This invention relates generally to methods and apparatus for efficiently heating biological tissues with high intensity ultrasound for therapeutic purposes, and in particular, to endoscopic devices for applying ultrasound energy to uterine fibroids and other pathologic tissues that are inside body or organ cavities, to destroy the tumor or the diseased tissue.
Fibroids are benign tumors in women's uteri. There are different types of fibroids, including submucosal, which are inside the uterine cavity; intramural, which are in the uterine wall; and subserosal, which are outside the uterus. Fibroids may cause excessive bleeding and pain. For symptomatic fibroids, surgery is the predominate treatment. Every year in the U.S., there are more than 200,000 cases of fibroid-caused hysterectomies. To preserve the uterus, the patient may choose myomectomy, which removes the fibroids only. There are more than 80,000 abdominal myomectomies each year in the U.S. These surgical procedures cause significant trauma to the patients and result in significant costs. Consequently, patients need several days of hospital stay and suffer from the prolonged recovery.
Minimally invasive surgical (MIS) procedures have been explored to treat uterine fibroid trans-abdominally or trans-cervically under laparoscopic or hysteroscopic guidance. Many MIS apparatus have been developed to make the procedure less difficult. Several prior art devices are described in U.S. Pat. No. 5,304,124; U.S. Pat. No. 5,662,680; and U.S. Pat. No. 5,709,679. Besides surgically resecting and removing the tumor tissue, alternative treatments include using different energy forms, such as laser, radio frequency (RF), and cryo-therapy, to thermally ablate or necrose the fibroid tissue. Most of these techniques require the insertion of needles or other types of devices into the body of the fibroid. The mechanical damage to the fibroid and the uterus can cause bleeding during the treatment and adhesions after the treatment. Suturing the damage in the uterus is very difficult in the laparoscopic MIS procedure. Also, most of these alternative treatments are time consuming and technically challenging.
Uterine arterial embolization (UAE) has been investigated as an alternative treatment for uterine fibroids. In UAE, a catheter is inserted into the patient's femoral artery. The catheter is then advanced until its tip reaches the uterine artery. Many small particles are then injected into the uterine artery to block the blood flow. Both left and right uterine arteries are treated. Blood vessels supplying uterine fibroids are typically larger than the vessels in the normal uterine tissue. With properly sized particles, the blood vessels feeding the uterine fibroids are embolized, but not those in the normal uterine tissue. The fibroids then starve and die due to lack of a blood supply. The uterus survives, however, on the blood supplied from the ovarian artery and other collateral circulation. The embolization procedure may cause severe pain in the first few days after the treatment. Other disadvantages of UAE may include long X-ray radiation exposure during the procedure and other long-term potential adverse effects. The procedure is not recommended if the patient seeks a future pregnancy.
Ultrasound is a term that refers to acoustic waves having a frequency above the high limit of the human audible range (i.e., above 20 KHz). Ultrasound waves have the capability of penetrating into the human body. Based on this property, ultrasound in the frequency range of 2-20 MHz has been widely used to image internal human organs for diagnostic purposes. Ultrasound imaging has also been suggested as a tool for guidance during a resectoscopic surgery (U.S. Pat. No. 5,957,849).
When ultrasound energy is absorbed by tissue, it becomes thermal energy, raising the temperature of the tissue. To avoid thermal damage to tissue, the power level in diagnostic ultrasound imaging is kept very low. The typical ultrasound intensity (power per unit area) used in imaging is less than 0.1 watt per square centimeter. High intensity focused ultrasound, which can have an intensity above 1000 watts per square centimeter, can raise the tissue temperature at the region of the spatial focus to above 60-80 degrees Celsius in a few seconds and can cause tissue necrosis almost instantaneously.
High intensity ultrasound has been proposed to treat and destroy tissues in the liver (G. ter Haar, “Ultrasound Focal Beam Surgery,” Ultrasound in Medicine and Biology, Vol. 21, No. 9, pp. 1089-1100, 1995); in the prostate (N. T. Sanghvi and R. H. Hawes, “High-intensity Focused Ultrasound,” Experimental and Investigational Endoscopy, Vol. 4, No. 2, pp. 383-395, 1994); and in other organs. In U.S. Pat. Nos. 5,080,101, 5,080,102, 5,735,796, 5,769,790, and 5,788,636, for example, ultrasound imaging is combined with a high intensity ultrasound treatment to target the treatment region and to monitor the treatment process. In U.S. Pat. Nos. 5,471,988, 5,492,126, 5,666,954, 5,697,897, and 5,873,828, endoscopic ultrasound devices with both imaging and therapeutic capabilities are disclosed. These devices all have an elongated tube or shaft, so that they can be inserted in organ cavities (e.g., into the rectum) or into the abdominal cavity through a puncture hole in the abdominal wall to bring the ultrasound imaging and treatment sources closer to the disease sites. Some of them have flexible ends, which can be bent to fit the anatomy of a specific patient.
The therapeutic ultrasound beam is focused inside tissue to a small spot of a few millimeters in size. At the focus, tissue temperature rapidly exceeds a level sufficient to cause tissue necrosis, thus achieving the desired therapeutic effect. Outside of the focus, ultrasound energy is less concentrated, tissue temperature rise remains below the necrosis level during the typically short exposure times employed. To treat a tissue volume larger than the focal spot, in the prior art, the ultrasound focus is deflected mechanically or electronically to scan, or incrementally expose, the target tissue volume. One disadvantage of the current high intensity ultrasound therapy is its inefficiency when treating large tumors or heating a large volume of tissue Even though a three-second ultrasound pulse can increase the temperature of tissue at its focus dramatically, the ultrasound treatment must typically pause 40-60 seconds between two subsequent pulses to allow the intermediate tissue between the focus and the ultrasound transducer to cool sufficiently to avoid thermally damaging the tissue. The volume of tissue necrosis for each treatment pulse is very small (˜0.05 cm3). For example, to treat a volume of tissue within a 3 cm diameter sphere, it will take more than 4 hours, too long to be practical in most clinical situations. Many symptomatic uterine fibroids are larger than 2-3 cm in diameter, and multiple fibroids are also common. To be acceptable for clinicians and patients, the ultrasound treatment time must be significantly reduced.
Large device size is the second disadvantage of the therapeutic ultrasound apparatus in much of the prior art. Most of these devices have two separated ultrasound transducers, including one for imaging and the other for therapy. For effective treatment, the diameter of the treatment transducer is approximately equal to the maximum depth, where the f-number (transducer diameter divided by its focal length) of the transducer is about one (f/l). The transducer surface area must also be sufficiently large to generate high ultrasound power. In some prior art endoscopic devices (for example, in U.S. Pat. Nos. 5,471,988 and 5,873,828), there is a large orifice in the center of the therapy transducer for positioning an imaging transducer. This orifice reduces the area of the treatment transducer and increases its effective f-number. In this case, the size of the treatment transducer must be increased to maintain its effectiveness, so that the overall dimensions of the device are increased. For endoscopic (trans-cervical or trans-abdominal) uterine fibroid treatments, the maximum acceptable diameter of an ultrasound device is about 10 mm. It is seen that it is very difficult to meet this requirement with the large two-transducer configuration.
There is another disadvantage of the two-transducer configuration in which there is an orifice in the center of the treatment transducer. In endoscopic uterine fibroid treatment, the ultrasound device is directly brought against the surface of the fibroid tumor. The tumor surface near the orifice of the transducer will not be treated unless the transducer is moved away or aside from its initial position. Oftentimes, the space is very limited, especially inside the uterus. There may not be sufficient space to permit the device to move, a limitation that results in incomplete treatment of the tumor.
What is needed is a minimally invasive or noninvasive device for treating uterine fibroids. The device should preferably cause minimal or no trauma to the patient body so that the patient requires minimum or no recovery time; it should be easy to use; and, the treatment should be quickly administered. The device should preferably not cause blood loss during the treatment procedure; it should not mechanically damage the treated organ (e.g. uterus) to avoid the need for complicated organ repair (such as suturing or extensive cauterization); and, it should not increase the risk of post-operative adhesions and other complications. In addition, the device should be capable of carrying out the following functions:
(11) Provide effective means to acoustically couple an ultrasound source to targeted tissue structures.
Currently, an endoscopic ultrasound probe is not available that can provide the above-noted functions. Accordingly, it will be apparent that both such a device and an effective and efficient method for treating uterine fibroid tumors and other internal tissues and diseased tissue masses is needed that overcomes the problems with prior art apparatus and methods.
The present invention is directed to a method and apparatus for efficiently treating uterine fibroids and other diseases with high intensity ultrasound, where the apparatus is small enough to fit in the limited space in a patient organ cavity or a limited puncture size on an abdominal wall.
Specifically, an ultrasonic system for destroying undesired tissue at an internal site within a body of a patient includes a probe that is sized to be inserted within a body of a patient. An ultrasonic transducer is mounted proximate a distal end of the probe and is adapted to couple to a power supply used to selectively energize the ultrasonic transducer so that it produces a focused beam of high intensity ultrasonic energy. An ultrasound transmissive interface is coupled to the distal end of the probe and is disposed and adapted to conform to a surface of the undesired tissue. The interface provides a liquid layer that more efficiently transmits the high intensity ultrasonic energy produced by the ultrasonic transducer into the undesired tissue. The high intensity ultrasonic energy increases a temperature of the undesired tissue sufficiently to cause the tissue to necrose.
In one form of the invention, the ultrasound transmissive interface comprises an elastomeric cavity that is adapted to contain a liquid. The elastomeric cavity is disposed between the ultrasonic transducer and the surface of the undesired tissue so that the high intensity ultrasonic energy passes through the liquid within the elastomeric cavity and into the undesired tissue. The elastomeric cavity is formed at least in part from a semi-permeable membrane, so that the liquid from within the elastomeric cavity weeps onto a surface of undesired tissue to increase the efficiency with which the high intensity ultrasonic energy is coupled into the undesired tissue.
In another form of the present invention, the ultrasound transmissive interface comprises a cap made of an elastomeric material, which is disposed to surround the ultrasonic transducer. The cap is adapted to seal against the undesired tissue and to contain a liquid that increases an efficiency with which the high intensity ultrasonic energy is coupled into the undesired tissue. In addition, the cap preferably includes a rim having a double lip seal formed around a perimeter. A passage in the cap is adapted to couple the double lip seal to a vacuum line so that the rim of the cap is held against a surface of the undesirable tissue, sealing the liquid inside of the cap.
Another aspect of the present invention is directed to a method for administering an ultrasonic therapy to destroy at least a portion of an undesired tissue mass. The method includes the steps of providing an ultrasonic transducer that emits a focused high energy ultrasonic energy when energized, and positioning the ultrasonic transducer proximate the undesired tissue mass. The ultrasonic transducer is directed toward a desired focal point within the undesired tissue mass. Then, the ultrasonic transducer is energized so that it emits the focused high energy ultrasonic energy at the desired focal point, causing necrosis of a portion of the undesired tissue mass disposed at the desired focal point. At least one of an f-number, an intensity, a time, and a direction of the high intensity ultrasonic energy emitted into the undesired tissue mass is controlled to achieve a desired shape and size of a necrotic zone of undesired tissue, destroyed as a result of being heated by the high intensity ultrasonic energy. The necrotic zone substantially blocks the high intensity ultrasonic energy from penetrating beyond the necrotic zone. The desired shape and size of the necrotic zone are preferably selected and formed so as to cause substantially of the undesired tissue mass to ultimately be destroyed.
The step of controlling preferably includes the step of repositioning the ultrasonic transducer to direct the high intensity ultrasonic energy at a different portion of the undesired tissue mass, to achieve the desired shape and size of the necrotic zone. In one application of the method, the desired shape and size of the necrotic zone are selected so that formation of the necrotic zone substantially deprives the undesired tissue mass of a blood supply, causing the ultimate destruction of the undesired tissue mass. In another application of the method, the desired shape and size of the necrotic zone are selected to control bleeding at a treatment site.
The foregoing aspects and many of the attendant advantages of this invention will become more readily appreciated as the same becomes better understood by reference to the following detailed description, when taken in conjunction with the accompanying drawings, wherein:
In the following description of the present invention, its application in treating uterine fibroid tumors is discuss in some detail. However, it should be emphasized that the device and methods described herein may also be used to apply ultrasound therapy treatment to other organ systems, lesions, and disease states. The therapy delivered may be thermal ablation, where a temperature rise is established to a level at which tissues are no longer viable; mechanical ablation, where cavitation is employed as the primary ablative means; or may achieve hemostasis wherein bleeding or blood flow in intact organs is arrested. Such applications of the present invention may be accomplished in open, invasive surgery, by way of established minimally invasive techniques (for example, by way of body entry through one or more small incisions or punctures), or in some cases, noninvasively, through the skin surface or through the linings of body cavities such as the rectum, vagina, or esophagus. Ablative treatment with the present invention may be applied to a wide range of benign or cancerous lesions of the liver, kidney, pancreas, spleen, prostate, breast, bowel, rectum or similar organ systems, wherein the device described herein may be placed in close proximity to the disease location. Also, acoustic hemostasis treatment may be employed to deprive a disease lesion of its blood supply or used to facilitate surgical procedures by arresting bleeding or blood flow.
Many tumors, such as uterine fibroids, locate superficially inside or outside the organ. During hysteroscopic or laparoscopic surgeries, surgeons can easily reach the surfaces of those tumors with an intra-cervical or intra-abdominal instrument. For an ultrasound transducer at the tip of the intra-cavity instrument touching the tumor directly, there will be little or no intermediate tissue that needs to be spared and cooled, so that pauses in the treatment for this purpose may become unnecessary.
According to conventional wisdom, the pre-focal heating is considered to be a negative effect and needs to be minimized. In the case of intra-cavity treatment of uterine fibroids, however, this pre-focal heating can provide significant enhancement to the efficiency of tissue heating when the ultrasound transducer can be disposed in close contact with the tumor surface. A positive feedback mechanism of tissue heating (illustrated in
In an experimental study, a wedge-shaped lesion of tissue necrosis was generated with this mechanism by running the ultrasound power continuously, while keeping the transducer position fixed. The volume of the thermal lesion was about 4.5 cm3, and the treatment time was approximately two minutes. The average treatment rate was about 2.25 cm3/min, which was 45 times faster than provided by a conventional pulse-pause treatment strategy.
Using the present invention, the size and the shape of the large thermal lesion can be readily controlled. To form a thin elongate lesion column 20 in the tissue (
The basic concept and configuration of a high intensity ultrasound device 29 in accord with the present invention are shown in
Doppler flow imaging (spectral Doppler or power mode Doppler) may be utilized to assist targeting and to monitor treatment effects and to determine the endpoint of the therapy. Imaging blood flow is particularly useful when a blood flow occlusion strategy is being utilized, since the cessation of blood flow can be directly monitored. Doppler imaging facilitates localization of the vascularity typically surrounding uterine fibroid tumors or other tumor masses.
There are many possible combinations of the imaging and treatment capabilities. Imaging and therapy may be one-, two-, or three-dimensional in various combinations; scan geometries may be fixed or selectable; and imaging and therapy may proceed either simultaneously or sequentially in time. A preferred embodiment of the ultrasound intra-cavity device discussed herein has the capability to carryout 2D real-time imaging and the capability to produce tissue necrosis in a substantially 2D slice (thickness of this slice is nominally less than one centimeter). Including the lesion-control techniques discussed above, there are many ways to control treatment geometry with this device. Different spatial beam patterns can be generated from by the ultrasound transducer array included on the device to form a specific lesion shape, or potentially, to reduce treatment time. Multiple sequential exposures of different spatial beam patterns can also be used to control the treatment dosage at different locations to form lesion shapes that cannot be generated by fixed beam patterns.
As shown in
The fibroid is visualized by ultrasound imaging using trans-cervical ultrasound device 68. As a function of the tumor size and shape, the physician selects the appropriate treatment geometry and turns the therapeutic ultrasound power on to necrose a slice volume of the tumor tissue in front of the transducer. The entire tumor is then treated typically piece by piece. During the treatment, the transducer (not separately shown) at a distal end 72 of the device does not have to directly contact the tumor surface—the water in the uterus is a good acoustic coupling and transmission medium. After the tumor is completely treated, the physician removes the device and drains the water from the patient's uterus. The procedure is finished without any surgical invasion to the tissue.
There are two possible approaches for providing treatment of a submucosal fibroid tumor 94 with trans-cervical ultrasound device 68. The physician can treat the whole tumor directly with the ultrasound device, as shown in
A similar technique may be used to treat intramural fibroids as illustrated in
Subserosal fibroids are disposed substantially outside of the uterus. When these are symptomatic, they may be larger than submucosal and intramural fibroids. However, the trans-abdominal ultrasound device according to the present invention can also be used to treat them. If the physician uses the same treatment technique as described above to thermally necrose the entire tumor, it will take longer time, because they are relatively large. An alternative approach is shown in
A system 104 that supports operation of trans-cervical ultrasound device 68 is shown in
Different configurations of the trans-cervical ultrasound device shown in
The ultrasound transducer in the end of the trans-cervical applicator may have a limited usable lifetime. The tip of the device may be a reposable (disposable, with a limited number of times of reuse). A used tip can thus be removed, and a new tip attached. The reposable portion may include shaft 70, so that the connection port will be in the handle, which stays outside the patient and is not immersed in fluid.
Trans-abdominal ultrasound device 29 shown in
Cover case balloon 41 is elastomeric and conforms to an outer surface of a tumor, providing more efficient acoustical coupling between the transducer and the treatment area; the curvature of the tumor contour will, in general, be different from the curvature of the ultrasound transducer. Moreover, during a conventional laparoscopic procedure, the patient's abdomen is inflated with CO2 gas to create a large working space. A gas gap between the transducer and the tumor, however, would block the ultrasound transmission. Instead of penetrating into the tumor, the ultrasound beam would be reflected back to the transducer. The therapeutic effect would thus be diminished and the transducer might be damaged by the reflected ultrasound energy.
It thus is important to maintain good acoustic coupling between the treatment tissue and the ultrasound transducer while provide the ultrasound therapy. Water, saline, and most water-based solutions and gels are excellent coupling media. In diagnostic ultrasound imaging, water-based coupling gel is widely used. However, gel may have limitations in trans-abdominal ultrasound therapy for treating uterine fibroids. Unlike skin, the fibroid is much less compressible. It is also more difficult to apply manual pressure during a laparoscopic procedure to conform the fibroid to the surface contour of the transducer. Gel may be used to fill the remaining gaps, but gas bubbles trapped in the gel are difficult to squeeze out.
In this preferred embodiment of the present invention, water-filled cover case balloon 41 (
Alternatively, as shown in
To protect the ultrasound transducer against accidental damage caused by the reflected ultrasound power when there are large gas bubbles or gaps between the transducer and the tumor, or when the device is lifted from the tumor while the high intensity ultrasound output is still on, the present invention preferably uses the ultrasound imaging capability to detect the existence of gas. When a gas gap exists, it causes a strong reflection detected when ultrasound imaging. The reflection may also bounce back and forth between the transducer and the gas gap, resulting in a reverberation (multiple reflections). The strong reflection or reverberation appear(s) as very bright echoes in a large portion of the image. When observing this unique echo image, the medical practitioner may adjust the position or the coupling of the ultrasound device to eliminate the trapped gas. As an alternative, an automatic gas detection technique may be used to avoid the reflection damage. By using the unique characteristics of the gas in the reflected echo signal, the system may detect its existence during the imaging process. When the strong echo is detected, the system may automatically turn off the high intensity ultrasound output to the area where there are gas gaps. This automatic power shut down process is accomplished almost instantaneously, so that thermal damage to the transducer array is avoided.
During therapy application, the ultrasound transducer generate heat internally. This heat can possibly cause damage or reduce the service life of the transducer array. Moreover, if the transducer array touches the tumor tissue directly, the high temperature of the transducer array can prematurely, or inadvertently, necrose the tissue surface. The high acoustic absorption of the necrosed tissue at the surface would also prevent the ultrasound beam from penetrating deep into the tumor, so that the deep tumor tissue might not be properly treated. It is therefore very important to keep the temperature of the transducer array and at the tissue interface relatively low during the treatment.
A plurality of techniques can be employed to cool the transducer array. The simplest approach is to immerse the transducer in water, maintain a gap between the transducer surface and the tumor, and then ensure that the water flows through the gap during the treatment. Two water channels preferably disposed inside the device casing to circulate the cooling fluid may optionally be used for this purpose. The ultrasound transducer array is disposed in one of the channels. Alternatively, both the transducer and the tumor may be immersed in water. In the trans-cervical approach, the uterine cavity is conveniently filled with water. In certain trans-abdominal situations, it may be possible to fill a portion of the abdominal cavity with water. And, in some non-invasive situations it is possible to construct a water dam, sealed at its periphery to the organ surface, creating a water pool in which the applicator may be positioned. As shown in
To simplify the device design and to reduce the size of the endoscopic instrument, one ultrasound transducer array is used for both imaging and therapy. A concave transducer array provides a good compromise to simplify the design for both functions. Natural focusing of the concave geometry simplifies the ultrasound beam forming, where there is no (or less) phase delay needed, and cross-talk among array elements is less of a problem. Because of the minimum phase delay required, larger element pitch size can be used. Large pitch size reduces the number of elements in the array and the number of electronic signal channels required. It also helps to reduce the cost of the transducer and the cost of the control unit. Treatment area 38 is geometrically inside imaging area 40 of the array (see
System controller 206 provides overall control and synchronization of the multiplicity of functions executed by the system including an operator interface control panel 208, a foot switch 200 that is used for initiating and arresting therapy, and a timing logic 194, employed for establishing appropriate phasing of the therapeutic phased array transmit chain. This chain comprises a primary oscillator 182, a phase locked loop 184, a multi-channel power amplifier 180 and matching networks 178. Additionally, timing logic 194 provides data to the imaging chain that includes the receive amplifiers and time-gain compensation circuits 188, a quadrature detection circuit 196, an analog-to-digital conversion circuit 192, an Intensity (B) mode processing circuit 198, an attenuation processing circuit 204, a Doppler flow processing circuit 212, and a scan conversion circuit 202. Images of the target tissue are converted to a format compatible with standardized operating room video display in image merging circuits 210 and mixed with other video sources (e.g., hysteroscopic optical imaging), and user interface graphics, and processed in graphic overlay 216, which is included in a video processor module 214, for display.
Thermally necrosed tissue has a much higher acoustic attenuation (>1.0 dB/cm/MHz) than the untreated tissue (0.4-0.7 dB/cm/MHz). This property may be used to monitor or visualize the treatment area. One technique to measure the tissue attenuation change is to measure the frequency spectral change in the echo signal. High frequency components in the frequency band are attenuated more than the low frequency components. By subtracting the spectrum before the treatment from the spectrum after the treatment, the attenuation change can be measured. If the subtracted spectrum is near zero, it indicates that the tissue where the echo is acquired has not been treated. If the result of spectrum subtraction has a significant slope, it means the tissue attenuation has changed, indicating that this area has been necrosed.
Alternatively, or in combination with this attenuation imaging, elasticity imaging may be employed to assess tissue state before, during, or after ultrasonic treatment. Elasticity imaging, the principles of which are well known in the art, provides a visualization of physical and mechanical tissue properties. Necrosed tissues are stiffer and demonstrate elasticity changes. Treatment endpoints may be manually or automatically controlled (under operator control) by use of elasticity imaging parameters.
As an alternative method of therapy that may reduce the treatment time even further, the patient may be given an injection of ultrasound contrast agent, which is a solution of encapsulated air-containing micro-bubbles that are sufficiently small to circulate safely in the blood and blood vessels. When the bubbles are flowing through the fibroid, they will be hit by the high intensity therapeutic ultrasound. The bubbles enhance the ultrasound heating process at the treatment area and make the treatment more efficient.
As a further alternative method of therapy, cavitation may be utilized as a mechanism for speeding effective treatment. Ultrasound with high acoustic pressure and lower frequency increases the likelihood of stimulating the onset of cavitation. The presence of contrast media or bubbles also encourages cavitation. Cavitation can aggressively disrupt tissue and increase energy transfer for an enhanced heating effect.
Although the present invention has been described in connection with the preferred form of practicing it, those of ordinary skill in the art will understand that many modifications can be made thereto within the scope of the claims that follow. Accordingly, it is not intended that the scope of the invention in any way be limited by the above description, but instead be determined entirely by reference to the claims that follow.
This application is a continuation of U.S. application Ser. No. 10/633,726, filed Aug. 4, 2003, which is a continuation of U.S. application Ser. No. 09/721,526, filed Nov. 22, 2000, now U.S. Pat. No. 6,626,855, which claims the benefit of U.S. Provisional Application No. 60/167,707, filed Nov. 26, 1999, all of which are incorporated herein by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
385256 | Eggers | Jun 1888 | A |
3274437 | Mastrup | Sep 1966 | A |
3499437 | Balamuth | Mar 1970 | A |
3552382 | Mount | Jan 1971 | A |
3847016 | Ziedonis | Nov 1974 | A |
3927662 | Ziedonis | Dec 1975 | A |
4059098 | Murdock | Nov 1977 | A |
4167180 | Kossoff | Sep 1979 | A |
4197856 | Northrop | Apr 1980 | A |
4206763 | Pedersen | Jun 1980 | A |
4237901 | Taenzer | Dec 1980 | A |
4273127 | Auth et al. | Jun 1981 | A |
4315514 | Drewes et al. | Feb 1982 | A |
4469099 | McEwen | Sep 1984 | A |
4479494 | McEwen | Oct 1984 | A |
4484569 | Driller et al. | Nov 1984 | A |
4545386 | Hetz et al. | Oct 1985 | A |
4594895 | Fujii | Jun 1986 | A |
4601296 | Yerushalmi | Jul 1986 | A |
4605010 | McEwen | Aug 1986 | A |
4688578 | Takano et al. | Aug 1987 | A |
4708836 | Gain et al. | Nov 1987 | A |
4748985 | Nagasaki | Jun 1988 | A |
4757820 | Itoh | Jul 1988 | A |
4770175 | McEwen | Sep 1988 | A |
4773865 | Baldwin | Sep 1988 | A |
4784148 | Dow et al. | Nov 1988 | A |
4841979 | Dow et al. | Jun 1989 | A |
4850363 | Yanagawa | Jul 1989 | A |
4858613 | Fry et al. | Aug 1989 | A |
4905672 | Schwarze et al. | Mar 1990 | A |
4913155 | Dow et al. | Apr 1990 | A |
4929246 | Sinofsky | May 1990 | A |
4931047 | Broadwin et al. | Jun 1990 | A |
4938216 | Lele | Jul 1990 | A |
4938217 | Lele | Jul 1990 | A |
4957099 | Hassler | Sep 1990 | A |
5005579 | Wurster et al. | Apr 1991 | A |
RE33590 | Dory | May 1991 | E |
5026387 | Thomas | Jun 1991 | A |
5036855 | Fry et al. | Aug 1991 | A |
5039774 | Shikinami et al. | Aug 1991 | A |
5042486 | Pfeiler et al. | Aug 1991 | A |
5065742 | Belikan et al. | Nov 1991 | A |
5080101 | Dory | Jan 1992 | A |
5080102 | Dory | Jan 1992 | A |
5150712 | Dory | Sep 1992 | A |
5170790 | Lacoste et al. | Dec 1992 | A |
5178135 | Uchiyama et al. | Jan 1993 | A |
5178148 | Lacoste et al. | Jan 1993 | A |
5181522 | McEwen | Jan 1993 | A |
5194291 | D'Aoust et al. | Mar 1993 | A |
5211160 | Talish et al. | May 1993 | A |
5215680 | D'Arrigo | Jun 1993 | A |
5219401 | Cathignol et al. | Jun 1993 | A |
5230334 | Klopotek | Jul 1993 | A |
5230921 | Waltonen et al. | Jul 1993 | A |
5233994 | Shmulewitz | Aug 1993 | A |
5243988 | Sieben et al. | Sep 1993 | A |
5254087 | McEwen | Oct 1993 | A |
5263957 | Davison | Nov 1993 | A |
5290278 | Anderson | Mar 1994 | A |
5307816 | Hashimoto et al. | May 1994 | A |
5311869 | Okazaki | May 1994 | A |
5312431 | McEwen | May 1994 | A |
5318035 | Konno et al. | Jun 1994 | A |
5352195 | McEwen | Oct 1994 | A |
5364389 | Anderson | Nov 1994 | A |
5383896 | Gershony et al. | Jan 1995 | A |
5391140 | Schaetzle et al. | Feb 1995 | A |
5391197 | Burdette et al. | Feb 1995 | A |
5394877 | Orr et al. | Mar 1995 | A |
5415657 | Taymor-Luria | May 1995 | A |
5439477 | McEwen | Aug 1995 | A |
5453576 | Krivitski | Sep 1995 | A |
5454373 | Koger et al. | Oct 1995 | A |
5454831 | McEwen | Oct 1995 | A |
5471988 | Fujio et al. | Dec 1995 | A |
5474071 | Chapelon et al. | Dec 1995 | A |
5492126 | Hennige et al. | Feb 1996 | A |
5503152 | Oakley et al. | Apr 1996 | A |
5507744 | Tay et al. | Apr 1996 | A |
5507790 | Weiss | Apr 1996 | A |
5515853 | Smith et al. | May 1996 | A |
5520188 | Hennige et al. | May 1996 | A |
5522878 | Montecalvo et al. | Jun 1996 | A |
5524620 | Rosenschein | Jun 1996 | A |
5526815 | Granz et al. | Jun 1996 | A |
5534232 | Denes et al. | Jul 1996 | A |
5536489 | Lohrmann et al. | Jul 1996 | A |
5553618 | Suzuki et al. | Sep 1996 | A |
5556415 | McEwen et al. | Sep 1996 | A |
5558092 | Unger et al. | Sep 1996 | A |
5573497 | Chapelon | Nov 1996 | A |
5578055 | McEwen | Nov 1996 | A |
5584853 | McEwen | Dec 1996 | A |
5590657 | Cain et al. | Jan 1997 | A |
5601526 | Chapelon et al. | Feb 1997 | A |
5607447 | McEwen et al. | Mar 1997 | A |
5609485 | Bergman et al. | Mar 1997 | A |
5626601 | Gershony et al. | May 1997 | A |
5628730 | Shapland et al. | May 1997 | A |
5630837 | Crowley | May 1997 | A |
5638823 | Akay et al. | Jun 1997 | A |
5643179 | Fujimoto | Jul 1997 | A |
5649954 | McEwen | Jul 1997 | A |
5655538 | Lorraine et al. | Aug 1997 | A |
5655539 | Wang et al. | Aug 1997 | A |
5657760 | Ying et al. | Aug 1997 | A |
5665073 | Bulow et al. | Sep 1997 | A |
5666954 | Chapelon et al. | Sep 1997 | A |
5681339 | McEwen et al. | Oct 1997 | A |
5685307 | Holland et al. | Nov 1997 | A |
5695493 | Nakajima et al. | Dec 1997 | A |
5697897 | Buchholtz et al. | Dec 1997 | A |
D389574 | Emerson et al. | Jan 1998 | S |
5704361 | Seward et al. | Jan 1998 | A |
5711058 | Frey et al. | Jan 1998 | A |
5713363 | Seward et al. | Feb 1998 | A |
5716374 | Francese et al. | Feb 1998 | A |
5720286 | Chapelon et al. | Feb 1998 | A |
5720287 | Chapelon et al. | Feb 1998 | A |
5726066 | Choi | Mar 1998 | A |
5735796 | Granz et al. | Apr 1998 | A |
5738635 | Chapelon et al. | Apr 1998 | A |
5741295 | McEwen | Apr 1998 | A |
5755228 | Wilson et al. | May 1998 | A |
5762066 | Law et al. | Jun 1998 | A |
5769790 | Watkins et al. | Jun 1998 | A |
5788636 | Curley | Aug 1998 | A |
5807285 | Vaitekunas et al. | Sep 1998 | A |
5810007 | Holupka et al. | Sep 1998 | A |
5810810 | Tay et al. | Sep 1998 | A |
5817021 | Reichenberger | Oct 1998 | A |
5823962 | Schaetzle et al. | Oct 1998 | A |
5824015 | Sawyer | Oct 1998 | A |
5824277 | Campos | Oct 1998 | A |
5827204 | Grandia et al. | Oct 1998 | A |
5827268 | Laufer | Oct 1998 | A |
5833647 | Edwards | Nov 1998 | A |
5840028 | Chubachi et al. | Nov 1998 | A |
5846517 | Unger | Dec 1998 | A |
5852860 | Lorraine et al. | Dec 1998 | A |
5853752 | Unger et al. | Dec 1998 | A |
5855589 | McEwen et al. | Jan 1999 | A |
5873828 | Fujio et al. | Feb 1999 | A |
5879314 | Peterson et al. | Mar 1999 | A |
5882302 | Driscoll, Jr. et al. | Mar 1999 | A |
5895356 | Andrus et al. | Apr 1999 | A |
5904659 | Duarte et al. | May 1999 | A |
5906580 | Kline-Schoder et al. | May 1999 | A |
5911735 | McEwen | Jun 1999 | A |
5919139 | Lin | Jul 1999 | A |
5921994 | Andreas et al. | Jul 1999 | A |
5922945 | Allmaras et al. | Jul 1999 | A |
5931786 | Whitmore, III et al. | Aug 1999 | A |
5931853 | McEwen | Aug 1999 | A |
5935144 | Estabrook | Aug 1999 | A |
5935146 | McEwen | Aug 1999 | A |
5935339 | Henderson et al. | Aug 1999 | A |
5951476 | Beach | Sep 1999 | A |
5957849 | Munro | Sep 1999 | A |
5964782 | Lafontaine et al. | Oct 1999 | A |
5976092 | Chinn | Nov 1999 | A |
5979453 | Savage et al. | Nov 1999 | A |
5993389 | Driscoll, Jr. et al. | Nov 1999 | A |
5997481 | Adams et al. | Dec 1999 | A |
6007499 | Martin et al. | Dec 1999 | A |
6013031 | Mendlein et al. | Jan 2000 | A |
6014473 | Hossack et al. | Jan 2000 | A |
6033506 | Klett | Mar 2000 | A |
6036650 | Wu et al. | Mar 2000 | A |
6037032 | Klett et al. | Mar 2000 | A |
6039694 | Larson et al. | Mar 2000 | A |
6042556 | Beach et al. | Mar 2000 | A |
6050943 | Slayton et al. | Apr 2000 | A |
6067371 | Gouge et al. | May 2000 | A |
6068596 | Weth et al. | May 2000 | A |
6071239 | Cribbs et al. | Jun 2000 | A |
6071277 | Farley et al. | Jun 2000 | A |
6078831 | Belef et al. | Jun 2000 | A |
6083159 | Driscoll, Jr. et al. | Jul 2000 | A |
6087761 | Lorraine et al. | Jul 2000 | A |
6102860 | Mooney | Aug 2000 | A |
6106463 | Wilk | Aug 2000 | A |
6120453 | Sharp | Sep 2000 | A |
6128522 | Acker et al. | Oct 2000 | A |
6179831 | Bliweis | Jan 2001 | B1 |
6182341 | Talbot et al. | Feb 2001 | B1 |
6200539 | Sherman et al. | Mar 2001 | B1 |
6206843 | Iger et al. | Mar 2001 | B1 |
6213939 | McEwen | Apr 2001 | B1 |
6217530 | Martin et al. | Apr 2001 | B1 |
6221015 | Yock | Apr 2001 | B1 |
6231507 | Zikorus et al. | May 2001 | B1 |
6233477 | Chia et al. | May 2001 | B1 |
6246156 | Takeuchi et al. | Jun 2001 | B1 |
6254601 | Burbank et al. | Jul 2001 | B1 |
6259945 | Epstein et al. | Jul 2001 | B1 |
6261233 | Kantorovich | Jul 2001 | B1 |
6263551 | Lorraine et al. | Jul 2001 | B1 |
6267734 | Ishibashi et al. | Jul 2001 | B1 |
6270458 | Barnea | Aug 2001 | B1 |
6277077 | Brisken et al. | Aug 2001 | B1 |
6311692 | Vaska et al. | Nov 2001 | B1 |
6315441 | King | Nov 2001 | B2 |
6332089 | Acker et al. | Dec 2001 | B1 |
6361496 | Zikorus et al. | Mar 2002 | B1 |
6361548 | McEwen | Mar 2002 | B1 |
6399149 | Klett et al. | Jun 2002 | B1 |
6406759 | Roth | Jun 2002 | B1 |
6409720 | Hissong et al. | Jun 2002 | B1 |
6419669 | Frazier et al. | Jul 2002 | B1 |
6425867 | Vaezy et al. | Jul 2002 | B1 |
6425876 | Frangi et al. | Jul 2002 | B1 |
6432067 | Martin et al. | Aug 2002 | B1 |
6443894 | Sumanaweera et al. | Sep 2002 | B1 |
6453526 | Lorraine et al. | Sep 2002 | B2 |
6488639 | Ribault et al. | Dec 2002 | B1 |
6491672 | Slepian et al. | Dec 2002 | B2 |
6494848 | Sommercorn et al. | Dec 2002 | B1 |
6500133 | Martin et al. | Dec 2002 | B2 |
6520915 | Lin et al. | Feb 2003 | B1 |
6522926 | Kieval et al. | Feb 2003 | B1 |
6548047 | Unger | Apr 2003 | B1 |
6551576 | Unger et al. | Apr 2003 | B1 |
6559644 | Froundlich et al. | May 2003 | B2 |
6562037 | Paton et al. | May 2003 | B2 |
6565557 | Sporri et al. | May 2003 | B1 |
6576168 | Hardcastle et al. | Jun 2003 | B2 |
6584360 | Francischelli et al. | Jun 2003 | B2 |
6595934 | Hissong et al. | Jul 2003 | B1 |
6599256 | Acker et al. | Jul 2003 | B1 |
6599288 | Maguire et al. | Jul 2003 | B2 |
6602251 | Burbank et al. | Aug 2003 | B2 |
6612988 | Maor et al. | Sep 2003 | B2 |
6616624 | Kieval | Sep 2003 | B1 |
6626855 | Weng et al. | Sep 2003 | B1 |
6633658 | Dabney et al. | Oct 2003 | B1 |
6652461 | Levkovitz | Nov 2003 | B1 |
6656131 | Alster et al. | Dec 2003 | B2 |
6656136 | Weng et al. | Dec 2003 | B1 |
6676601 | Lacoste et al. | Jan 2004 | B1 |
6682483 | Abend et al. | Jan 2004 | B1 |
6685639 | Wang et al. | Feb 2004 | B1 |
6706892 | Ezrin et al. | Mar 2004 | B1 |
6709392 | Salgo et al. | Mar 2004 | B1 |
6709407 | Fatemi | Mar 2004 | B2 |
6716184 | Vaezy et al. | Apr 2004 | B2 |
6719694 | Weng et al. | Apr 2004 | B2 |
6719699 | Smith | Apr 2004 | B2 |
6726627 | Lizzi et al. | Apr 2004 | B1 |
6735461 | Vitek et al. | May 2004 | B2 |
6755789 | Stringer et al. | Jun 2004 | B2 |
6764488 | Burbank et al. | Jul 2004 | B1 |
6846291 | Smith et al. | Jan 2005 | B2 |
6868739 | Krivitski et al. | Mar 2005 | B1 |
6875176 | Mourad et al. | Apr 2005 | B2 |
6875420 | Quay | Apr 2005 | B1 |
6905498 | Hooven | Jun 2005 | B2 |
6932771 | Whitmore et al. | Aug 2005 | B2 |
6955648 | Mozayeni et al. | Oct 2005 | B2 |
6978174 | Gelfand et al. | Dec 2005 | B2 |
7022077 | Mourad et al. | Apr 2006 | B2 |
7052463 | Peszynski et al. | May 2006 | B2 |
7063666 | Weng et al. | Jun 2006 | B2 |
7128711 | Medan et al. | Oct 2006 | B2 |
7149564 | Vining et al. | Dec 2006 | B2 |
7162303 | Levin et al. | Jan 2007 | B2 |
7211060 | Talish et | May 2007 | B1 |
7260250 | Summers et al. | Aug 2007 | B2 |
7285093 | Anisimov et al. | Oct 2007 | B2 |
7445599 | Kelly et al. | Nov 2008 | B2 |
7470241 | Weng et al. | Dec 2008 | B2 |
7499748 | Moffitt et al. | Mar 2009 | B2 |
7510536 | Foley et al. | Mar 2009 | B2 |
7530958 | Slayton et al. | May 2009 | B2 |
7534209 | Abend et al. | May 2009 | B2 |
7553284 | Vaitekunas | Jun 2009 | B2 |
7617005 | Demarais et al. | Nov 2009 | B2 |
7620451 | Demarais et al. | Nov 2009 | B2 |
7628764 | Duarte et al. | Dec 2009 | B2 |
7684865 | Aldrich et al. | Mar 2010 | B2 |
7697972 | Verard et al. | Apr 2010 | B2 |
20010014775 | Koger et al. | Aug 2001 | A1 |
20010014805 | Burbank et al. | Aug 2001 | A1 |
20010032382 | Lorraine et al. | Oct 2001 | A1 |
20010041910 | McEwen | Nov 2001 | A1 |
20010044636 | Pedros et al. | Nov 2001 | A1 |
20020032394 | Brisken et al. | Mar 2002 | A1 |
20020055736 | Horn et al. | May 2002 | A1 |
20020095164 | Andreas et al. | Jul 2002 | A1 |
20020193831 | Smith, III | Dec 2002 | A1 |
20030009194 | Saker et al. | Jan 2003 | A1 |
20030018255 | Martin et al. | Jan 2003 | A1 |
20030036771 | McEwen et al. | Feb 2003 | A1 |
20030050665 | Ginn | Mar 2003 | A1 |
20030069569 | Burdette et al. | Apr 2003 | A1 |
20030114756 | Li | Jun 2003 | A1 |
20030120204 | Unger et al. | Jun 2003 | A1 |
20030153849 | Huckle et al. | Aug 2003 | A1 |
20030195420 | Mendlein et al. | Oct 2003 | A1 |
20030208101 | Cecchi | Nov 2003 | A1 |
20030216792 | Levin et al. | Nov 2003 | A1 |
20040002654 | Davidson et al. | Jan 2004 | A1 |
20040030227 | Littrup et al. | Feb 2004 | A1 |
20040030268 | Weng et al. | Feb 2004 | A1 |
20040054287 | Stephens | Mar 2004 | A1 |
20040054289 | Eberle et al. | Mar 2004 | A1 |
20040078034 | Acker et al. | Apr 2004 | A1 |
20040078219 | Kaylor | Apr 2004 | A1 |
20040082978 | Harrison et al. | Apr 2004 | A1 |
20040097840 | Holmer | May 2004 | A1 |
20040106880 | Weng et al. | Jun 2004 | A1 |
20040113524 | Baumgartner et al. | Jun 2004 | A1 |
20040122493 | Ishibashi et al. | Jun 2004 | A1 |
20040127798 | Dala-Krishna et al. | Jul 2004 | A1 |
20040153126 | Okai | Aug 2004 | A1 |
20040158154 | Hanafy et al. | Aug 2004 | A1 |
20040234453 | Smith | Nov 2004 | A1 |
20040254620 | Lacoste et al. | Dec 2004 | A1 |
20040267252 | Washington et al. | Dec 2004 | A1 |
20050043625 | Oliver et al. | Feb 2005 | A1 |
20050046311 | Baumgartner et al. | Mar 2005 | A1 |
20050054955 | Lidgren | Mar 2005 | A1 |
20050065436 | Ho et al. | Mar 2005 | A1 |
20050070790 | Niwa et al. | Mar 2005 | A1 |
20050085793 | Glossop | Apr 2005 | A1 |
20050090104 | Yang et al. | Apr 2005 | A1 |
20050096542 | Weng et al. | May 2005 | A1 |
20050124884 | Bolorforosh et al. | Jun 2005 | A1 |
20050154299 | Hoctor et al. | Jul 2005 | A1 |
20050165298 | Larson et al. | Jul 2005 | A1 |
20050182297 | Gravenstein et al. | Aug 2005 | A1 |
20050182319 | Glossop | Aug 2005 | A1 |
20050240102 | Rachlin et al. | Oct 2005 | A1 |
20050240103 | Byrd et al. | Oct 2005 | A1 |
20050240126 | Foley et al. | Oct 2005 | A1 |
20050240170 | Zhang et al. | Oct 2005 | A1 |
20060025756 | Francischelli et al. | Feb 2006 | A1 |
20060058678 | Vitek et al. | Mar 2006 | A1 |
20060122514 | Byrd et al. | Jun 2006 | A1 |
20060184069 | Vaitekunas | Aug 2006 | A1 |
20060235300 | Weng et al. | Oct 2006 | A1 |
20070004984 | Crum et al. | Jan 2007 | A1 |
20070055155 | Owen et al. | Mar 2007 | A1 |
20070106339 | Errico et al. | May 2007 | A1 |
20070129720 | Demarais et al. | Jun 2007 | A1 |
20070142879 | Greenberg et al. | Jun 2007 | A1 |
20070149880 | Willis | Jun 2007 | A1 |
20070167806 | Wood et al. | Jul 2007 | A1 |
20070179379 | Weng et al. | Aug 2007 | A1 |
20070213616 | Anderson et al. | Sep 2007 | A1 |
20070233185 | Anderson et al. | Oct 2007 | A1 |
20070239000 | Emery et al. | Oct 2007 | A1 |
20070265687 | Deem et al. | Nov 2007 | A1 |
20080033292 | Shafran | Feb 2008 | A1 |
20080039746 | Hissong et al. | Feb 2008 | A1 |
20080045864 | Candy et al. | Feb 2008 | A1 |
20080045865 | Kislev | Feb 2008 | A1 |
20080047325 | Bartlett | Feb 2008 | A1 |
20080200815 | Van Der Steen et al. | Aug 2008 | A1 |
20080234569 | Tidhar et al. | Sep 2008 | A1 |
20080255498 | Houle | Oct 2008 | A1 |
20080255642 | Zarins et al. | Oct 2008 | A1 |
20080312561 | Chauhan | Dec 2008 | A1 |
20080317204 | Sumanaweera et al. | Dec 2008 | A1 |
20080319375 | Hardy | Dec 2008 | A1 |
20090012098 | Jordan et al. | Jan 2009 | A1 |
20090036948 | Levin et al. | Feb 2009 | A1 |
20090054770 | Daigle | Feb 2009 | A1 |
20090062697 | Zhang et al. | Mar 2009 | A1 |
20090062873 | Wu et al. | Mar 2009 | A1 |
20090076409 | Wu et al. | Mar 2009 | A1 |
20090088623 | Vortman et al. | Apr 2009 | A1 |
20090112095 | Daigle | Apr 2009 | A1 |
20090112133 | Deisseroth et al. | Apr 2009 | A1 |
20090163982 | deCharms | Jun 2009 | A1 |
20090221939 | Demarais et al. | Sep 2009 | A1 |
20090247911 | Novak et al. | Oct 2009 | A1 |
20090264755 | Chen et al. | Oct 2009 | A1 |
20090306644 | Mayse et al. | Dec 2009 | A1 |
20090326379 | Daigle et al. | Dec 2009 | A1 |
20100092424 | Sanghvi et al. | Apr 2010 | A1 |
20100125269 | Emmons et al. | May 2010 | A1 |
20100174188 | Wang et al. | Jul 2010 | A1 |
20110028867 | Choo et al. | Feb 2011 | A1 |
20110118602 | Weng et al. | May 2011 | A1 |
20110178403 | Weng et al. | Jul 2011 | A1 |
20110178445 | Weng et al. | Jul 2011 | A1 |
20110230763 | Emery et al. | Sep 2011 | A1 |
20110230796 | Emery et al. | Sep 2011 | A1 |
Number | Date | Country |
---|---|---|
4110308 | Oct 1992 | DE |
4230415 | Mar 1994 | DE |
102 09 380 | Sep 2003 | DE |
0 225 120 | Jun 1987 | EP |
0 239 999 | Oct 1987 | EP |
0 383 270 | Aug 1990 | EP |
0420758 | Apr 1991 | EP |
0 679 371 | Nov 1995 | EP |
1 219 245 | Jul 2002 | EP |
1265223 | Dec 2002 | EP |
1 449 563 | Aug 2004 | EP |
1874192 | Oct 2006 | EP |
2181342 | Feb 2009 | EP |
2303131 | Dec 2009 | EP |
2672486 | Aug 1992 | FR |
WO 9731364 | Aug 1997 | WO |
WO 9811840 | Mar 1998 | WO |
WO 9858588 | Dec 1998 | WO |
WO 9907432 | Feb 1999 | WO |
WO 9922652 | May 1999 | WO |
WO 99048621 | Sep 1999 | WO |
WO 0072919 | Dec 2000 | WO |
WO 0134018 | May 2001 | WO |
WO 02069805 | Sep 2002 | WO |
WO 2004064598 | Aug 2004 | WO |
WO 2004086086 | Oct 2004 | WO |
WO 2005030295 | Apr 2005 | WO |
WO 2005056105 | Jun 2005 | WO |
WO 2006113445 | Oct 2006 | WO |
WO 2007073551 | Jun 2007 | WO |
WO 2009018394 | Feb 2009 | WO |
WO 2009026534 | Feb 2009 | WO |
WO 2009158399 | Dec 2009 | WO |
WO 2011053757 | May 2011 | WO |
WO 2011053772 | May 2011 | WO |
Entry |
---|
Takeuchi et al., Dec. 4, 1990, Relaxor ferroelectric transducers, IEEE Ultrasonics Symposium, pp. 697-705. |
Office Action dated Dec. 8, 2011 for U.S. Appl. No. 11/955,310. |
Office Action dated Feb. 3, 2012 for U.S. Appl. No. 13/245,689. |
Final Office Action dated Jun. 13, 2012 for U.S. Appl. No. 13/245,689. |
Office Action dated Jun. 7, 2012 for U.S. Appl. No. 13/344,418. |
Office Action dated Jun. 11, 2012 for U.S. Appl. No. 13/346,466. |
Office Action dated Dec. 30, 2011 for U.S. Appl. No. 12/896,740. |
Final Office Action dated Jun. 5, 2012 for U.S. Appl. No. 12/896,740. |
Office Action dated Oct. 25, 2011 for U.S. Appl. No. 13/025,959. |
Office Action dated Dec. 15, 2011 for U.S. Appl. No. 13/026108. |
Final Office Action dated May 14, 2012 for U.S. Appl. No. 12/026108. |
Office Action dated Nov. 30, 2011 for U.S. Appl. No. 13/011,533. |
Final Office Action dated May 2, 2012 for U.S. Appl. No. 13/011,533. |
Advisory Action dated Jul. 16, 2012 for U.S. Appl. No. 13/011,533. |
Office Action dated Jul. 10, 2012 for U.S. Appl. No. 12/951,850. |
Final Office Action dated May 10, 2012 for U.S. Appl. No. 11/583,656. |
Office Action dated May 24, 2012 for U.S. Appl. No. 13/118,144. |
First Action Interview Office Action Summary dated May 30, 2012 for U.S. Appl. No. 13/245,703. |
Office Action dated Apr. 6, 2012 for U.S. Appl. No. 12/685,655. |
Office Action dated Apr. 10, 2012 for U.S. Appl. No. 12/725,450. |
International Search Report and Written Opinion dated Jul. 27, 2011 for PCT Application No. PCT/US2011/033337. |
International Search Report and Written Opinion dated Jun. 6, 2011 for PCT Application No. PCT/US2010/052197. |
Office Action dated Mar. 20, 2012 for U.S. Appl. No. 13/246,775. |
Office Action dated Nov. 28, 2011 for U.S. Appl. No. 13/246,763. |
International Search Report and Written Opinion dated Dec. 6, 2010 for PCT Application No. PCT/US2010/052193. |
Accord et al., “The Issue of Transmurality in Surgical Ablation for Atrial Fibrillation.” Cardiothoracic Surgery Network: 3pp, Feb. 8, 2007. |
Amenta et al., “A New Voronoi-Based Surface Reconstruction Algorithm.” Computer Graphics: 7pp, 1998. |
American Red Cross., “Blood 101.” 4pp., Dec. 11, 2007. |
Anand et al., “Monitoring formation of high intensity focused ultrasound (HIFU) induced lesions using backscattered ultrasound.” Acoustical Society of America; Mar. 10, 2004. |
Anand et al., “Using the ATL 1000 to Collect Domodulated RF Data for Monitoring HIFU Lesion Formation.” Presented at SPIE Medical Imaging 2003. 11pp, 2003. |
Aurenhammer, F. “Voronoi diagrams—A Survey of a Fundamental Geometric Data Structure.” ACM Computing Surveys, vol. 23, No. 3: 345-405, Sep. 1991. |
Bachmann et al., “Targeting Mucosal Addressin Cellular Adhesion Molecule (MAdCAM)-1 to Noninvasively Image Experimental Crohn's Disease.” Gastroenterology; vol. 130: 8-16, 2006. |
Barthe et al. “Efficient Wideband Linear Arrays for Imaging and Therapy” IEEE Ultrasonics Symposium. pp. 1249-1252 (1999). |
Bauer et al., “Ultrasound Imaging with SonoVue: Low Mechanical Index Real-Time Imaging.” Acad. Radiol.; vol. 9, Suppl. 2: S282-S284, 2002. |
Beard et al., “An Annular Focus Ultrasonic Lens for Local Hyperthermia Treatment of Small Tumors.” Ultrasound in Medicine & Biology; vol. 8, No. 2: 177-184, 1982. |
Bokarewa et al., “Tissue factor as a proinflammatory agent.” Arthritis Research, vol. 4: 190-195, Jan. 10, 2002. |
Bots et al., “Intima Media Thickness as a Surrogate Marker for Generalised Atherosclerosis.” Cardiovascular Drugs and Therapy, ProQuest Medical Library; vol. 16, No. 4: 341-351, Jul. 2002. |
Brayman et al., “Erosion of Artificial Endothelia in Vitro by Pulsed Ultrasound: Acoustic Pressure, Frequency, Membrane Orientation and Microbubble Contrast Agent Dependence.” Ultrasound in Medicine & Biology; vol. 25, No. 8: 1305-1320, 1999. |
Buller et al., “Accurate Three-dimensional Wall Thickness Measurement From Multi-Slice Short-Axis MR Imaging.” Computers in Cardiology, 245-248, 1995. |
Byram et al., “3-D Phantom and in Vivo Cardiac Speckle Tracking Using a Matrix Array and Raw Echo Data.” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 57, No. 4; 839-854, Apr. 2010. |
Campese, V. Krol, E. Neurogenic Factors in Renal Hypertension. Current Hypertension Reports 2002, 4:256-260. |
Canadian Examination Report dated Nov. 14, 2007 in CA Patent Application 2,387,127, filed Oct. 25, 2000. |
Chao et al., “Aspheric lens design.” Ultrasonics Symposium, 2000 IEEE, vol. 2: Abstract Only, Oct. 2000. |
Chelule et al., “Fabrication of Medical Models From Scan Data via Rapid Prototyping Techniques.” 9 pp., Feb. 7, 2007. |
Chen et al., “A comparison of the fragmentation thresholds and inertial cavitation doses of different ultrasound contrast agents.” Journal of the Acoustical Society of America, vol. 113, No. 1: 643-665, Jan. 2003. |
Chen et al., “Inertial Cavitation Dose and Hemolysis Produced in Vitro With or Without Optison.” Ultrasound in Medicine & Biology, vol. 29, No. 5: 725-737, 2003. |
Chen et al., DC-Biased Electrostrictive Materials and Transducers for Medical Imaging, 1997 IEEE Ultrasonics Symposium, IEEE, Aug. 1997. |
Chong et al., “Tissue Factor and Thrombin Mediate Myocardial lschemia-Reperfusion Injury.” The Society of Thoracic Surgeons, vol. 75: S649-655, 2003. |
Damianou, et al., “Application of the Thermal Dose Concept for Predicting the Necrosed Tissue Volume. During Ultrasound Surgery”, IEEE Ultrasonic Symposium, (1993) 1199-1202. |
Dayton et al., “The magnitude of radiation force on ultrasound contrast agents.” Journal of the Acoustical Society of America, vol. 112, No. 5, Part 1: 2183-2192, Nov. 2002. |
Dempsey et al., “Thickness of Carotid Artery Atherosclerotic Plaque and Ischemic Risk.” Neurosurgery, vol. 27, No. 3: 343-348, 1990. |
Dewhirst, et al., “Basic principles of thermal dosimetry and thermal thresholds for tissue damage from hyperthermia”, Int. J. Hyperthermia, (2003) 19(3):267-294,. |
Dibona, G. F., et al., Chaotic behavior of renal sympathetic nerve activity: effect of baroreceptor denervation and cardiac failure, Am J Physiol Renal Physiol, 279:F491-501, 2000. |
Dibona, G.F.: “Neural control of the kidney: functionally specific renal sympathetic nerve fibers.” Am J. Physiol Regulatory Integrative Comp Physiol 279: R1517-1524, 2000. |
Dibona, GF. Functionally Specific Renal Sympathetic Nerve Fibers: Role in Cardiovascular Regulation. American Journal of Hypertension. 2001 vol. 14(6) 163S-170S. |
Doumas, M., et al., Renal Sympathetic Denervation: the Jury is Still Out, the Lancet, Nov. 2010, vol. 376, Issue 9756, pp. 1878-1880. |
Ebbini et al., “Image-guided noninvasive surgery with ultrasound phased arrays.” SPIE, vol. 3249: 230239, Apr. 2, 1998. |
Edelsbrunner, Herbert. “Geometry and Topology for Mesh Generation.” Cambridge University Press: 68pp, 2001. |
Esler, Murray D., et al., Renal sympathetic denervation in patients with treatmentresistant hypertension (The Symplicity HTN-2 Trial): a randomised controlled trial, Nov. 2010, The Lancet, vol. 376, Issue 9756, pp. 1903-1909. |
European Examination Report dated Mar. 7, 2008 in EP Patent Application 989717.4, filed Oct. 25,2000. |
Everbach et al., “Cavitational Mechanisms in Ultrasound-Accelerated Thrombolysis at 1 MHz.” Ultrasound in Medicine & Biology, vol. 26, No. 7: 1153-1160, 2000. |
Ewert et al., “Anti-myeloperoxidase antibodies stimulate neutrophils to damage human endothelial cells.” Kidney International, vol. 41: 375-383, 1992. |
Fjield et al.; “A parametric study of the concentric-ring transducer design for MRI guided ultrasound surgery.” J. Acoust. Soc. Am 100 (2) Pt. 1, Aug. 1996. |
Ganapathy et al., “A New General Triangulation Method for Planar Contours.” Computer Graphics vol. 16, No. 3:69-75, 1982. |
Grassi, G. Role of the Sympathetic Nervous System in Human Hypertension. Journal of Hypertension. 1998, 16: 1979-1987. |
Gray, Henry. “The Skull.” Anatomy of the Human Body: 7pp., 1918. |
Guzman et al., “Ultrasound—Mediated Disruption of Cell Membranes. I. Quantification of Molecular uptake and Cell Viability. / II. Heterogeneous effects on cells.” Journal of the Acoustical Society of America, vol. 110, No. 1: 588-606, Jul. 2001. |
Hachimine, K. et. al. Sonodynamic Therapy of Cancer Using a Novel Porphyrin Derivative, DCPH-P-Na(I),which is Devoid of Photosensitivity. Cancer Science 2007; 98: 916-920. |
Hadimioglu et al., “High-Efficiency Fresnel Acoustic Lenses.” Ultrasonics Symposium 1993 IEEE: 579-582, 1993. |
Han et al., “A Fast Minimal Path Active Contour Model.” IEEE Transactions on Image Processing, vol. 10, No. 6: 865-873, Jun. 2001. |
Hatangadi, Ram. “A Novel Dual Axis Multiplanar Transesophageal Ultrasound Probe for Three-Dimensional Echocardiograph.” University of Washington, Department of Sciences and Engineering, vol. 55-11B: Abstract 1pg, 1994. |
Holt et al., “Bubbles and Hifu: the Good, the Bad and the Ugly.” Boston University, Department of Aerospace and Mechanical Engineering: 120-131, 2002. |
Hubka et al., “Three-dimensional echocardiographic measurement of left ventricular wall thickness: in vitro and in vivo validation.” Journal of the American Society of Echocardiography, vol. 15, No. 2: 129-135, 2002. |
Hutchinson et al. “Intracavitary Ultrasound Phased Arrays for Noninvasive Prostate Surgery.” IEEE Transactions on Ultrasonics. Ferroelectrics, and Frequency Control. 43(6):1032-1042 (1996). |
Hwang et al., “Vascular Effects Induced by Combined 1-MHz Ultrasound and Microbubble Contrast Agent Treatments in Vivo.” Ultrasound in Medicine & Biology, vol. 31, No. 4: 553-564, 2005. |
Hynynen et al., “Potential Adverse Effects of High-Intensity Focused Ultrasound Exposure on Blood Vessels in Vivo.” Ultrasound in Medicine & Biology, vol. 22, No. 2: 193-201, 1996. |
Iannuzzi et al., “Ultrasonographic Correlates of Carotid Atherosclerosis in Transient Ischemic Attack and Stroke.” Stroke, ProQuest Medical Library, vol. 26, No. 4: 614-619, 1995. |
Idell et al., “Fibrin Turnover in Lung Inflammation and Neoplasia.” American Journal of Respiratory and Critical Care Medicine, vol. 163: 578-584, 2001. |
Indman, Paul. “Alternatives in Gynecology.” Hysteroscopy, OBGYN.net, Oct. 14, 2004. http://www.gynalternatives.corn/hsc.html. |
International Preliminary Report on Patentability dated Jun. 5, 2003 for PCT Application No. PCT/US00/35262. |
International Search Report and Written Opinion dated Apr. 23, 2001 for PCT Application No. PCT/US00/35262. |
International Search Report and Written Opinion dated Aug. 4, 2005 for PCT Application No. PCT/US2005/001893. |
International Search Report and Written Opinion dated Jul. 11, 2007 for PCT Application No. PCT/US2006/041163. |
International Search Report and Written Opinion dated Jun. 30, 2008 for PCT Application No. PCT/US2007/087310. |
International Search Report and Written Opinion dated Mar. 30, 2007 for Application No. PCT/US2006/027688 filed on Jul. 13, 2006. |
International Search Report and Written Opinion dated May 18, 2001 for PCT Application No. PCT/US00/41606. |
International Search Report and Written Opinion dated May 29, 2007 for PCT Application No. PCT/USO4/31506. |
Invitation to Pay Additional Fees and Partial International Search Report dated Nov. 29, 2006 for PCT Application No. PCT/US2006/027688. |
Janssen, BJ and Smits, J. Renal Nerves in Hypertension. Mineral and Electrolyte Metabolism. 1090; 15:74-82. |
Jolesz, F. MRI-Guided Focused Ultrasound Surgery. Annual Review of Medicine. 2009 60: 417-30. |
Kaczkowski et al., “Development of a High Intensity Focused Ultrasound System for Image-Guided Ultrasonic Surgery.” Ultrasound for Surgery, Oct. 14, 2004. (http://cimu.apl.washington.edu/hifusurgerysystem.html). |
Kang et al., “Analysis of the Measurement Precision of Arterial Lumen and Wall Areas Using High-Resolution MRI.” Magnetic Resonance in Medicine, vol. 44: 968-972, 2000. |
Klibanov et al., “Detection of Individual Microbubbles of an Ultrasound contrast Agent: Fundamental and Pulse Inversion Imaging.” Academy of Radiology, vol. 9, Suppl. 2: S279-S281, 2002. |
Kojima, T., Matrix Array Transducer and Flexible Matrix Arry Transducer,Proceedings of the Ultrasonics Symposium, vol. 2:649-653 (1986). |
Krum, H et. al. Catheter-Based Renal Sympathetic Denervation for Resistant Hypertension: a Multicentre Safety and Proof-of-Principle Cohort Study. Lancet 2009 373; 1275-81. |
Krum, H. et. al. Pharmacologic Management of the Cardiorenal Syndrome in Heart FAilure. Current Heart Failure Reports 2009, 6: 105-111. |
Kudo et al., “Study on Mechanism of Cell Damage Caused by Microbubbles Exposed to Ultrasound.” Ultrasound in Medicine & Biology, vol. 29, Supplement: 4pp, 2003. |
Lalonde et al., “Field conjugate acoustic lenses for ultrasound hyperthermia.” Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions, vol. 40, Issue 5: Abstract 1pg., Sep. 1993. |
Martin et al., Hemostasis of Punctured Vessels Using Doppler-Guided High Intensity Ultrasound, Ultrasound in Med.& Biol., vol. 25, pp. 985-990, 1999, USA. |
Meyers, D. “Multiresolution tiling.” Computer Graphics, No. 5: 325-340, 1994. |
Miller et al., “A Review of in Vitro Bioeffects of Inertial Ultrasonic Cavitation From a Mechanistic Perspective.” Ultrasound in Medicine & Biology, vol. 22, No. 9: 1131-1154, 1996. |
Miller et al., “Diagnostic ultrasound activation of contrast agent gas bodies induces capillary rupture in mice.” PNAS, vol. 97, No. 18: 10179-10184, 2000. |
Moss, Nicholas G. Renal Function and Renal Afferent and Efferent Nerve Activity. American Journal Physiology. 243 (Renal Fluid Electrolyte Physiology) 12: F425-F433, 1982. |
n. a., “Breast Cancer—Insightec: focused ultrasound for non invasive treatment.” FAQ, Oct. 14, 2004. (http://www.exablate2000.com/physicians—faq.html). |
n. a., “Cavitation.” Ultrasound TIP—U.S. Database: Dec. 12, 2007. |
n. a., “Mechanical Bioeffects in the Presence of Gas-Carrier Ultrasound Contrast Agents.” Journal of Ultrasound & Medicine, vol. 19: 120-142, 2000. |
Ng et al., “Therapeutic Ultrasound: Its Application in Drug Delivery.” Medicinal Research Reviews, vol. 22, No. 2: 204-233, 2002. |
Notice of Allowance dated Mar. 25, 2003 from U.S. Appl. No. 09/696,076, filed Oct. 25, 2000. |
Office Action dated Apr. 29, 2011 for U.S. Appl. No. 12/202,195. |
Office Action dated Apr. 6, 2010 for U.S. Appl. No. 11/619,996. |
Office Action dated Aug. 17, 2006 from U.S. Appl. No. 10/671,417, filed Sep. 24, 2003. |
Office Action dated Feb. 18, 2011 for U.S. Appl. No. 11/583,656. |
Office Action dated Jan. 7, 2011 for U.S. Appl. No. 12/762,938. |
Office Action dated Jul. 14, 2009 for U.S. Appl. No. 11/619,996. |
Office Action dated Jul. 31, 2007 from U.S. Appl. No. 10/671,417, filed Sep. 24, 2003. |
Office Action dated Jul. 5, 2006 for U.S. Appl. No. 10/616,831. |
Office Action dated Jul. 9, 2008 for U.S. Appl. No. 11/486,528. |
Office Action dated Jun. 28, 2010 for U.S. Appl. No. 12/247,969. |
Office Action dated Mar. 4, 2011 for U.S. Appl. No. 11/583,569. |
Office Action dated Nov. 16, 2010 for U.S. Appl. No. 12/202,195. |
Office Action dated Nov. 29, 2002 from U.S. Appl. No. 09/696,076, filed Oct. 25, 2000. |
Office Action dated Oct. 19, 2009 for U.S. Appl. No. 11/486,526. |
Office Action dated Oct. 19, 2009 for U.S. Appl. No. 11/583,256. |
Office Action dated Sep. 16, 2010 for U.S. Appl. No. 11/583,656. |
O'Leary et al., “Carotid-artery Intima and Media Thickness as a Risk Factor for Myocardial Infarction and Stroke in Older Adults.” Cardiovascular Health Study Collaborative Research Group. New England Journal of Medicine, vol. 340, No. 1: 14-22, Jan. 7, 1999. |
Ostensen et al., “Characterization and Use of Ultrasound Contrast Agents.” Academy of Radiology, vol. 9, Suppl. 2: S276-S278, 2002. |
Owaki et al., “The Ultrasonic Coagulating and Cutting System Injuries Nerve Function.” Endoscopy, vol. 34, No. 7: 575-579, 2002. |
Pernot, et al., “Temperature Estimation Using Ultrasonic Spatial Compound Imaging”, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, (May 2004) 51(5):606-615. |
Pignoli et al., “Intimal plus medial thickness of the arterial wall: a direct measurement with ultrasound imaging.” Circulation, vol. 74, No. 6:1399-1406, Dec. 1986. |
Poliachik et al., “Activation, Aggregation and Adhesion of Platelets Exposed to High-Intensity Focused Ultrasound.” Ultrasound in Medicine & Biology, vol. 27, No. 11: 1567-1576, 2001. |
Poliachik et al., “Effect of High—Intensity Focused Ultrasound on Whole Blood With or Without Microbubble Contrast Agent.” Ultrasound in Medicine & Biology, vol. 25, No. 6:991-998, 1999. |
Porter et al., “Ultrasound, Microbubbles and Thrombolysis.” Progress in Cardiovascular Diseases, vol. 44, No. 2: 101-110, Oct. 2001. |
Recchia et al., Ultrasonic Tissue Characterization of Blood during Stasis and Thrombosis with a Real-Time Linear-Array Backscatter Imaging System., Coronary Artery Disease, 1993, 4:987-994. |
Rivens et al., “Vascular Occlusion Using Focused Ultrasound Surgery for Use in Fetal Medicine.” European Journal of Ultrasound, vol. 9: 89-97, 1999. |
Rose, Joseph, “Source Influence” Ultrasonic Waves in Solid Media, pp. 200-227, Cambridge University Press, 1999, USA. |
Rosen et al., “Vascular Occlusive Diseases.” 37pp., revised 2002. |
Rosenschein et al., “Shock-Wave Thrombus Ablation, A New Method for Noninvasive Mechanical Thrombolysis.” The American Journal of Cardiology, vol. 70, Issue 15: Abstract, Nov. 15, 1992. |
Rosenschein et al., “Ultrasound Imaging-Guided Nonivasive Ultrasound Thrombolysis-Preclinical Results.” Circulation, vol. 102: 238-245, 2000. (http://www.circulationaha.com.org). |
Sanghvi et al. “High-Intensity Focused Ultrasounds.” Experimental and Investigational Endoscopy. 4(2):383-395 (1994). |
Schlaich, MP. Sympathetic Activation in Chronic Renal Failure. Joumal American Society Nephrology 20: 933-939, 2009. |
Schulte-Altedorneburg et al., “Accuracy of in Vivo Carotid B-Mode Ultrasound Compared with Pathological Analysis: Intima-Media Thickening, Lumen Diameter, and Cross-Sectional Area.” Stroke, vol. 32, No. 7: 1520-1524, 2001. |
Sheahan et al., Observing the Bracial Artery through a Pressure Cuff, Physiol. Meas. 14 (1993) 1-6. |
Sherrit et al., the Characterisation and Modelling of Electrostrictive Ceramics for Transducers, Ferroelectrics, 228:(1-4), pp. 167-196, 1999. |
Shrout et al., Classification of Electrostrictive-Based Materials for Transducers. |
Shung, et al., “Ultrasonic Characterization of Blood During Coagulation”, J. Clin. Ultrasound, (1984) 12:147-153. |
Simon, et al, “Two-Dimensional Temperature Estimation Using Diagnostic Ultrasound”, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, (Jul. 1998) 45(4):1088-1099. |
Tachibana et al., “Albumin Microbubble Echo-Contrast Material as an Enhancer for Ultrasound Accelerated Thrombolysis.” Circulation, vol. 92: 1148-1150, 1995. |
Tachibana et al., “The Use of Ultrasound for Drug Delivery.” Echocardiography, vol. 18, No. 4: 323-328, May 2001. |
Tardy et al., “In Vivo Ultrasound Imaging of Thrombi Using a Target-specific Contrast Agent.” Academy of Radiology, vol. 9, Suppl. 2: S294-S296, 2002. |
ter Haar. G. Ultrasound Focal Beam Surgery. Ultrasound in Medicine and Biology. 21(9):1089-1100 (1995). |
Vaezy ET Al., “Hemostasis of Punctured Blood Vessels Using High Intensity Focused Ultrasound,” Ultrasound in Med.& Biol., vol. 24, No. 6, pp. 903-910,1998, USA. |
Vaezy et al., “Acoustic surgery.” Physics World: 35-39, Aug. 2001. |
Vaezy et al., “Hemostasis and Tumor Treatment using High Intensity Focused Ultrasound: Experimental Investigations and Device Development.” First International Workshop on the Application of HIFU in Medicine: 46-49, 2001. |
Vaezy et al., “Hemostasis using high intensity focused ultrasound.” European Journal of Ultrasound, vol. 9: 79-87, 1999. |
Vaezy et al., “Intra-operative acoustic hemostasis of liver: production of a homogenate for effective treatment.” Ultrasonics, vol. 43: 265-269, 2005. |
Vaezy et al., Use of High-Intensity Focused Ultrasound to Control Bleeding, Mar. 1999, J Vasc Surg, vol. 29, pgs. 533-542. |
Valente, JF et. al. Laparoscopic Renal Denervation for Intractable ADPKD Related Pain. Nephrology Dialysis and Transplantation. 2001 16:160. |
Von Land et al., “Development of an Improved Centerline Wall Motion Model.” IEEE: 687-690, 1991. |
Watkin et al., “Multi-Modal Contrast Agents: A First Step.” Academy of Radiology, vol. 9, Suppl. 2: S285-S287, 2002. |
Wickline et al., “Blood Contrast Enhancement with a Novel, Non-Gaseous Nanoparticle Contrast Agent.” Academy of Radiology, vol. 9, Suppl. 2: S290-S293, 2002. |
Williamson et al., “Color Doppler Ultrasound Imaging of the Eye and Orbit.” Survey of Ophthamology, vol. 40, No. 4: 255-267, 1996. |
Yu et al., “A microbubble agent improves the therapeutic efficiency of high intensity focused ultrasound: a rabbit kidney study.” Urological Research, PubMed: Abstract, 2004. |
Number | Date | Country | |
---|---|---|---|
20090036774 A1 | Feb 2009 | US |
Number | Date | Country | |
---|---|---|---|
60167707 | Nov 1999 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10633726 | Aug 2003 | US |
Child | 12247969 | US | |
Parent | 09721526 | Nov 2000 | US |
Child | 10633726 | US |