriate treatment geometry and turns the therapeutic ultrasound power on to necrose a slice volume of the tumor tissue in front of the transducer. The entire tumor is then treated typically piece by piece. During the treatment, the transducer (not separately shown) at a distal end 72 of the device does not have to directly contact the tumor surface—the water in the uterus is a good acoustic coupling and transmission medium. After the tumor is completely treated, the physician removes the device and drains the water from the patient's uterus. The procedure is finished without any surgical invasion to the tissue.


There are two possible approaches for providing treatment of a submucosal fibroid tumor 94 with trans-cervical ultrasound device 68. The physician can treat the whole tumor directly with the ultrasound device, as shown in FIG. 7A, or treat only a remaining tumor base 96, as shown in FIG. 7B, after a portion of the tumor is removed by using a resectoscope. In FIG. 7A the transducer in distal end 72 is placed adjacent to tumor 94 inside a water-filled uterine cavity 90. For the latter approach, the ultrasound device works not only as an ablation tool, but also as a hemostasis tool to seal off the open, bleeding vessels around and inside the exposed tumor base.


A similar technique may be used to treat intramural fibroids as illustrated in FIGS. 8A and 8B. If a tumor 93 is closer to the inside of the uterus (FIG. 8A), a trans-cervical ultrasound device is the choice for the treatment. Otherwise, a trans-abdominal device may be used (FIG. 8B). Some intramural fibroids 96 are imbedded inside normal uterine tissue, e.g., in a uterine wall 92. The physician may want only to necrose the tumor but not the uterine wall that covers the tumor. In this case, the physician can use the lesion geometry control techniques described above to heat only the tumor inside the uterine wall without thermally damaging the surrounding tissue.


Subserosal fibroids are disposed substantially outside of the uterus. When these are symptomatic, they may be larger than submucosal and intramural fibroids. However, the trans-abdominal ultrasound device according to the present invention can also be used to treat them. If the physician uses the same treatment technique as described above to thermally necrose the entire tumor, it will take longer time, because they are relatively large. An alternative approach is shown in FIGS. 9A and 9B, where only the tumor base is treated by a series of sectors, or pie-shaped applications 100, 102 (FIG. 9B) that are circumferentially disposed around the base of a tumor 98. After the entire tumor base is heated sector by sector, the tumor tissue in the base shrinks. The tissue shrinkage occludes blood vessels in the base and achieves effective tumor starvation as oxygen and nutrient supplies are interrupted. Without a blood supply, the tumor will die. The necrosed tumor will then shrink in volume, so that the pressure symptoms experienced by the patient due to the growth of the tumor will be relieved.


A system 104 that supports operation of trans-cervical ultrasound device 68 is shown in FIG. 10. The system consists includes one Or more ultrasound applicators 126, an optional optical hysteroscope (not separately shown), which is inside the applicator, and its associated camera 112, a treatment control unit 10, a TV monitor 122, and a fluid management system that includes a fluid management system pump 120, tubing 116, and a waste collection container 114. The hysteroscope, camera, monitor, and fluid management system are typically available in a well-equipped gynecology operating room. The optional hysteroscope may be useful for visually locating the tumor. Control unit 110 provides electronic signals and power to the ultrasound transducer for both imaging and therapy. The ultrasonic image and the optical image from the camera attached to the hysteroscope are combined in the control unit and are preferably displayed on the monitor in a “picture-in-a-picture” format 124. Alternatively, either one of the images may be displayed alone. Fluid management system pump 120 controls the saline or water pressure and the flow rate into the uterus.


Different configurations of the trans-cervical ultrasound device shown in FIG. 6 have specific advantages. They all have two irrigation channels for fluid in and out, one electrical cable to connect to the control unit, and one utility channel for the hysteroscope. The difference is in their tip configuration. In FIG. 6, the distal end of the applicator can bend to different angles 80 about a pivot 74, to accommodate different approaches to the treatment zone. A knob 77 at the device handle controls the tip articulation, providing an adjustable head angle over a range of up to 90 degrees. Alternatively, the distal end of the device may be fixed, and several applicators of different fixed tip angles can be provided for different treatments.


The ultrasound transducer in the end of the trans-cervical applicator may have a limited usable lifetime. The tip of the device may be a reposable (disposable, with a limited number of times of reuse). A used tip can thus be removed, and a new tip attached. The reposable portion may include shaft 70, so that the connection port will be in the handle, which stays outside the patient and is not immersed in fluid.


Trans-abdominal ultrasound device 29 shown in FIGS. 3A and 3B has a long shaft 28 that can be inserted into the patient's abdominal cavity through laparoscopic surgery cannula 34, which is disposed in a puncture hole on the abdominal wall. Under visual guidance of a laparoscope, distal end 30 of the device is brought in close contact with the uterine fibroid. As in the trans-cervical device, ultrasound array transducer 36 is preferably mounted at distal end 30 of the device for imaging and therapy. Guided by the ultrasound image, the physician uses the device to necrose the fibroid tissue. The distal end of the device is preferably articulated at a flexible shaft segment 31, as shown in FIG. 3C, with one or two knobs 32 (depending upon whether one or two axes of articulation are provided) that are disposed on handle 33 of the device. This flexible shaft segment permits treatment zone 38 to point in different directions to accommodate different tumor positions. The ultrasound transducer may be disposed in a cover case balloon 41 or other cover at the tip of the device (FIG. 3C).


Cover case balloon 41 is elastomeric and conforms to an outer surface of a tumor, providing more efficient acoustical coupling between the transducer and the treatment area; the curvature of the tumor contour will, in general, be different from the curvature of the ultrasound transducer. Moreover, during a conventional laparoscopic procedure, the patient's abdomen is inflated with CO2 gas to create a large working space. A gas gap between the transducer and the tumor, however, would block the ultrasound transmission. Instead of penetrating into the tumor, the ultrasound beam would be reflected back to the transducer. The therapeutic effect would thus be diminished and the transducer might be damaged by the reflected ultrasound energy.


It thus is important to maintain good acoustic coupling between the treatment tissue and the ultrasound transducer while provide the ultrasound therapy. Water, saline, and most water-based solutions and gels are excellent coupling media. In diagnostic ultrasound imaging, water-based coupling gel is widely used. However, gel may have limitations in trans-abdominal ultrasound therapy for treating uterine fibroids. Unlike skin, the fibroid is much less compressible. It is also more difficult to apply manual pressure during a laparoscopic procedure to conform the fibroid to the surface contour of the transducer. Gel may be used to fill the remaining gaps, but gas bubbles trapped in the gel are difficult to squeeze out.


In this preferred embodiment of the present invention, water-filled cover case balloon 41 (FIG. 3C) is fabricated of thin elastic material and is placed between the transducer and the fibroid to ensure effective coupling of the ultrasonic energy into the tumor mass. Under a small manual pressure, the balloon is conformed to both the transducer surface and the fibroid surface. If the transducer is inside the balloon, only the fibroid surface needs to be wetted with sterile saline to keep a good coupling to the balloon surface. Alternatively, cover case balloon 41 may be fabricated of a semi-permeable membrane material that enables liquid to weep from inside the balloon. The “weeping” of the fluid from the balloon thus can keep the fibroid surface wet during the treatment. When the internal pressure is higher than the pressure in the abdominal cavity, the sterile saline or water inside the semi-permeable balloon readily weeps through the semi-permeable membrane to create a fluid interface-layer that maintains continuous effective coupling.


Alternatively, as shown in FIG. 11, a vacuum cap 138 made of soft rubber, plastic, or other elastomeric material, may also be applied at the distal end of the device to provide the acoustic coupling as shown in cross section at FIG. 11. The cap surrounds ultrasound transducer array 36 and is open at its front, opposite the array. The front opening of the cap is large enough to permit the ultrasound beam to pass without obstruction. Around the open end of the cap, a rim 131 has a double lip 130. The double lip is soft and elastomeric and can conform to the shape of a tumor surface 136. A vacuum port 134 is provided in fluid communication with the double lip, and a vacuum source coupled to this port provides a negative pressure within the double lip that holds the cap tightly on the tumor. Sterile water is then provided through a port 132 that communicates with an interior of the cap to provide the acoustic coupling between the transducer and the tumor. The cap works as a wall to block gas from getting into the cap. In case there are any minor leaks, the leaking gas and water are removed immediately at the double lip.


To protect the ultrasound transducer against accidental damage caused by the reflected ultrasound power when there are large gas bubbles or gaps between the transducer and the tumor, or when the device is lifted from the tumor while the high intensity ultrasound output is still on, the present invention preferably uses the ultrasound imaging capability to detect the existence of gas. When a gas gap exists, it causes a strong reflection detected when ultrasound imaging. The reflection may also bounce back and forth between the transducer and the gas gap, resulting in a reverberation (multiple reflections). The strong reflection or reverberation appear(s) as very bright echoes in a large portion of the image. When observing this unique echo image, the medical practitioner may adjust the position or the coupling of the ultrasound device to eliminate the trapped gas. As an alternative, an automatic gas detection technique may be used to avoid the reflection damage. By using the unique characteristics of the gas in the reflected echo signal, the system may detect its existence during the imaging process. When the strong echo is detected, the system may automatically turn off the high intensity ultrasound output to the area where there are gas gaps. This automatic power shut down process is accomplished almost instantaneously, so that thermal damage to the transducer array is avoided.


During therapy application, the ultrasound transducer generate heat internally. This heat can possibly cause damage or reduce the service life of the transducer array. Moreover, if the transducer array touches the tumor tissue directly, the high temperature of the transducer array can prematurely, or inadvertently, necrose the tissue surface. The high acoustic absorption of the necrosed tissue at the surface would also prevent the ultrasound beam from penetrating deep into the tumor, so that the deep tumor tissue might not be properly treated. It is therefore very important to keep the temperature of the transducer array and at the tissue interface relatively low during the treatment.


A plurality of techniques can be employed to cool the transducer array. The simplest approach is to immerse the transducer in water, maintain a gap between the transducer surface and the tumor, and then ensure that the water flows through the gap during the treatment. Two water channels preferably disposed inside the device casing to circulate the cooling fluid may optionally be used for this purpose. The ultrasound transducer array is disposed in one of the channels. Alternatively, both the transducer and the tumor may be immersed in water. In the trans-cervical approach, the uterine cavity is conveniently filled with water. In certain trans-abdominal situations, it may be possible to fill a portion of the abdominal cavity with water. And, in some non-invasive situations it is possible to construct a water dam, sealed at its periphery to the organ surface, creating a water pool in which the applicator may be positioned. As shown in FIG. 13, a thin-wire fence 162 or frame attached to distal end 72 maintains a gap between transducer array 36 and the first interface of patient tissue (e.g., the tumor's outside surface). A variety of such useful standoff structures may be employed, as best suited for the geometric requirements of the application and specific applicator designs. During treatment, a water jet from a port 160 introduces water, or saline, into the gap. Circulation of conditioned water through one or more such ports may be used to control water temperature, pressure, chemical composition, gas content, or volume. Alternatively, the transducer array may be cooled by using a thermal-conductive, acoustic-matching layer (e.g., aluminum) bonded to the piezoelectric ceramic of the ultrasound transducer array. This thermal-conductive layer removes the heat from the transducer ceramic. The heat is removed by water flowing in attached lines or by heat sinks that are connected to the thermal-conductive layer.


To simplify the device design and to reduce the size of the endoscopic instrument, one ultrasound transducer array is used for both imaging and therapy. A concave transducer array provides a good compromise to simplify the design for both functions. Natural focusing of the concave geometry simplifies the ultrasound beam forming, where there is no (or less) phase delay needed, and cross-talk among array elements is less of a problem. Because of the minimum phase delay required, larger element pitch size can be used. Large pitch size reduces the number of elements in the array and the number of electronic signal channels required. It also helps to reduce the cost of the transducer and the cost of the control unit. Treatment area 38 is geometrically inside imaging area 40 of the array (see FIG. 3B). The entire treatment area is under the ultrasound imaging monitoring—there is no blind spot in the treatment area.



FIG. 12 is a simplified block diagram of the electronic control system according to the invention. The specific applicator device connected to the control system is recognized electronically by a system controller 206, which reads applicator data from a memory device, an ID tag 172. Such data include specific functional and calibration information. A switch matrix 176 connects a concave transducer array 170 to the therapeutic circuitry or to the imaging circuitry. During imaging, an imaging transmitter 186 generates pulse sequences to drive the ultrasound transducer array through a transmit-receive switching matrix 190. The imaging receiver amplifies and processes the echo signals captured by the transducer array. During the therapy phase, switch matrix 176 connects the transducer array to the therapeutic transmitter chain to form and steer a high intensity ultrasound beam within the tissue being treated. To monitor the treatment process, the transducer array may be periodically switch back to the imaging circuitry to form frames of ultrasound images during the treatment.


System controller 206 provides overall control and synchronization of the multiplicity of functions executed by the system including an operator interface control panel 208, a foot switch 200 that is used for initiating and arresting therapy, and a timing logic 194, employed for establishing appropriate phasing of the therapeutic phased array transmit chain. This chain comprises a primary oscillator 182, a phase locked loop 184, a multi-channel power amplifier 180 and matching networks 178. Additionally, timing logic 194 provides data to the imaging chain that includes the receive amplifiers and time-gain compensation circuits 188, a quadrature detection circuit 196, an analog-to-digital conversion circuit 192, an Intensity (B) mode processing circuit 198, an attenuation processing circuit 204, a Doppler flow processing circuit 212, and a scan conversion circuit 202. Images of the target tissue are converted to a format compatible with standardized operating room video display in image merging circuits 210 and mixed with other video sources (e.g., hysteroscopic optical imaging), and user interface graphics, and processed in graphic overlay 216, which is included in a video processor module 214, for display.


Thermally necrosed tissue has a much higher acoustic attenuation (>1.0 dB/cm/MHz) than the untreated tissue (0.4-0.7 dB/cm/MHz). This property may be used to monitor or visualize the treatment area. One technique to measure the tissue attenuation change is to measure the frequency spectral change in the echo signal. High frequency components in the frequency band are attenuated more than the low frequency components. By subtracting the spectrum before the treatment from the spectrum after the treatment, the attenuation change can be measured. If the subtracted spectrum is near zero, it indicates that the tissue where the echo is acquired has not been treated. If the result of spectrum subtraction has a significant slope, it means the tissue attenuation has changed, indicating that this area has been necrosed.


Alternatively, or in combination with this attenuation imaging, elasticity imaging may be employed to assess tissue state before, during, or after ultrasonic treatment. Elasticity imaging, the principles of which are well known in the art, provides a visualization of physical and mechanical tissue properties. Necrosed tissues are stiffer and demonstrate elasticity changes. Treatment endpoints may be manually or automatically controlled (under operator control) by use of elasticity imaging parameters.


As an alternative method of therapy that may reduce the treatment time even further, the patient may be given an injection of ultrasound contrast agent, which is a solution of encapsulated air-containing micro-bubbles that are sufficiently small to circulate safely in the blood and blood vessels. When the bubbles are flowing through the fibroid, they will be hit by the high intensity therapeutic ultrasound. The bubbles enhance the ultrasound heating process at the treatment area and make the treatment more efficient.


As a further alternative method of therapy, cavitation may be utilized as a mechanism for speeding effective treatment. Ultrasound with high acoustic pressure and lower frequency increases the likelihood of stimulating the onset of cavitation. The presence of contrast media or bubbles also encourages cavitation. Cavitation can aggressively disrupt tissue and increase energy transfer for an enhanced heating effect.


Although the present invention has been described in connection with the preferred form of practicing it, those of ordinary skill in the art will understand that many modifications can be made thereto within the scope of the claims that follow. Accordingly, it is not intended that the scope of the invention in any way be limited by the above description, but instead be determined entirely by reference to the claims that follow.

Claims
  • 1. An ultrasonic system for destroying undesired tissue at an internal site within a body of a patient, comprising: (a) a probe that is sized to be inserted within a body of a patient;(b) an ultrasonic transducer mounted proximate a distal end of the probe, said ultrasonic transducer being adapted to couple to a power supply to selectively energize the ultrasonic transducer so that it produces a focused beam of high intensity ultrasonic energy configured to heat tissue between the transducer and a focal point based on a combination of at least two of an f-number, an intensity, a time, and a direction of the beam of high intensity ultrasonic energy and to treat the undesired tissue at the focal point, wherein said high intensity ultrasonic energy is configured to heat tissue between the transducer and focal point to a level sufficient to cause a lesion to form between the focal point and the ultrasonic transducer and to not cause a lesion to form substantially beyond the focal point; and(c) an ultrasound transmissive interface that is coupled to the distal end of the probe, said ultrasound transmissive interface being disposed and adapted to transmit the high intensity ultrasonic energy produced by the ultrasonic transducer into a target, said high intensity ultrasonic energy increasing a temperature of the undesired tissue.
  • 2. The ultrasonic system of claim 1, wherein the ultrasound transmissive interface comprises an elastomeric cavity that is adapted to contain a liquid, said elastomeric cavity being disposed between the ultrasonic transducer and a surface of a contacted tissue so that the high intensity ultrasonic energy passes through the liquid within the elastomeric cavity and into the contacted tissue.
  • 3. The ultrasonic system of claim 2, wherein the elastomeric cavity is formed at least in part from a semi-permeable membrane, so that the liquid from within the elastomeric cavity weeps onto a surface of the contacted tissue to increase an efficiency for coupling the high intensity ultrasonic energy into the contacted tissue.
  • 4. The ultrasonic system of claim 2, wherein the ultrasound transmissive interface comprises a cap made of an elastomeric material and disposed to surround the ultrasonic transducer, said cap being adapted to seal against the contacted tissue and to contain a liquid that increases an efficiency with which the high intensity ultrasonic energy is coupled into the contacted tissue.
  • 5. The ultrasonic system of claim 4, wherein the cap includes a rim having a double lip formed around a perimeter and includes a passage adapted to couple to a vacuum line so that the rim of the cap is held against a surface of the contacted tissue, sealing the liquid inside of the cap.
  • 6. The ultrasonic system of claim 1, wherein said high intensity ultrasonic energy is configured to heat tissue between the transducer and focal point to a temperature of 50° C. or more.
  • 7. The ultrasonic system of claim 1, wherein the lesion has a volume of about 4.5 cubic centimeters.
  • 8. A method for administering an ultrasonic therapy to a target, comprising the steps of: (a) providing an ultrasonic transducer that emits a focused high energy ultrasonic energy when energized;(b) positioning the ultrasonic transducer to focus it at an imaged target;(c) directing the ultrasonic transducer toward a desired focal point within the target;(d) energizing the ultrasonic transducer so that it emits the focused high energy ultrasonic energy at the desired focal point, causing heating of a portion of the target disposed at the desired focal point; and(e) controlling a combination of at least two of an f-number, an intensity, a time, and a direction of the high intensity ultrasonic energy emitted into the target without moving the focal point to cause an initial lesion to grow toward the ultrasonic transducer and in at least one other dimension and not away from the ultrasonic transducer.
  • 9. The method of claim 8, wherein a desired shape and size of the lesion are selected so that formation of the lesion substantially deprives the target of a blood supply, causing the ultimate destruction of the target.
  • 10. The method of claim 8, wherein a desired shape and size of the lesion are selected to cause heating of a blood vessel.
  • 11. The method of claim 8, wherein the target is a blood vessel.
  • 12. The method of claim 8, further comprising imaging the target.
RELATED APPLICATIONS

This application is a continuation of U.S. application Ser. No. 10/633,726, filed Aug. 4, 2003, which is a continuation of U.S. application Ser. No. 09/721,526, filed Nov. 22, 2000, now U.S. Pat. No. 6,626,855, which claims the benefit of U.S. Provisional Application No. 60/167,707, filed Nov. 26, 1999, all of which are incorporated herein by reference in their entirety.

US Referenced Citations (392)
Number Name Date Kind
385256 Eggers Jun 1888 A
3274437 Mastrup Sep 1966 A
3499437 Balamuth Mar 1970 A
3552382 Mount Jan 1971 A
3847016 Ziedonis Nov 1974 A
3927662 Ziedonis Dec 1975 A
4059098 Murdock Nov 1977 A
4167180 Kossoff Sep 1979 A
4197856 Northrop Apr 1980 A
4206763 Pedersen Jun 1980 A
4237901 Taenzer Dec 1980 A
4273127 Auth et al. Jun 1981 A
4315514 Drewes et al. Feb 1982 A
4469099 McEwen Sep 1984 A
4479494 McEwen Oct 1984 A
4484569 Driller et al. Nov 1984 A
4545386 Hetz et al. Oct 1985 A
4594895 Fujii Jun 1986 A
4601296 Yerushalmi Jul 1986 A
4605010 McEwen Aug 1986 A
4688578 Takano et al. Aug 1987 A
4708836 Gain et al. Nov 1987 A
4748985 Nagasaki Jun 1988 A
4757820 Itoh Jul 1988 A
4770175 McEwen Sep 1988 A
4773865 Baldwin Sep 1988 A
4784148 Dow et al. Nov 1988 A
4841979 Dow et al. Jun 1989 A
4850363 Yanagawa Jul 1989 A
4858613 Fry et al. Aug 1989 A
4905672 Schwarze et al. Mar 1990 A
4913155 Dow et al. Apr 1990 A
4929246 Sinofsky May 1990 A
4931047 Broadwin et al. Jun 1990 A
4938216 Lele Jul 1990 A
4938217 Lele Jul 1990 A
4957099 Hassler Sep 1990 A
5005579 Wurster et al. Apr 1991 A
RE33590 Dory May 1991 E
5026387 Thomas Jun 1991 A
5036855 Fry et al. Aug 1991 A
5039774 Shikinami et al. Aug 1991 A
5042486 Pfeiler et al. Aug 1991 A
5065742 Belikan et al. Nov 1991 A
5080101 Dory Jan 1992 A
5080102 Dory Jan 1992 A
5150712 Dory Sep 1992 A
5170790 Lacoste et al. Dec 1992 A
5178135 Uchiyama et al. Jan 1993 A
5178148 Lacoste et al. Jan 1993 A
5181522 McEwen Jan 1993 A
5194291 D'Aoust et al. Mar 1993 A
5211160 Talish et al. May 1993 A
5215680 D'Arrigo Jun 1993 A
5219401 Cathignol et al. Jun 1993 A
5230334 Klopotek Jul 1993 A
5230921 Waltonen et al. Jul 1993 A
5233994 Shmulewitz Aug 1993 A
5243988 Sieben et al. Sep 1993 A
5254087 McEwen Oct 1993 A
5263957 Davison Nov 1993 A
5290278 Anderson Mar 1994 A
5307816 Hashimoto et al. May 1994 A
5311869 Okazaki May 1994 A
5312431 McEwen May 1994 A
5318035 Konno et al. Jun 1994 A
5352195 McEwen Oct 1994 A
5364389 Anderson Nov 1994 A
5383896 Gershony et al. Jan 1995 A
5391140 Schaetzle et al. Feb 1995 A
5391197 Burdette et al. Feb 1995 A
5394877 Orr et al. Mar 1995 A
5415657 Taymor-Luria May 1995 A
5439477 McEwen Aug 1995 A
5453576 Krivitski Sep 1995 A
5454373 Koger et al. Oct 1995 A
5454831 McEwen Oct 1995 A
5471988 Fujio et al. Dec 1995 A
5474071 Chapelon et al. Dec 1995 A
5492126 Hennige et al. Feb 1996 A
5503152 Oakley et al. Apr 1996 A
5507744 Tay et al. Apr 1996 A
5507790 Weiss Apr 1996 A
5515853 Smith et al. May 1996 A
5520188 Hennige et al. May 1996 A
5522878 Montecalvo et al. Jun 1996 A
5524620 Rosenschein Jun 1996 A
5526815 Granz et al. Jun 1996 A
5534232 Denes et al. Jul 1996 A
5536489 Lohrmann et al. Jul 1996 A
5553618 Suzuki et al. Sep 1996 A
5556415 McEwen et al. Sep 1996 A
5558092 Unger et al. Sep 1996 A
5573497 Chapelon Nov 1996 A
5578055 McEwen Nov 1996 A
5584853 McEwen Dec 1996 A
5590657 Cain et al. Jan 1997 A
5601526 Chapelon et al. Feb 1997 A
5607447 McEwen et al. Mar 1997 A
5609485 Bergman et al. Mar 1997 A
5626601 Gershony et al. May 1997 A
5628730 Shapland et al. May 1997 A
5630837 Crowley May 1997 A
5638823 Akay et al. Jun 1997 A
5643179 Fujimoto Jul 1997 A
5649954 McEwen Jul 1997 A
5655538 Lorraine et al. Aug 1997 A
5655539 Wang et al. Aug 1997 A
5657760 Ying et al. Aug 1997 A
5665073 Bulow et al. Sep 1997 A
5666954 Chapelon et al. Sep 1997 A
5681339 McEwen et al. Oct 1997 A
5685307 Holland et al. Nov 1997 A
5695493 Nakajima et al. Dec 1997 A
5697897 Buchholtz et al. Dec 1997 A
D389574 Emerson et al. Jan 1998 S
5704361 Seward et al. Jan 1998 A
5711058 Frey et al. Jan 1998 A
5713363 Seward et al. Feb 1998 A
5716374 Francese et al. Feb 1998 A
5720286 Chapelon et al. Feb 1998 A
5720287 Chapelon et al. Feb 1998 A
5726066 Choi Mar 1998 A
5735796 Granz et al. Apr 1998 A
5738635 Chapelon et al. Apr 1998 A
5741295 McEwen Apr 1998 A
5755228 Wilson et al. May 1998 A
5762066 Law et al. Jun 1998 A
5769790 Watkins et al. Jun 1998 A
5788636 Curley Aug 1998 A
5807285 Vaitekunas et al. Sep 1998 A
5810007 Holupka et al. Sep 1998 A
5810810 Tay et al. Sep 1998 A
5817021 Reichenberger Oct 1998 A
5823962 Schaetzle et al. Oct 1998 A
5824015 Sawyer Oct 1998 A
5824277 Campos Oct 1998 A
5827204 Grandia et al. Oct 1998 A
5827268 Laufer Oct 1998 A
5833647 Edwards Nov 1998 A
5840028 Chubachi et al. Nov 1998 A
5846517 Unger Dec 1998 A
5852860 Lorraine et al. Dec 1998 A
5853752 Unger et al. Dec 1998 A
5855589 McEwen et al. Jan 1999 A
5873828 Fujio et al. Feb 1999 A
5879314 Peterson et al. Mar 1999 A
5882302 Driscoll, Jr. et al. Mar 1999 A
5895356 Andrus et al. Apr 1999 A
5904659 Duarte et al. May 1999 A
5906580 Kline-Schoder et al. May 1999 A
5911735 McEwen Jun 1999 A
5919139 Lin Jul 1999 A
5921994 Andreas et al. Jul 1999 A
5922945 Allmaras et al. Jul 1999 A
5931786 Whitmore, III et al. Aug 1999 A
5931853 McEwen Aug 1999 A
5935144 Estabrook Aug 1999 A
5935146 McEwen Aug 1999 A
5935339 Henderson et al. Aug 1999 A
5951476 Beach Sep 1999 A
5957849 Munro Sep 1999 A
5964782 Lafontaine et al. Oct 1999 A
5976092 Chinn Nov 1999 A
5979453 Savage et al. Nov 1999 A
5993389 Driscoll, Jr. et al. Nov 1999 A
5997481 Adams et al. Dec 1999 A
6007499 Martin et al. Dec 1999 A
6013031 Mendlein et al. Jan 2000 A
6014473 Hossack et al. Jan 2000 A
6033506 Klett Mar 2000 A
6036650 Wu et al. Mar 2000 A
6037032 Klett et al. Mar 2000 A
6039694 Larson et al. Mar 2000 A
6042556 Beach et al. Mar 2000 A
6050943 Slayton et al. Apr 2000 A
6067371 Gouge et al. May 2000 A
6068596 Weth et al. May 2000 A
6071239 Cribbs et al. Jun 2000 A
6071277 Farley et al. Jun 2000 A
6078831 Belef et al. Jun 2000 A
6083159 Driscoll, Jr. et al. Jul 2000 A
6087761 Lorraine et al. Jul 2000 A
6102860 Mooney Aug 2000 A
6106463 Wilk Aug 2000 A
6120453 Sharp Sep 2000 A
6128522 Acker et al. Oct 2000 A
6179831 Bliweis Jan 2001 B1
6182341 Talbot et al. Feb 2001 B1
6200539 Sherman et al. Mar 2001 B1
6206843 Iger et al. Mar 2001 B1
6213939 McEwen Apr 2001 B1
6217530 Martin et al. Apr 2001 B1
6221015 Yock Apr 2001 B1
6231507 Zikorus et al. May 2001 B1
6233477 Chia et al. May 2001 B1
6246156 Takeuchi et al. Jun 2001 B1
6254601 Burbank et al. Jul 2001 B1
6259945 Epstein et al. Jul 2001 B1
6261233 Kantorovich Jul 2001 B1
6263551 Lorraine et al. Jul 2001 B1
6267734 Ishibashi et al. Jul 2001 B1
6270458 Barnea Aug 2001 B1
6277077 Brisken et al. Aug 2001 B1
6311692 Vaska et al. Nov 2001 B1
6315441 King Nov 2001 B2
6332089 Acker et al. Dec 2001 B1
6361496 Zikorus et al. Mar 2002 B1
6361548 McEwen Mar 2002 B1
6399149 Klett et al. Jun 2002 B1
6406759 Roth Jun 2002 B1
6409720 Hissong et al. Jun 2002 B1
6419669 Frazier et al. Jul 2002 B1
6425867 Vaezy et al. Jul 2002 B1
6425876 Frangi et al. Jul 2002 B1
6432067 Martin et al. Aug 2002 B1
6443894 Sumanaweera et al. Sep 2002 B1
6453526 Lorraine et al. Sep 2002 B2
6488639 Ribault et al. Dec 2002 B1
6491672 Slepian et al. Dec 2002 B2
6494848 Sommercorn et al. Dec 2002 B1
6500133 Martin et al. Dec 2002 B2
6520915 Lin et al. Feb 2003 B1
6522926 Kieval et al. Feb 2003 B1
6548047 Unger Apr 2003 B1
6551576 Unger et al. Apr 2003 B1
6559644 Froundlich et al. May 2003 B2
6562037 Paton et al. May 2003 B2
6565557 Sporri et al. May 2003 B1
6576168 Hardcastle et al. Jun 2003 B2
6584360 Francischelli et al. Jun 2003 B2
6595934 Hissong et al. Jul 2003 B1
6599256 Acker et al. Jul 2003 B1
6599288 Maguire et al. Jul 2003 B2
6602251 Burbank et al. Aug 2003 B2
6612988 Maor et al. Sep 2003 B2
6616624 Kieval Sep 2003 B1
6626855 Weng et al. Sep 2003 B1
6633658 Dabney et al. Oct 2003 B1
6652461 Levkovitz Nov 2003 B1
6656131 Alster et al. Dec 2003 B2
6656136 Weng et al. Dec 2003 B1
6676601 Lacoste et al. Jan 2004 B1
6682483 Abend et al. Jan 2004 B1
6685639 Wang et al. Feb 2004 B1
6706892 Ezrin et al. Mar 2004 B1
6709392 Salgo et al. Mar 2004 B1
6709407 Fatemi Mar 2004 B2
6716184 Vaezy et al. Apr 2004 B2
6719694 Weng et al. Apr 2004 B2
6719699 Smith Apr 2004 B2
6726627 Lizzi et al. Apr 2004 B1
6735461 Vitek et al. May 2004 B2
6755789 Stringer et al. Jun 2004 B2
6764488 Burbank et al. Jul 2004 B1
6846291 Smith et al. Jan 2005 B2
6868739 Krivitski et al. Mar 2005 B1
6875176 Mourad et al. Apr 2005 B2
6875420 Quay Apr 2005 B1
6905498 Hooven Jun 2005 B2
6932771 Whitmore et al. Aug 2005 B2
6955648 Mozayeni et al. Oct 2005 B2
6978174 Gelfand et al. Dec 2005 B2
7022077 Mourad et al. Apr 2006 B2
7052463 Peszynski et al. May 2006 B2
7063666 Weng et al. Jun 2006 B2
7128711 Medan et al. Oct 2006 B2
7149564 Vining et al. Dec 2006 B2
7162303 Levin et al. Jan 2007 B2
7211060 Talish et May 2007 B1
7260250 Summers et al. Aug 2007 B2
7285093 Anisimov et al. Oct 2007 B2
7445599 Kelly et al. Nov 2008 B2
7470241 Weng et al. Dec 2008 B2
7499748 Moffitt et al. Mar 2009 B2
7510536 Foley et al. Mar 2009 B2
7530958 Slayton et al. May 2009 B2
7534209 Abend et al. May 2009 B2
7553284 Vaitekunas Jun 2009 B2
7617005 Demarais et al. Nov 2009 B2
7620451 Demarais et al. Nov 2009 B2
7628764 Duarte et al. Dec 2009 B2
7684865 Aldrich et al. Mar 2010 B2
7697972 Verard et al. Apr 2010 B2
20010014775 Koger et al. Aug 2001 A1
20010014805 Burbank et al. Aug 2001 A1
20010032382 Lorraine et al. Oct 2001 A1
20010041910 McEwen Nov 2001 A1
20010044636 Pedros et al. Nov 2001 A1
20020032394 Brisken et al. Mar 2002 A1
20020055736 Horn et al. May 2002 A1
20020095164 Andreas et al. Jul 2002 A1
20020193831 Smith, III Dec 2002 A1
20030009194 Saker et al. Jan 2003 A1
20030018255 Martin et al. Jan 2003 A1
20030036771 McEwen et al. Feb 2003 A1
20030050665 Ginn Mar 2003 A1
20030069569 Burdette et al. Apr 2003 A1
20030114756 Li Jun 2003 A1
20030120204 Unger et al. Jun 2003 A1
20030153849 Huckle et al. Aug 2003 A1
20030195420 Mendlein et al. Oct 2003 A1
20030208101 Cecchi Nov 2003 A1
20030216792 Levin et al. Nov 2003 A1
20040002654 Davidson et al. Jan 2004 A1
20040030227 Littrup et al. Feb 2004 A1
20040030268 Weng et al. Feb 2004 A1
20040054287 Stephens Mar 2004 A1
20040054289 Eberle et al. Mar 2004 A1
20040078034 Acker et al. Apr 2004 A1
20040078219 Kaylor Apr 2004 A1
20040082978 Harrison et al. Apr 2004 A1
20040097840 Holmer May 2004 A1
20040106880 Weng et al. Jun 2004 A1
20040113524 Baumgartner et al. Jun 2004 A1
20040122493 Ishibashi et al. Jun 2004 A1
20040127798 Dala-Krishna et al. Jul 2004 A1
20040153126 Okai Aug 2004 A1
20040158154 Hanafy et al. Aug 2004 A1
20040234453 Smith Nov 2004 A1
20040254620 Lacoste et al. Dec 2004 A1
20040267252 Washington et al. Dec 2004 A1
20050043625 Oliver et al. Feb 2005 A1
20050046311 Baumgartner et al. Mar 2005 A1
20050054955 Lidgren Mar 2005 A1
20050065436 Ho et al. Mar 2005 A1
20050070790 Niwa et al. Mar 2005 A1
20050085793 Glossop Apr 2005 A1
20050090104 Yang et al. Apr 2005 A1
20050096542 Weng et al. May 2005 A1
20050124884 Bolorforosh et al. Jun 2005 A1
20050154299 Hoctor et al. Jul 2005 A1
20050165298 Larson et al. Jul 2005 A1
20050182297 Gravenstein et al. Aug 2005 A1
20050182319 Glossop Aug 2005 A1
20050240102 Rachlin et al. Oct 2005 A1
20050240103 Byrd et al. Oct 2005 A1
20050240126 Foley et al. Oct 2005 A1
20050240170 Zhang et al. Oct 2005 A1
20060025756 Francischelli et al. Feb 2006 A1
20060058678 Vitek et al. Mar 2006 A1
20060122514 Byrd et al. Jun 2006 A1
20060184069 Vaitekunas Aug 2006 A1
20060235300 Weng et al. Oct 2006 A1
20070004984 Crum et al. Jan 2007 A1
20070055155 Owen et al. Mar 2007 A1
20070106339 Errico et al. May 2007 A1
20070129720 Demarais et al. Jun 2007 A1
20070142879 Greenberg et al. Jun 2007 A1
20070149880 Willis Jun 2007 A1
20070167806 Wood et al. Jul 2007 A1
20070179379 Weng et al. Aug 2007 A1
20070213616 Anderson et al. Sep 2007 A1
20070233185 Anderson et al. Oct 2007 A1
20070239000 Emery et al. Oct 2007 A1
20070265687 Deem et al. Nov 2007 A1
20080033292 Shafran Feb 2008 A1
20080039746 Hissong et al. Feb 2008 A1
20080045864 Candy et al. Feb 2008 A1
20080045865 Kislev Feb 2008 A1
20080047325 Bartlett Feb 2008 A1
20080200815 Van Der Steen et al. Aug 2008 A1
20080234569 Tidhar et al. Sep 2008 A1
20080255498 Houle Oct 2008 A1
20080255642 Zarins et al. Oct 2008 A1
20080312561 Chauhan Dec 2008 A1
20080317204 Sumanaweera et al. Dec 2008 A1
20080319375 Hardy Dec 2008 A1
20090012098 Jordan et al. Jan 2009 A1
20090036948 Levin et al. Feb 2009 A1
20090054770 Daigle Feb 2009 A1
20090062697 Zhang et al. Mar 2009 A1
20090062873 Wu et al. Mar 2009 A1
20090076409 Wu et al. Mar 2009 A1
20090088623 Vortman et al. Apr 2009 A1
20090112095 Daigle Apr 2009 A1
20090112133 Deisseroth et al. Apr 2009 A1
20090163982 deCharms Jun 2009 A1
20090221939 Demarais et al. Sep 2009 A1
20090247911 Novak et al. Oct 2009 A1
20090264755 Chen et al. Oct 2009 A1
20090306644 Mayse et al. Dec 2009 A1
20090326379 Daigle et al. Dec 2009 A1
20100092424 Sanghvi et al. Apr 2010 A1
20100125269 Emmons et al. May 2010 A1
20100174188 Wang et al. Jul 2010 A1
20110028867 Choo et al. Feb 2011 A1
20110118602 Weng et al. May 2011 A1
20110178403 Weng et al. Jul 2011 A1
20110178445 Weng et al. Jul 2011 A1
20110230763 Emery et al. Sep 2011 A1
20110230796 Emery et al. Sep 2011 A1
Foreign Referenced Citations (35)
Number Date Country
4110308 Oct 1992 DE
4230415 Mar 1994 DE
102 09 380 Sep 2003 DE
0 225 120 Jun 1987 EP
0 239 999 Oct 1987 EP
0 383 270 Aug 1990 EP
0420758 Apr 1991 EP
0 679 371 Nov 1995 EP
1 219 245 Jul 2002 EP
1265223 Dec 2002 EP
1 449 563 Aug 2004 EP
1874192 Oct 2006 EP
2181342 Feb 2009 EP
2303131 Dec 2009 EP
2672486 Aug 1992 FR
WO 9731364 Aug 1997 WO
WO 9811840 Mar 1998 WO
WO 9858588 Dec 1998 WO
WO 9907432 Feb 1999 WO
WO 9922652 May 1999 WO
WO 99048621 Sep 1999 WO
WO 0072919 Dec 2000 WO
WO 0134018 May 2001 WO
WO 02069805 Sep 2002 WO
WO 2004064598 Aug 2004 WO
WO 2004086086 Oct 2004 WO
WO 2005030295 Apr 2005 WO
WO 2005056105 Jun 2005 WO
WO 2006113445 Oct 2006 WO
WO 2007073551 Jun 2007 WO
WO 2009018394 Feb 2009 WO
WO 2009026534 Feb 2009 WO
WO 2009158399 Dec 2009 WO
WO 2011053757 May 2011 WO
WO 2011053772 May 2011 WO
Non-Patent Literature Citations (162)
Entry
Takeuchi et al., Dec. 4, 1990, Relaxor ferroelectric transducers, IEEE Ultrasonics Symposium, pp. 697-705.
Office Action dated Dec. 8, 2011 for U.S. Appl. No. 11/955,310.
Office Action dated Feb. 3, 2012 for U.S. Appl. No. 13/245,689.
Final Office Action dated Jun. 13, 2012 for U.S. Appl. No. 13/245,689.
Office Action dated Jun. 7, 2012 for U.S. Appl. No. 13/344,418.
Office Action dated Jun. 11, 2012 for U.S. Appl. No. 13/346,466.
Office Action dated Dec. 30, 2011 for U.S. Appl. No. 12/896,740.
Final Office Action dated Jun. 5, 2012 for U.S. Appl. No. 12/896,740.
Office Action dated Oct. 25, 2011 for U.S. Appl. No. 13/025,959.
Office Action dated Dec. 15, 2011 for U.S. Appl. No. 13/026108.
Final Office Action dated May 14, 2012 for U.S. Appl. No. 12/026108.
Office Action dated Nov. 30, 2011 for U.S. Appl. No. 13/011,533.
Final Office Action dated May 2, 2012 for U.S. Appl. No. 13/011,533.
Advisory Action dated Jul. 16, 2012 for U.S. Appl. No. 13/011,533.
Office Action dated Jul. 10, 2012 for U.S. Appl. No. 12/951,850.
Final Office Action dated May 10, 2012 for U.S. Appl. No. 11/583,656.
Office Action dated May 24, 2012 for U.S. Appl. No. 13/118,144.
First Action Interview Office Action Summary dated May 30, 2012 for U.S. Appl. No. 13/245,703.
Office Action dated Apr. 6, 2012 for U.S. Appl. No. 12/685,655.
Office Action dated Apr. 10, 2012 for U.S. Appl. No. 12/725,450.
International Search Report and Written Opinion dated Jul. 27, 2011 for PCT Application No. PCT/US2011/033337.
International Search Report and Written Opinion dated Jun. 6, 2011 for PCT Application No. PCT/US2010/052197.
Office Action dated Mar. 20, 2012 for U.S. Appl. No. 13/246,775.
Office Action dated Nov. 28, 2011 for U.S. Appl. No. 13/246,763.
International Search Report and Written Opinion dated Dec. 6, 2010 for PCT Application No. PCT/US2010/052193.
Accord et al., “The Issue of Transmurality in Surgical Ablation for Atrial Fibrillation.” Cardiothoracic Surgery Network: 3pp, Feb. 8, 2007.
Amenta et al., “A New Voronoi-Based Surface Reconstruction Algorithm.” Computer Graphics: 7pp, 1998.
American Red Cross., “Blood 101.” 4pp., Dec. 11, 2007.
Anand et al., “Monitoring formation of high intensity focused ultrasound (HIFU) induced lesions using backscattered ultrasound.” Acoustical Society of America; Mar. 10, 2004.
Anand et al., “Using the ATL 1000 to Collect Domodulated RF Data for Monitoring HIFU Lesion Formation.” Presented at SPIE Medical Imaging 2003. 11pp, 2003.
Aurenhammer, F. “Voronoi diagrams—A Survey of a Fundamental Geometric Data Structure.” ACM Computing Surveys, vol. 23, No. 3: 345-405, Sep. 1991.
Bachmann et al., “Targeting Mucosal Addressin Cellular Adhesion Molecule (MAdCAM)-1 to Noninvasively Image Experimental Crohn's Disease.” Gastroenterology; vol. 130: 8-16, 2006.
Barthe et al. “Efficient Wideband Linear Arrays for Imaging and Therapy” IEEE Ultrasonics Symposium. pp. 1249-1252 (1999).
Bauer et al., “Ultrasound Imaging with SonoVue: Low Mechanical Index Real-Time Imaging.” Acad. Radiol.; vol. 9, Suppl. 2: S282-S284, 2002.
Beard et al., “An Annular Focus Ultrasonic Lens for Local Hyperthermia Treatment of Small Tumors.” Ultrasound in Medicine & Biology; vol. 8, No. 2: 177-184, 1982.
Bokarewa et al., “Tissue factor as a proinflammatory agent.” Arthritis Research, vol. 4: 190-195, Jan. 10, 2002.
Bots et al., “Intima Media Thickness as a Surrogate Marker for Generalised Atherosclerosis.” Cardiovascular Drugs and Therapy, ProQuest Medical Library; vol. 16, No. 4: 341-351, Jul. 2002.
Brayman et al., “Erosion of Artificial Endothelia in Vitro by Pulsed Ultrasound: Acoustic Pressure, Frequency, Membrane Orientation and Microbubble Contrast Agent Dependence.” Ultrasound in Medicine & Biology; vol. 25, No. 8: 1305-1320, 1999.
Buller et al., “Accurate Three-dimensional Wall Thickness Measurement From Multi-Slice Short-Axis MR Imaging.” Computers in Cardiology, 245-248, 1995.
Byram et al., “3-D Phantom and in Vivo Cardiac Speckle Tracking Using a Matrix Array and Raw Echo Data.” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 57, No. 4; 839-854, Apr. 2010.
Campese, V. Krol, E. Neurogenic Factors in Renal Hypertension. Current Hypertension Reports 2002, 4:256-260.
Canadian Examination Report dated Nov. 14, 2007 in CA Patent Application 2,387,127, filed Oct. 25, 2000.
Chao et al., “Aspheric lens design.” Ultrasonics Symposium, 2000 IEEE, vol. 2: Abstract Only, Oct. 2000.
Chelule et al., “Fabrication of Medical Models From Scan Data via Rapid Prototyping Techniques.” 9 pp., Feb. 7, 2007.
Chen et al., “A comparison of the fragmentation thresholds and inertial cavitation doses of different ultrasound contrast agents.” Journal of the Acoustical Society of America, vol. 113, No. 1: 643-665, Jan. 2003.
Chen et al., “Inertial Cavitation Dose and Hemolysis Produced in Vitro With or Without Optison.” Ultrasound in Medicine & Biology, vol. 29, No. 5: 725-737, 2003.
Chen et al., DC-Biased Electrostrictive Materials and Transducers for Medical Imaging, 1997 IEEE Ultrasonics Symposium, IEEE, Aug. 1997.
Chong et al., “Tissue Factor and Thrombin Mediate Myocardial lschemia-Reperfusion Injury.” The Society of Thoracic Surgeons, vol. 75: S649-655, 2003.
Damianou, et al., “Application of the Thermal Dose Concept for Predicting the Necrosed Tissue Volume. During Ultrasound Surgery”, IEEE Ultrasonic Symposium, (1993) 1199-1202.
Dayton et al., “The magnitude of radiation force on ultrasound contrast agents.” Journal of the Acoustical Society of America, vol. 112, No. 5, Part 1: 2183-2192, Nov. 2002.
Dempsey et al., “Thickness of Carotid Artery Atherosclerotic Plaque and Ischemic Risk.” Neurosurgery, vol. 27, No. 3: 343-348, 1990.
Dewhirst, et al., “Basic principles of thermal dosimetry and thermal thresholds for tissue damage from hyperthermia”, Int. J. Hyperthermia, (2003) 19(3):267-294,.
Dibona, G. F., et al., Chaotic behavior of renal sympathetic nerve activity: effect of baroreceptor denervation and cardiac failure, Am J Physiol Renal Physiol, 279:F491-501, 2000.
Dibona, G.F.: “Neural control of the kidney: functionally specific renal sympathetic nerve fibers.” Am J. Physiol Regulatory Integrative Comp Physiol 279: R1517-1524, 2000.
Dibona, GF. Functionally Specific Renal Sympathetic Nerve Fibers: Role in Cardiovascular Regulation. American Journal of Hypertension. 2001 vol. 14(6) 163S-170S.
Doumas, M., et al., Renal Sympathetic Denervation: the Jury is Still Out, the Lancet, Nov. 2010, vol. 376, Issue 9756, pp. 1878-1880.
Ebbini et al., “Image-guided noninvasive surgery with ultrasound phased arrays.” SPIE, vol. 3249: 230239, Apr. 2, 1998.
Edelsbrunner, Herbert. “Geometry and Topology for Mesh Generation.” Cambridge University Press: 68pp, 2001.
Esler, Murray D., et al., Renal sympathetic denervation in patients with treatmentresistant hypertension (The Symplicity HTN-2 Trial): a randomised controlled trial, Nov. 2010, The Lancet, vol. 376, Issue 9756, pp. 1903-1909.
European Examination Report dated Mar. 7, 2008 in EP Patent Application 989717.4, filed Oct. 25,2000.
Everbach et al., “Cavitational Mechanisms in Ultrasound-Accelerated Thrombolysis at 1 MHz.” Ultrasound in Medicine & Biology, vol. 26, No. 7: 1153-1160, 2000.
Ewert et al., “Anti-myeloperoxidase antibodies stimulate neutrophils to damage human endothelial cells.” Kidney International, vol. 41: 375-383, 1992.
Fjield et al.; “A parametric study of the concentric-ring transducer design for MRI guided ultrasound surgery.” J. Acoust. Soc. Am 100 (2) Pt. 1, Aug. 1996.
Ganapathy et al., “A New General Triangulation Method for Planar Contours.” Computer Graphics vol. 16, No. 3:69-75, 1982.
Grassi, G. Role of the Sympathetic Nervous System in Human Hypertension. Journal of Hypertension. 1998, 16: 1979-1987.
Gray, Henry. “The Skull.” Anatomy of the Human Body: 7pp., 1918.
Guzman et al., “Ultrasound—Mediated Disruption of Cell Membranes. I. Quantification of Molecular uptake and Cell Viability. / II. Heterogeneous effects on cells.” Journal of the Acoustical Society of America, vol. 110, No. 1: 588-606, Jul. 2001.
Hachimine, K. et. al. Sonodynamic Therapy of Cancer Using a Novel Porphyrin Derivative, DCPH-P-Na(I),which is Devoid of Photosensitivity. Cancer Science 2007; 98: 916-920.
Hadimioglu et al., “High-Efficiency Fresnel Acoustic Lenses.” Ultrasonics Symposium 1993 IEEE: 579-582, 1993.
Han et al., “A Fast Minimal Path Active Contour Model.” IEEE Transactions on Image Processing, vol. 10, No. 6: 865-873, Jun. 2001.
Hatangadi, Ram. “A Novel Dual Axis Multiplanar Transesophageal Ultrasound Probe for Three-Dimensional Echocardiograph.” University of Washington, Department of Sciences and Engineering, vol. 55-11B: Abstract 1pg, 1994.
Holt et al., “Bubbles and Hifu: the Good, the Bad and the Ugly.” Boston University, Department of Aerospace and Mechanical Engineering: 120-131, 2002.
Hubka et al., “Three-dimensional echocardiographic measurement of left ventricular wall thickness: in vitro and in vivo validation.” Journal of the American Society of Echocardiography, vol. 15, No. 2: 129-135, 2002.
Hutchinson et al. “Intracavitary Ultrasound Phased Arrays for Noninvasive Prostate Surgery.” IEEE Transactions on Ultrasonics. Ferroelectrics, and Frequency Control. 43(6):1032-1042 (1996).
Hwang et al., “Vascular Effects Induced by Combined 1-MHz Ultrasound and Microbubble Contrast Agent Treatments in Vivo.” Ultrasound in Medicine & Biology, vol. 31, No. 4: 553-564, 2005.
Hynynen et al., “Potential Adverse Effects of High-Intensity Focused Ultrasound Exposure on Blood Vessels in Vivo.” Ultrasound in Medicine & Biology, vol. 22, No. 2: 193-201, 1996.
Iannuzzi et al., “Ultrasonographic Correlates of Carotid Atherosclerosis in Transient Ischemic Attack and Stroke.” Stroke, ProQuest Medical Library, vol. 26, No. 4: 614-619, 1995.
Idell et al., “Fibrin Turnover in Lung Inflammation and Neoplasia.” American Journal of Respiratory and Critical Care Medicine, vol. 163: 578-584, 2001.
Indman, Paul. “Alternatives in Gynecology.” Hysteroscopy, OBGYN.net, Oct. 14, 2004. http://www.gynalternatives.corn/hsc.html.
International Preliminary Report on Patentability dated Jun. 5, 2003 for PCT Application No. PCT/US00/35262.
International Search Report and Written Opinion dated Apr. 23, 2001 for PCT Application No. PCT/US00/35262.
International Search Report and Written Opinion dated Aug. 4, 2005 for PCT Application No. PCT/US2005/001893.
International Search Report and Written Opinion dated Jul. 11, 2007 for PCT Application No. PCT/US2006/041163.
International Search Report and Written Opinion dated Jun. 30, 2008 for PCT Application No. PCT/US2007/087310.
International Search Report and Written Opinion dated Mar. 30, 2007 for Application No. PCT/US2006/027688 filed on Jul. 13, 2006.
International Search Report and Written Opinion dated May 18, 2001 for PCT Application No. PCT/US00/41606.
International Search Report and Written Opinion dated May 29, 2007 for PCT Application No. PCT/USO4/31506.
Invitation to Pay Additional Fees and Partial International Search Report dated Nov. 29, 2006 for PCT Application No. PCT/US2006/027688.
Janssen, BJ and Smits, J. Renal Nerves in Hypertension. Mineral and Electrolyte Metabolism. 1090; 15:74-82.
Jolesz, F. MRI-Guided Focused Ultrasound Surgery. Annual Review of Medicine. 2009 60: 417-30.
Kaczkowski et al., “Development of a High Intensity Focused Ultrasound System for Image-Guided Ultrasonic Surgery.” Ultrasound for Surgery, Oct. 14, 2004. (http://cimu.apl.washington.edu/hifusurgerysystem.html).
Kang et al., “Analysis of the Measurement Precision of Arterial Lumen and Wall Areas Using High-Resolution MRI.” Magnetic Resonance in Medicine, vol. 44: 968-972, 2000.
Klibanov et al., “Detection of Individual Microbubbles of an Ultrasound contrast Agent: Fundamental and Pulse Inversion Imaging.” Academy of Radiology, vol. 9, Suppl. 2: S279-S281, 2002.
Kojima, T., Matrix Array Transducer and Flexible Matrix Arry Transducer,Proceedings of the Ultrasonics Symposium, vol. 2:649-653 (1986).
Krum, H et. al. Catheter-Based Renal Sympathetic Denervation for Resistant Hypertension: a Multicentre Safety and Proof-of-Principle Cohort Study. Lancet 2009 373; 1275-81.
Krum, H. et. al. Pharmacologic Management of the Cardiorenal Syndrome in Heart FAilure. Current Heart Failure Reports 2009, 6: 105-111.
Kudo et al., “Study on Mechanism of Cell Damage Caused by Microbubbles Exposed to Ultrasound.” Ultrasound in Medicine & Biology, vol. 29, Supplement: 4pp, 2003.
Lalonde et al., “Field conjugate acoustic lenses for ultrasound hyperthermia.” Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions, vol. 40, Issue 5: Abstract 1pg., Sep. 1993.
Martin et al., Hemostasis of Punctured Vessels Using Doppler-Guided High Intensity Ultrasound, Ultrasound in Med.& Biol., vol. 25, pp. 985-990, 1999, USA.
Meyers, D. “Multiresolution tiling.” Computer Graphics, No. 5: 325-340, 1994.
Miller et al., “A Review of in Vitro Bioeffects of Inertial Ultrasonic Cavitation From a Mechanistic Perspective.” Ultrasound in Medicine & Biology, vol. 22, No. 9: 1131-1154, 1996.
Miller et al., “Diagnostic ultrasound activation of contrast agent gas bodies induces capillary rupture in mice.” PNAS, vol. 97, No. 18: 10179-10184, 2000.
Moss, Nicholas G. Renal Function and Renal Afferent and Efferent Nerve Activity. American Journal Physiology. 243 (Renal Fluid Electrolyte Physiology) 12: F425-F433, 1982.
n. a., “Breast Cancer—Insightec: focused ultrasound for non invasive treatment.” FAQ, Oct. 14, 2004. (http://www.exablate2000.com/physicians—faq.html).
n. a., “Cavitation.” Ultrasound TIP—U.S. Database: Dec. 12, 2007.
n. a., “Mechanical Bioeffects in the Presence of Gas-Carrier Ultrasound Contrast Agents.” Journal of Ultrasound & Medicine, vol. 19: 120-142, 2000.
Ng et al., “Therapeutic Ultrasound: Its Application in Drug Delivery.” Medicinal Research Reviews, vol. 22, No. 2: 204-233, 2002.
Notice of Allowance dated Mar. 25, 2003 from U.S. Appl. No. 09/696,076, filed Oct. 25, 2000.
Office Action dated Apr. 29, 2011 for U.S. Appl. No. 12/202,195.
Office Action dated Apr. 6, 2010 for U.S. Appl. No. 11/619,996.
Office Action dated Aug. 17, 2006 from U.S. Appl. No. 10/671,417, filed Sep. 24, 2003.
Office Action dated Feb. 18, 2011 for U.S. Appl. No. 11/583,656.
Office Action dated Jan. 7, 2011 for U.S. Appl. No. 12/762,938.
Office Action dated Jul. 14, 2009 for U.S. Appl. No. 11/619,996.
Office Action dated Jul. 31, 2007 from U.S. Appl. No. 10/671,417, filed Sep. 24, 2003.
Office Action dated Jul. 5, 2006 for U.S. Appl. No. 10/616,831.
Office Action dated Jul. 9, 2008 for U.S. Appl. No. 11/486,528.
Office Action dated Jun. 28, 2010 for U.S. Appl. No. 12/247,969.
Office Action dated Mar. 4, 2011 for U.S. Appl. No. 11/583,569.
Office Action dated Nov. 16, 2010 for U.S. Appl. No. 12/202,195.
Office Action dated Nov. 29, 2002 from U.S. Appl. No. 09/696,076, filed Oct. 25, 2000.
Office Action dated Oct. 19, 2009 for U.S. Appl. No. 11/486,526.
Office Action dated Oct. 19, 2009 for U.S. Appl. No. 11/583,256.
Office Action dated Sep. 16, 2010 for U.S. Appl. No. 11/583,656.
O'Leary et al., “Carotid-artery Intima and Media Thickness as a Risk Factor for Myocardial Infarction and Stroke in Older Adults.” Cardiovascular Health Study Collaborative Research Group. New England Journal of Medicine, vol. 340, No. 1: 14-22, Jan. 7, 1999.
Ostensen et al., “Characterization and Use of Ultrasound Contrast Agents.” Academy of Radiology, vol. 9, Suppl. 2: S276-S278, 2002.
Owaki et al., “The Ultrasonic Coagulating and Cutting System Injuries Nerve Function.” Endoscopy, vol. 34, No. 7: 575-579, 2002.
Pernot, et al., “Temperature Estimation Using Ultrasonic Spatial Compound Imaging”, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, (May 2004) 51(5):606-615.
Pignoli et al., “Intimal plus medial thickness of the arterial wall: a direct measurement with ultrasound imaging.” Circulation, vol. 74, No. 6:1399-1406, Dec. 1986.
Poliachik et al., “Activation, Aggregation and Adhesion of Platelets Exposed to High-Intensity Focused Ultrasound.” Ultrasound in Medicine & Biology, vol. 27, No. 11: 1567-1576, 2001.
Poliachik et al., “Effect of High—Intensity Focused Ultrasound on Whole Blood With or Without Microbubble Contrast Agent.” Ultrasound in Medicine & Biology, vol. 25, No. 6:991-998, 1999.
Porter et al., “Ultrasound, Microbubbles and Thrombolysis.” Progress in Cardiovascular Diseases, vol. 44, No. 2: 101-110, Oct. 2001.
Recchia et al., Ultrasonic Tissue Characterization of Blood during Stasis and Thrombosis with a Real-Time Linear-Array Backscatter Imaging System., Coronary Artery Disease, 1993, 4:987-994.
Rivens et al., “Vascular Occlusion Using Focused Ultrasound Surgery for Use in Fetal Medicine.” European Journal of Ultrasound, vol. 9: 89-97, 1999.
Rose, Joseph, “Source Influence” Ultrasonic Waves in Solid Media, pp. 200-227, Cambridge University Press, 1999, USA.
Rosen et al., “Vascular Occlusive Diseases.” 37pp., revised 2002.
Rosenschein et al., “Shock-Wave Thrombus Ablation, A New Method for Noninvasive Mechanical Thrombolysis.” The American Journal of Cardiology, vol. 70, Issue 15: Abstract, Nov. 15, 1992.
Rosenschein et al., “Ultrasound Imaging-Guided Nonivasive Ultrasound Thrombolysis-Preclinical Results.” Circulation, vol. 102: 238-245, 2000. (http://www.circulationaha.com.org).
Sanghvi et al. “High-Intensity Focused Ultrasounds.” Experimental and Investigational Endoscopy. 4(2):383-395 (1994).
Schlaich, MP. Sympathetic Activation in Chronic Renal Failure. Joumal American Society Nephrology 20: 933-939, 2009.
Schulte-Altedorneburg et al., “Accuracy of in Vivo Carotid B-Mode Ultrasound Compared with Pathological Analysis: Intima-Media Thickening, Lumen Diameter, and Cross-Sectional Area.” Stroke, vol. 32, No. 7: 1520-1524, 2001.
Sheahan et al., Observing the Bracial Artery through a Pressure Cuff, Physiol. Meas. 14 (1993) 1-6.
Sherrit et al., the Characterisation and Modelling of Electrostrictive Ceramics for Transducers, Ferroelectrics, 228:(1-4), pp. 167-196, 1999.
Shrout et al., Classification of Electrostrictive-Based Materials for Transducers.
Shung, et al., “Ultrasonic Characterization of Blood During Coagulation”, J. Clin. Ultrasound, (1984) 12:147-153.
Simon, et al, “Two-Dimensional Temperature Estimation Using Diagnostic Ultrasound”, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, (Jul. 1998) 45(4):1088-1099.
Tachibana et al., “Albumin Microbubble Echo-Contrast Material as an Enhancer for Ultrasound Accelerated Thrombolysis.” Circulation, vol. 92: 1148-1150, 1995.
Tachibana et al., “The Use of Ultrasound for Drug Delivery.” Echocardiography, vol. 18, No. 4: 323-328, May 2001.
Tardy et al., “In Vivo Ultrasound Imaging of Thrombi Using a Target-specific Contrast Agent.” Academy of Radiology, vol. 9, Suppl. 2: S294-S296, 2002.
ter Haar. G. Ultrasound Focal Beam Surgery. Ultrasound in Medicine and Biology. 21(9):1089-1100 (1995).
Vaezy ET Al., “Hemostasis of Punctured Blood Vessels Using High Intensity Focused Ultrasound,” Ultrasound in Med.& Biol., vol. 24, No. 6, pp. 903-910,1998, USA.
Vaezy et al., “Acoustic surgery.” Physics World: 35-39, Aug. 2001.
Vaezy et al., “Hemostasis and Tumor Treatment using High Intensity Focused Ultrasound: Experimental Investigations and Device Development.” First International Workshop on the Application of HIFU in Medicine: 46-49, 2001.
Vaezy et al., “Hemostasis using high intensity focused ultrasound.” European Journal of Ultrasound, vol. 9: 79-87, 1999.
Vaezy et al., “Intra-operative acoustic hemostasis of liver: production of a homogenate for effective treatment.” Ultrasonics, vol. 43: 265-269, 2005.
Vaezy et al., Use of High-Intensity Focused Ultrasound to Control Bleeding, Mar. 1999, J Vasc Surg, vol. 29, pgs. 533-542.
Valente, JF et. al. Laparoscopic Renal Denervation for Intractable ADPKD Related Pain. Nephrology Dialysis and Transplantation. 2001 16:160.
Von Land et al., “Development of an Improved Centerline Wall Motion Model.” IEEE: 687-690, 1991.
Watkin et al., “Multi-Modal Contrast Agents: A First Step.” Academy of Radiology, vol. 9, Suppl. 2: S285-S287, 2002.
Wickline et al., “Blood Contrast Enhancement with a Novel, Non-Gaseous Nanoparticle Contrast Agent.” Academy of Radiology, vol. 9, Suppl. 2: S290-S293, 2002.
Williamson et al., “Color Doppler Ultrasound Imaging of the Eye and Orbit.” Survey of Ophthamology, vol. 40, No. 4: 255-267, 1996.
Yu et al., “A microbubble agent improves the therapeutic efficiency of high intensity focused ultrasound: a rabbit kidney study.” Urological Research, PubMed: Abstract, 2004.
Related Publications (1)
Number Date Country
20090036774 A1 Feb 2009 US
Provisional Applications (1)
Number Date Country
60167707 Nov 1999 US
Continuations (2)
Number Date Country
Parent 10633726 Aug 2003 US
Child 12247969 US
Parent 09721526 Nov 2000 US
Child 10633726 US