1. Field
The present invention relates generally to compressor systems, such as those used in pneumatic conveying systems. More specifically, embodiments of the present invention concern a compressor package with a centrifugal compressor and a controller that controls the airflow through the compressor.
2. Discussion of Prior Art
Centrifugal compressors with guide vanes are known in the art. For example, compressor systems have been developed with inlet guide vanes and/or diffuser guide vanes. Furthermore, it is also known for a centrifugal compressor to have adjustable guide vanes so as to permit control over airflow to and/or from the compressor.
Prior art compressor systems suffer from various limitations. For instance, conventional centrifugal compressors are unable to provide compressed airflow at a substantially constant velocity, particularly when the compressor is exposed to widely varying backpressures or other widely varying environmental conditions. This problem is particularly relevant in the application of centrifugal compressors in pneumatic conveying systems. More specifically, centrifugal compressors are generally deficient at overcoming any blockage in the conveying system that develops downstream of the compressor. Furthermore, in the event of such blockage, the compressor is prone to entering a surge condition.
The following brief summary is provided to indicate the nature of the subject matter disclosed herein. While certain aspects of the present invention are described below, the summary is not intended to limit the scope of the present invention.
Embodiments of the present invention provide a compressor assembly that does not suffer from the problems and limitations of the prior art compressor systems, such as those set forth above.
A first aspect of the present invention concerns a method of maintaining a desired gas flow in a pneumatic conveying system. The method broadly includes the steps of driving a centrifugal compressor to direct compressed gas flow into the system; determining if a flow irregularity has occurred, with the flow irregularity determined when a sensed gas flow characteristic is found to be different from a desired value of the gas flow characteristic; and upon such an occurrence, reducing the irregularity by adjusting compressor operation to thereby change the compressed gas flow.
A second aspect of the present invention concerns a controller to maintain a desired gas flow in a pneumatic conveying system. The controller broadly includes a processing element configured to drive a centrifugal compressor to direct compressed gas flow into the system; determine if a flow irregularity has occurred, with the flow irregularity determined when a sensed gas flow characteristic is found to be different from a desired value of the gas flow characteristic; and upon such occurrence, reduce the irregularity by adjusting compressor operation to thereby change the compressed gas flow.
A third aspect of the present invention concerns a compressor airflow control assembly operable to control airflow induced by a centrifugal compressor. The control assembly broadly includes an air valve assembly and a controller assembly. The air valve assembly includes a body that presents a valve passage. The air valve assembly further includes an air valve shiftably mounted in the valve passage to control airflow through the passage. The air valve assembly is operable to be mounted relative to the compressor so that the valve passage fluidly communicates with the compressor and shifting of the valve controls the compressor airflow. The controller assembly is operable to sense an airflow pressure and responsively control shifting of the air valve. The controller assembly includes a fluidly driven actuator and a shiftable fluid valve fluidly connected to the actuator to control pressurized fluid flow from a source to the actuator. The actuator is operably coupled to the air valve so that driven movement of the actuator effects shifting of the air valve within the valve passage. The fluid valve is shiftable so as to vary fluid flow to the actuator causing movement thereof and thereby shifting of the air valve. The controller assembly includes an airflow pressure sensor configured to sense the airflow pressure and operably coupled to the fluid valve so that sensing of the airflow pressure is operable to cause shifting of the fluid valve and a corresponding shifting of the air valve.
Other aspects and advantages of the present invention will be apparent from the following detailed description of the preferred embodiments and the accompanying drawing figures.
Preferred embodiments of the invention are described in detail below with reference to the attached drawing figures, wherein:
The drawing figures do not limit the present invention to the specific embodiments disclosed and described herein. The drawings are not necessarily to scale, emphasis instead being placed upon clearly illustrating the principles of the preferred embodiment.
Turning initially to
Turning to
The motor 24 provides power to the compressor package 20. The motor 24 comprises an electric motor that is drivingly attached to the transmission 30 in the usual manner. Another type of motor, such as an internal combustion engine, could be substituted for the electric motor without departing from the scope of the present invention.
Turning to
The intake system 28 is attached to the compressor 26 and fluidly communicates with the inlet 50. The intake system 28 includes an air intake plenum 54 and flexible tube 56 that fluidly interconnects the plenum 54 and the inlet guide vane assembly 34. As will be discussed, a heat exchanger of the hydraulic assembly 32 is mounted to the inlet of plenum 54 to cool hydraulic fluid.
Turning to
The transmission 30 preferably includes a housing 58, an external belt drive 60, and an internal gear drive 62. The belt drive 60 includes a drive sheave (not shown) mounted on the shaft of the motor 24, a driven sheave 64 mounted on an input shaft 66 of the gear drive 62, and a toothed belt 68 drivingly entrained on the sheaves so that the motor 24 powers the input shaft 66.
The gear drive 62 includes the input shaft 66 and an intermediate shaft 70. The gear drive 62 further includes a drive gear (not shown) mounted on the input shaft 66. Gears 72,74 are mounted on the intermediate shaft 70. The gear drive 62 further includes a driven gear 76 mounted to a drive shaft (not shown) of a hydraulic positive-displacement pump of the hydraulic assembly 32. The gear drive 62 also includes a driven gear 78 mounted on the impeller shaft 46.
The transmission 30 provides power to the impeller 48 by transmitting power from the motor 24 to the input shaft 66. Power is then transmitted to gear 72 and to driven gear 78, which is drivingly mounted on the impeller shaft 46. The gears 72,78 are preferably sized to provide a step-up arrangement to increase the rotational speed of the compressor 26, although an alternative drive configuration could be employed to power the impeller 48
The transmission 30 provides power to the hydraulic pump by transmitting power through the belt drive 60 to the input shaft 66. Power is then transmitted to gear 72 and intermediate shaft 70. Power is further transmitted from the gear 74 to the driven gear 76 mounted on the pump shaft. The gears 74,76 preferably provide a step-down arrangement to decrease the rotational speed of the hydraulic pump, although an alternative drive could be used to power the pump.
Turning to
Turning to
The vanes 90 each preferably include a flat vane body 94 and a shaft 96 attached to the body 94 with fasteners. The principles of the present invention are also applicable where the body 94 takes a different shape, e.g., another shape that provides improved vane performance.
The vanes 90 are pivotally mounted in the housing 88 and are spaced circumferentially about a passage 98 that extends through the housing and toward the impeller 48. The inlet guide vane assembly 34 further includes bearings 100 that rotatably receive corresponding shafts 96. Furthermore, the assembly 34 includes caps 102,103 that are attached to and are rotatable with corresponding shafts 96. The illustrated assembly 34 preferably includes eight vanes 90, although a larger or smaller number of vanes 90 could be used to provide suitable vane performance.
The gear assembly 92 drivingly interconnects the vanes 90 with one another so that the vanes 90 are synchronously shiftable. The gear assembly 92 broadly includes a ring gear 104 and pinion gears 106 positioned along the length of the ring gear 104. The ring gear 104 presents an endless toothed surface 108 that generally faces in an axial direction. The ring gear 104 is rotatably mounted within an annular groove of the housing 88 so that the toothed surface 108 generally faces forwardly. The gear assembly 92 also includes an annular bushing (not shown) and a wave spring (not shown) received between the ring gear 104 and groove. In particular, the bushing is positioned between the ring gear 104 and wave spring, with the wave spring engaging the base of the groove. Thus, the wave spring urges the ring gear 104 into engagement with pinion gears 106.
The pinion gears 106 each have a toothed body 110 and a sleeve 112 integrally formed with the body 110. The sleeve 112 receives a threaded set screw 114. The teeth of body 110 present a pinion diameter that tapers from adjacent the sleeve 112 to an end of the pinion gear 106 opposite the sleeve 112. Preferably, the pinion diameter presents a taper angle relative to the rotational axis of the pinion gear 106 that ranges from about five (5) degrees to about six (6) degrees, although the pinion gears 106 could be alternatively configured.
The pinion gears 106 are mounted on corresponding shafts 96 of the vanes 90, and each gear 106 is positioned between the respective bearing 100 and cap 102. The gears 106 are preferably secured by threading set screw 114 into engagement with shaft 96. Thus, the gears 106 are preferably spaced about the circumference of the ring gear 104. It has been found that this arrangement of gears 106 and the tapered pinion construction allow the pinion gears 106 to cooperatively maintain the ring gear 104 centered relative to the gears 106.
Again, the vanes 90 are spaced about the passage 98, and the pinion gears 106 each engage the toothed surface 108. One of the shafts 96 extends radially outwardly from the cap 103 and is attached to a swing arm 116. Thus, rotation of the swing arm 116 causes rotation of the shaft 96 and pinion gear 106 attached to the swing arm 116. Because the pinion gears 106 intermesh with the ring gear 104, this movement causes rotation of the ring gear 104 about the passage 98 and corresponding pivotal movement of the other pinion gears 106. Thus, the pinion gears 106 and vanes 90 move synchronously with one another. Furthermore, each gear 106 and vane 90 rotates in the same rotational direction as the other gears 106 and vanes 90. The rotational direction of a vane 90 is determined from a corresponding fixed reference point on the housing 88. Thus, if one vane 90 is rotated in a clockwise direction, the other vanes 90 also rotate in the clockwise direction at the same time.
Turning to
The vanes 90 can be rotated clockwise from the neutral condition into a maximum preswirl condition. In the illustrated maximum preswirl condition, the vanes 90 are preferably rotated to an angle of about eighty (80) degrees clockwise from the axis A and the passage 98 is almost fully occluded. However, as will be discussed, the controller 36 can be adjusted to provide an alternative vane preswirl position associated with maximum preswirl. Similarly the vanes 90 can be rotated counterclockwise from the neutral condition into a maximum counterswirl condition. In the illustrated maximum counterswirl condition, the vanes 90 are preferably rotated to an angle of about fifteen (15) degrees counterclockwise from the axis A. Again, the controller 36 can be adjusted to provide an alternative vane counterswirl position associated with maximum counterswirl. However, for some applications, the controller 36 can also be adjusted so that the vanes 90 are not shiftable into any counterswirl position, i.e., the vanes 90 are always in a preswirl position or the neutral condition.
The illustrated vanes 90 are preferably arranged upstream of inlet 50 to provide preswirl of incoming airflow. However, the principles of the present invention are applicable where vanes are employed to control the discharge flow of compressor 26. For instance, the compressor 26 could include vanes mounted into the diffuser of compressor 26. Alternatively a vane arrangement similar to the illustrated vane assembly 34 could be located downstream of the compressor discharge 52. For some aspects of the present invention, the compressor package 20 could employ an alternative valve-type mechanism to control compressor airflow. For instance, some types of valves (such as a butterfly valve) could be installed upstream or downstream of the compressor 26 and used to throttle compressor airflow.
Turning to
The housing assembly 118 preferably includes a central housing 126, end manifolds 128,130, and end caps 132. The central housing 126 includes a generally rectangular cuboid body that presents an open rear slot 134 spaced between ends of the housing 126 (see
The end manifold 128 comprises a generally rectangular cuboid body and presents end faces 148,150 (see
The end manifold 128 is removably attached to the central housing 126 with fasteners that extend through the body of manifold 128 and are threaded into the central housing 126. With the end manifold 128 attached to the central housing 126, the end face 150 engages the end face 136 of central housing 126 (see
The end manifold 130 also comprises a generally rectangular cuboid body and presents end faces 158,160 (see
The end manifold 130 is removably attached to the central housing 126 with fasteners 174 that extend through the body of manifold 130 and are threaded into the central housing 126. With the end manifold 130 attached to the central housing 126, the end face 158 engages the end face 138 of central housing 126 (see
The housing assembly 118 is preferably removably mounted on a platform of the housing 88, with the housing assembly 118 being located above the passage 98 and located forwardly of the vanes 90. However, the housing assembly 118 could be alternatively supported relative to the inlet guide vane assembly 34.
The central housing and end manifolds 128,130 of the housing assembly 118 are preferably formed of aluminum, but could be formed of other materials, such as stainless steel or carbon steel. Yet further, the components of housing assembly 118 could be alternatively configured to provide suitable controller operation.
The hydraulic assembly 32 and housing assembly 118 are fluidly connected to one another so that pressurized hydraulic fluid can be supplied to the controller 36 and returned from the controller 36. In particular, line 87d runs from the pressure regulator 86 to supply port S so that pressurized hydraulic fluid can flow to supply bore 166. Line 87h runs from return port R to sump 82 so that pressurized hydraulic fluid can be returned from return bore 168. While the controller 36 is preferably hydraulically powered, for some aspects of the present invention the controller 36 could be pneumatically operated.
Turning to
The valve 176 is rotatably received within the valve bore 142 and valve end bore 172. In particular, the chamfered end 182 is positioned adjacent the end face 136 and the slotted end 184 is located within the valve end bore 172 so that a gap 198 is defined between the slotted end 184 and the end of the valve end bore 172 (see
Bearings 178 are secured in annular slots formed adjacent to and surrounding corresponding ends of the valve bore 142. The bearings 178 rotatably receive and support the valve 176 within the housing assembly 118 and permit rotation relative thereto. A pair of seals 180 are received in corresponding glands that surround the valve bore 142 and are located between the annular bearing slots. The seals 180 rotatably engage the valve 176 and restrict pressurized fluid from flowing from the recess of slot 152 to the bottom cavity 140 and from the valve end bore 172 to the bottom cavity 140. Preferably, the seals 180 are formed of PTFE material to provide low friction, although other materials could be used.
Turning to FIGS. 7 and 11-15, the valve 176 is operable to control hydraulic fluid flow within the controller 36 by selectively allowing hydraulic fluid to flow between piston end bores 154,162 and the supply and return bores 166,168. In a closed position, the valve 176 is positioned so that neither of the slots 186,188 is in fluid communication with the fore-and-aft bore 170 (see
In a vane-closing position, the valve 176 is positioned so that the upper slot 186 fluidly communicates with the supply bore 166 via a front portion of the fore-and-aft bore 170, and the upper slot 186 thereby receives pressurized supply fluid (see
At the same time, in the vane-closing position, the lower slot 188 fluidly communicates with the return bore 168 via a rear portion of the fore-and-aft bore 170, and the lower slot 188 thereby returns pressurized supply fluid. The piston end bore 154, slot 152, and lower bore 192 are also in fluid communication with the lower slot 188 to thereby return pressurized supply fluid in the vane-closing position.
In a vane-opening position, the valve 176 is positioned so that the lower slot 188 fluidly communicates with the supply bore 166 via the front portion of the fore-and-aft bore 170, and the lower slot 188 thereby receives pressurized supply fluid (see
At the same time, in the vane-opening position, the upper slot 186 fluidly communicates with the return bore 168 via the rear portion of the fore-and-aft bore 170, and the upper slot 186 thereby returns pressurized supply fluid. Again, the piston end bore 162, upright bore 171, gap 198, and upper bore 190 are in fluid communication with the upper slot 186 and also return pressurized supply fluid in the vane-opening position. In this manner, the illustrated vane arrangement simultaneously pressurizes and depressurizes opposite sides of the illustrated hydraulic piston, as will be discussed.
The illustrated valve assembly 120 preferably comprises a mechanically-driven fluid valve. However, for some aspects of the present invention, the valve assembly 120 could include an alternatively-driven valve arrangement, such as an electronic solenoid valve.
The velocity sensor assembly 122 is shiftably received in the passage 98 and is operable to rotate the valve 176. The velocity sensor assembly 122 broadly includes an elongated arm 200, a plate 202, a spring 204, and an adjuster 206. The arm 200 presents opposite ends, with an upper end being removably attached to the valve 176 within the central slot 194 by a threaded fastener 208. The plate 202 is generally circular and is removably attached to a lower end of the arm 200 by screws 210 (see
With the arm 200 secured to the valve 176, the valve 176, arm 200, and plate 202 are operable to pivot with one another about a lateral axis. Again, the valve 176 pivots to direct pressurized fluid through the controller 36. The sensor assembly 122 serves to operate the valve 176, as will be discussed below.
Turning to
The spring 204 includes opposite end hooks 220, with one end hook 220 removably attached to the arm 200 at a location preferably about one-third of the arm length from the upper arm end. The other end hook 220 is removably attached to the body 212 (see
Furthermore, the sensor assembly 122 could include a traditional damping mechanism, such as a fluid-filled damper, connected between the arm 200 and housing 126 to provide additional control of the valve 176. However, one of ordinary skill will appreciate that suitable damping of the valve 176 and actuator 124 can be provided by various alternative constructions. Furthermore, some damping of the controller 36 is provided inherently by the hydraulic arrangement of the controller 36. That is, the hydraulic fluid within the controller 36 provides some damping of the actuator 124, valve 176, and fluid pressure signals transmitted therebetween.
In the illustrated embodiment, the spring 204 urges the arm 200 so that the valve 176 assumes the closed position when the airflow is at a predetermined airflow velocity; that is, the arm 200 is preferably held by the spring somewhere between the extreme positions during “ideal” operating conditions. However, the adjuster 206 is operable to change the spring tension (and thereby the length of spring 204) to vary the predetermined airflow velocity that corresponds to the valve 176 in the closed position. In particular, as the adjuster 206 is shifted upwardly to provide greater spring tension, the predetermined airflow velocity associated with the closed valve position generally increases. As the adjuster 206 is shifted downwardly to decrease spring tension, the predetermined airflow velocity associated with the closed valve position generally decreases.
Preferably, the illustrated sensor assembly 122 is primarily responsive to airflow velocity through the passage 98. However, as will be shown in a subsequent embodiment, the controller can be alternatively configured to include a diaphragm attached to the arm 200, where the diaphragm senses compressor discharge pressure and applies a force to the arm 200 in response to the pressure.
The illustrated sensor assembly 122 preferably comprises a mechanical velocity sensor. However, for some aspects of the present invention, an alternative velocity or mass flow sensor, such as a pitot tube or hot wire anemometer, could be used to determine airflow velocity for the compressor package 20. As discussed above, the valve assembly 120 could include an alternative valve, such as an electronic solenoid valve. For some aspects of the present invention, the compressor package 20 could utilize a solenoid valve in combination with an electronic velocity sensor to alternatively sense airflow and provide fluid control of the inlet guide vanes.
Turning to
The piston 222 is reciprocally received in piston bore 144 and end bores 154,162 so as to be slidable between left and right endmost positions corresponding to the vanes 90 in the maximum preswirl condition and the maximum counterswirl condition (see
The piston 222 and end bores 154,162 cooperatively form corresponding fluid chambers 236,238 that receive pressurized fluid. The illustrated piston 222 is preferably a double-acting piston, although the controller 36 could be configured so that the piston 222 is single-acting without departing from the scope of the present invention. Low-friction seals 240 are located at corresponding ends of the central housing 126 and extend around the piston 222 to hold fluid within the chambers 236,238. Preferably, the seals 240 are formed of PTFE material to provide low friction, although other materials could be used.
The piston 222 is removably attached to the swing arm 116 by inserting the screw 224 and bushing 226 through a slot 242 in the swing arm 116. Thus, as the piston 222 reciprocates between the endmost positions, the screw 224 and bushing 226 slide along the slot 242. Thus, the swing arm 116 pivots in a manner corresponding to sliding movement of the piston 222.
As discussed above, pivotal movement of the swing arm 116 causes corresponding pivotal movement of the vanes 90. Thus, sliding movement of the piston 222 results in corresponding pivotal movement of the vanes 90. With the piston 222 in the left endmost position, the vanes 90 are shifted to the maximum preswirl condition (see
The actuator 124 uses hydraulic fluid from the hydraulic system to power the vanes 90 depending on the position of valve 176. As discussed above, the valve 176 has a closed position and opposite open positions (i.e., the vane-opening position and the vane-closing position).
In the vane-closing position, the valve 176 is positioned so that the upper slot 186 fluidly communicates with the supply bore 166 (see
In the vane-opening position, the valve 176 is positioned so that the lower slot 188 fluidly communicates with the supply bore 166. The piston end bore 154 is in fluid communication with the lower slot 188 to receive pressurized supply fluid and fill the fluid chamber 236. At the same time, the upper slot 186 fluidly communicates with the return bore 168. The piston end bore 162 is in fluid communication with the upper slot 186 to return pressurized supply fluid in the vane-closing position and thereby empty the fluid chamber 238. This simultaneous filling and emptying of chambers 236,238 causes the piston 222 to shift to the right, with the vanes 90 shifting to the maximum counterswirl condition (see
The inlet guide vane assembly 34 and controller 36 are depicted with the piston 222 and vanes 90 in certain discrete positions. Specifically, the piston 222 is shiftable between endmost positions with the vanes 90 being shiftable between maximum preswirl and maximum counterswirl conditions. However, it will be appreciated that the illustrated piston 222 can position the vanes 90 into nearly an infinite number of intermediate positions between the maximum preswirl and maximum counterswirl conditions. As discussed above, the piston 222 is slidable continuously along a lateral direction between the endmost positions. Also, the piston 222 is slidably attached to the swing arm 116. Thus, continuous sliding movement of piston 222 between the endmost positions results in corresponding pivotal movement of the swing arm 116, which causes synchronized continuous pivotal movement of vanes 90 between the maximum preswirl and maximum counterswirl conditions.
The illustrated actuator 124 preferably receives hydraulic fluid to drive the inlet guide vanes. However, for some aspects of the present invention, the actuator 124 could be alternatively configured to receive hydraulic fluid and power the inlet guide vanes. For instance, an alternative actuator could include a hydraulic motor that receives a continuous hydraulic fluid flow from the hydraulic system.
The illustrated controller 36 is preferably powered by the hydraulic system so that the hydraulic system amplifies the power input to the sensor assembly (caused by airflow in the passage 98) and thereby drives the actuator 124 and guide vanes 90. Through the direct mechanical connection between the sensor assembly and the valve 176, the sensor assembly directly effects positioning of the actuator 124 and thereby the vanes 90. For some aspects of the present invention, the controller 36 could be configured so that actuator 124 is powered by a conventional pneumatic power system, such as a regulated shop-air system.
The compressor package 20 provides substantially uniform airflow velocity by sensing the airflow and then shifting the inlet guide vanes, if necessary, to maintain a desired airflow velocity. For instance, in the illustrated embodiment, the compressor package 20 could maintain airflow velocity with a preset amount of preswirl (see
In some instances, the compressed airflow discharged from the compressor 26 can encounter significant backpressure, such as when the package 20 is used in a pneumatic conveying system and a large volume of particulate matter is injected downstream of the compressor discharge. In such an instance, airflow velocity through the compressor 26 will decrease and the spring 204 will cause the sensor arm 200 to shift forwardly (i.e., away from the impeller) so that the valve 176 shifts into the vane-opening condition, which causes the vanes 90 to open. Thus, the vanes 90 open so that the inlet guide vane assembly 34 provides minimal restriction to intake airflow and thereby permits airflow velocity to increase and return to the desired airflow velocity.
Preferably, the bypass valve 125 is also operable to provide increased compressor airflow by venting compressed airflow from the compressor discharge to ambient. The illustrated bypass arrangement has been found to be particularly effective for low velocity conditions in pneumatic conveying systems when a large volume of particulate matter causes excessive backpressure in the compressor 26. The bypass valve 125 is mounted on main compressed air line 244 that runs from the compressor discharge 52. A bypass line 246 is fluidly connected to the main line 244 and terminates at the bypass valve 125. The bypass valve 125 receives pressurized hydraulic fluid from the housing assembly 118 via a pressure relief valve 248 and line 250 and returns hydraulic fluid to the sump 82 via line 252 (see
When the compressor package 20 encounters a low airflow velocity due to substantial compressor backpressure, e.g., due to clogging of a pneumatic conveying line downstream of the compressor, the controller 36 initially opens the inlet guide vanes to reduce the intake airflow restriction of the inlet guide vane assembly and thereby allow greater airflow into the compressor 26. Again, the controller 36 opens the vanes 90 in a low velocity condition because the sensor arm 200 pivots forwardly and the valve 176 pivots so that pressurized fluid builds in the chamber 236 to shift the piston 222 to the right (see
In other instances, the compressed airflow discharged from the compressor 26 can encounter greatly reduced backpressure. For example, in a pneumatic conveying system, the operator may eliminate particulate matter from the line downstream of the compressor discharge. In this instance, airflow velocity through the compressor 26 will generally increase and the spring 204 will cause the sensor arm 200 to shift rearwardly, i.e., toward the impeller, so that the valve shifts into a vane-closing condition, which causes the vanes 90 to close. Thus, the vanes 90 close so that the inlet guide vane assembly 34 provides a substantial airflow restriction to intake airflow. Consequently, airflow velocity will decrease and return to the desired airflow velocity.
Turning to
Turning to
The adjustable compressor performance provided by diaphragm 316 has been found to be particularly desirable in a pneumatic conveying application. For example, when little or no particulate media is being conveyed in the system, the compressor will produce a relatively low discharge pressure with relatively high velocity. The diaphragm 316 is configured to push the sensor arm rearwardly to thereby encourage opening of the inlet guide vanes in a low-pressure condition (see
For other purposes, the diaphragm 316 can be configured so as to push the sensor arm forwardly to encourage at least partial closure of the inlet guide vanes in response to low compressor discharge pressure to thereby reduce airflow velocity. By reducing airflow velocity, the power requirements of the compressor are reduced, thus saving energy. Such a diaphragm configuration provides a compressor operational characteristic identified by line 320 (see
Turning to
Turning to
Turning to
Furthermore, the compressor package 400 is preferably operable to overcome media blockage that develops in the flow line 404 downstream of the compressor. As will be explained in greater detail, the compressor package 400 is preferably designed to maintain airflow and pressure in reserve. More particularly, the compressor package 400 includes an inlet guide vane assembly that is preferably operated in a partly closed condition during normal conveying operation so that the compressor can provide additional flow and pressure when necessary, e.g., to overcome downstream blockage.
As with the previously disclosed embodiments, the compressor package 400 is suitable to be retrofitted into a pneumatic conveying system (e.g., to replace a positive-displacement compressor). However, the compressor package 400 is operable to provide compressed air for other applications without departing from the scope of the present invention. The compressor package 400 broadly includes, among other things, a centrifugal compressor 412, an inlet guide vane assembly 414, and an alternative guide vane controller 416.
The illustrated compressor 412 is conventional and includes a compressor housing and an impeller. The compressor 412 preferably operates at an impeller rotational speed of 41,200 revolutions per minute and provides a corresponding flow rate of 625 cubic feet per minute.
The controller 416 is operable to position vanes of the guide vane assembly so that the compressor 412 provides a compressed airflow with a substantially constant velocity. The controller 416 preferably includes a hydraulic actuator 417 with a housing assembly 418 and a hydraulically-driven actuator piston 420, a valve assembly 422, a sensor assembly 424, and a bypass valve 426.
Turning to
The end manifold 430 comprises a generally rectangular cuboid body and presents end faces 448,450. The end face 450 includes a slot 452 spaced from the outer margin of the end face 450. A piston end bore 454 extends from the slot 452 toward the end face 448.
The end manifold 430 is removably attached to the central housing 428 with fasteners (not shown) so that the end face 450 engages the end face 440 of the central housing 428, with the piston bores 444,454 being aligned with one another. Also, the recess presented by the slot 452 preferably fluidly communicates with the fluid bore 446.
The end manifold 432 also comprises a generally rectangular cuboid body and presents end faces 456,458. A piston end bore 460 extends from end face 456 toward the end face 458. The end manifold 432 also presents transversely extending bores 462,464 extending from the end face 458 toward the end face 456. A fore-and-aft bore 466 extends from the front face of the end manifold 432 to a port 468 so that the port 468 and bore 462 fluidly communicate with one another. An upright bore 470 extends from the top face of the end manifold 432 to bore 464 and fluidly communicates with bore 464. Once the bores 466,470 are machined, the open ends of bores 466,470 are closed with plugs (not shown) to prevent fluid leakage from the bores.
The end manifold 432 is removably attached to the central housing 428 with fasteners (not shown) so that the end face 456 engages the end face 442 of the central housing 428 and the piston bores 444,460 are aligned with one another. Also, the fluid bore 446 fluidly communicates with port 468. Thus, the piston 420 is slidably received by bores 444,454,460 so that the housing assembly 418 and piston 420 cooperatively form an opening chamber 471a and a closing chamber 471b. Similar to the previous embodiments, the piston 420 is attached to the inlet guide vane assembly 414 with a swing arm. While the illustrated actuator configuration is preferred, the principles of the present invention are applicable where an alternative actuator is used to move the inlet guide vanes. As will be discussed, the housing assembly 418 and the hydraulic assembly (not shown) are fluidly connected to one another by the valve assembly 422 so that pressurized hydraulic fluid can be supplied to the actuator 417 and returned from the actuator 417.
Turning to
The body 478 presents a piston bore 494 that extends from the upper end 482 toward the lower end 484 and is operable to receive the piston 474. The body 478 also presents a drain chamber 496 that extends from the lower end 484 toward the upper end 482. The body 478 further presents lateral drain ports 498a,b,c,d that extend from respective slotted openings 488 through the piston bore 494 and to the drain chamber 496 (see
The cover 480 is preferably unitary and presents opposite inner and outer faces. The cover 480 presents several lateral ports including a relief port 510, a supply port 512, and upper and lower return ports 514,516 (see
The cover 480 is preferably constructed so that conventional hydraulic lines (not shown) can be removably attached to each of the respective ports. In particular, the supply port 512 is preferably fluidly connected to the hydraulic system (not shown), which supplies pressurized hydraulic fluid to the controller 416. The upper return port 506 is preferably fluidly connected to the opening chamber 471 a via the port 514. The lower return port 508 is preferably fluidly connected to the closing chamber 471b via the port 516.
Turning to
The valve piston 474 is slidably received in the piston bore 494 and is operable to slide along the piston axis. The piston 474 and housing 472 preferably do not have an o-ring seal therebetween so that friction is minimized as the piston 474 slides relative to the housing 472.
The piston 474 is slidable between opening, closing, and neutral positions to selectively provide pressurized hydraulic flow to the actuator. In the neutral position, the piston section 528d covers the supply port 512 and restricts fluid flow through the supply port 512 into the piston bore 494. Similarly, the sections 528c,e cover drain ports 498b,c and restrict flow through the return ports 506,508. Thus, in the neutral position, fluid flow into and out of the chambers 471a,b is preferably restricted so that the actuator 417 is restricted from moving the guide vanes.
In the opening position, the piston section 528d is located between the supply and lower return ports 502,508 to restrict flow therebetween. Thus, fluid is permitted to flow from the lower return port 508 to the drain chamber 496 by passing through the lower diversion groove 526d. Also, fluid is permitted to flow from the supply port 502 to the upper return port 506 by passing through the upper diversion groove 526c.
The opening position allows fluid flow to cause the actuator to urge the vane assembly 414 open. In particular, the upper return port 506 fluidly communicates with the opening chamber 471 a so that pressurized hydraulic fluid is pumped from the hydraulic system into the opening chamber 471a. At the same time, the lower return port 508 fluidly communicates with the closing chamber 471b so that hydraulic fluid is drained from the closing chamber 471b and returned to the hydraulic system. Consequently, this movement of hydraulic fluid urges the actuator piston 420 into the opening condition (not shown) so that the vanes are shifted open.
In the closing position, the piston section 528d is located between the supply and upper return ports 502,506 to restrict flow therebetween. Thus, fluid is permitted to flow from the upper return port 506 to the drain chamber 496 by passing through the upper diversion groove 526c. Also, fluid is permitted to flow from the supply port 502 to the lower return port 508 by passing through the lower diversion groove 526d.
The closing position allows fluid flow to cause the actuator to urge the vane assembly 414 closed. In particular, the lower return port 508 fluidly communicates with the closing chamber 471b so that pressurized hydraulic fluid is pumped from the hydraulic system into the closing chamber 471b. At the same time, the upper return port 506 fluidly communicates with the opening chamber 471a so that hydraulic fluid is drained from the opening chamber 471a and returned to the hydraulic system. Consequently, this movement of hydraulic fluid urges the actuator piston 420 into the closing condition (see
Turning to
The threaded connector 522 is attached to the piston body 520 at the upper end thereof. The illustrated connector 522 preferably comprises an eyebolt that presents an eye. The piston 474 and lever 476 are interconnected by straps 524. Lower ends of straps 524 are attached to the eyebolt with a fastener 538 that is secured through the lower ends of straps 524 and the eye of connector 522. Upper ends of straps 524 are attached to the lever 476 with a fastener 540 that is secured through the upper ends of straps 524 and the lever 476. Thus, up and down movement of the piston 474 causes corresponding up and down movement of the lever end 476a.
In the illustrated embodiment, a weight 542 is preferably attached to the lever end 476a to urge the piston 474 into the piston bore 494 and toward the opening position. However, the principles of the invention are applicable where the valve assembly 422 has an alternative counterbalance mechanism so that the valve assembly 422 is operable to regulate airflow velocity. For example, the lever 476 could be alternatively biased to urge the piston 474 into the opening position, e.g., where a spring is attached to the lever end 476a (or at another location along lever 476) to urge the lever end 476a downwardly.
Turning to
The pitot tube 544 preferably includes a high pressure tube 558 with an end that faces into the airflow and is preferably used to measure a high pressure (preferably total pressure) within the compressor discharge. The pitot tube 544 also preferably includes a low pressure tube 560 with an end that faces away from the airflow and is used to measure a low pressure in the compressor discharge. The low pressure tube 560 preferably faces away from the airflow so that the sensed pressure is less than static pressure within the discharge. In this manner, the illustrated pitot tube 544 maximizes the difference between high and low pressures. However, the principles of the present invention are applicable where an alternative pitot tube is used, e.g., where the low pressure tube is designed to sense static pressure. Again, it is also within the scope of the present invention where the sensor assembly 424 is used to sense airflow pressures at another location along the system (e.g., where pressures are sensed at the compressor inlet). The tubes 558,560 are connected to the diaphragm 546 so that the high pressure tube 558 is in fluid communication with chamber 554 and the low pressure tube 560 is in fluid communication with chamber 556. Thus, the illustrated diaphragm 546 is operable to sense a pressure differential, which one of ordinary skill in the art will appreciate is proportional to airflow velocity at the location where pressures are measured.
The compressor 412, inlet guide vane assembly 414, and controller 416 preferably operate so that the compressor 412 provides airflow at a gauge pressure that ranges from about five (5) pounds per square inch (psig) to about eleven (11) psig. More preferably, under normal operating condition, the compressor 412 provides airflow at a pressure of about 8.8 psig. Also, under normal operating condition, each vane of the inlet guide vane assembly 414 is preferably positioned so that the chord of the vane forms a preswirl angle that ranges from about forty (40) degrees to about fifty (50) degrees relative to the passage axis and, more preferably, is about forty-five (45) degrees.
The controller 416 is operable to increase the throttling of airflow under certain conditions. For instance, when the flow of media into flow line 404 is suddenly decreased or stopped, the controller 416 is operable to sense a corresponding increase in airflow velocity and close the vane assembly 414. As the sensor assembly 424 senses a relatively large airflow velocity, the diaphragm 546 is urged downwardly and the piston 474 is urged upwardly toward the closing position. Consequently, this shifting of the valve causes the actuator 417 to be shifted toward the closing condition, which shifts the vanes closed to subsequently reduce airflow velocity. For example, the illustrated vane assembly 414 can be shifted to a maximum preswirl condition where the vane is at a preswirl angle of about seventy-nine (79) degrees relative to the passage axis. In this condition, the illustrated compressor provides airflow at a pressure of about 5.3 psig.
Similarly, the controller 416 is also operable to decrease the throttling of airflow under certain conditions. For example, as discussed above, the compressor package 400 is preferably operable to overcome media blockage that develops in the flow line 404 downstream of the compressor. The controller 416 is operable with the inlet guide vane assembly 414 to maintain airflow and pressure in reserve. The inlet guide vane assembly 414 is preferably operated in a partly closed condition during normal conveying operation so that the compressor can provide additional flow and pressure when necessary, e.g., to overcome downstream blockage.
As the sensor assembly 424 senses a relatively small airflow velocity, the diaphragm 546 moves upwardly so that the piston 474 moves downwardly toward the opening position. Consequently, this shifting of the valve causes the actuator 417 to be shifted toward the opening condition, which shifts the vanes open to increase airflow velocity.
For example, the illustrated vane assembly 414 can be shifted to an open condition where the vane is substantially aligned with the passage axis. In the open condition, the illustrated compressor provides airflow at a pressure of about ten (10) psig. In one counterswirl condition, the vanes are positioned with a counterswirl angle of about twenty (20) degrees from the passage axis. In this counterswirl condition, the compressor provides airflow at a pressure of about 10.5 psig.
The sensor assembly 424 also preferably includes another diaphragm 562, similar to diaphragm 316, that fluidly communicates with the compressor volute to sense compressor static discharge pressure. With diaphragm 562, the performance of compressor package 400 can be adjusted to provide alternative operational characteristics. As with diaphragm 316, when little or no particulate media is being conveyed in the system 402, the compressor 412 will produce airflow with relatively low discharge pressure and relatively high velocity. The diaphragm 562 is configured to shift the lever 476 upwardly to encourage opening of the inlet guide vane assembly 414 in a low-pressure condition. Thus, the diaphragm 562 is preferably connected to the lever 476 to further increase airflow velocity when the main flow line 404 has little or no media in it. Thus, the main flow line 404 is prepared to receive a slug of media without becoming clogged. However, the principles of the present invention are applicable where the sensor assembly 424 is devoid of diaphragm 562.
Turning to
Turning to
The illustrated compressor package 600 is preferably configured for use with the system 602. As with the previously disclosed embodiments, the compressor package 600 is suitable for use as a retrofit into a pneumatic conveying system in place of a positive-displacement compressor. However, the compressor package 600 is operable to provide compressed air for other applications without departing from the scope of the present invention. The compressor package 600 broadly includes, among other things, a centrifugal compressor 604, an inlet guide vane assembly 606, a variable frequency drive 608, and an alternative guide vane controller 610.
The variable frequency drive (VFD) 608 is conventional and is operable to drive an A/C motor (not shown) of the compressor package 600. The motor is drivingly connected to the compressor 604. The drive 608 is operable to change the rotational speed of the motor and thereby change the rotational speed of the compressor impeller. Rotational speed of the compressor impeller is preferably sensed using a Hall Effect sensor (not shown).
The illustrated compressor package 600 preferably includes both the inlet guide vane assembly 606 and the drive 608 to control compressor airflow. However, it is also within the ambit of the present invention where the package 600 does not have a variable frequency drive such that airflow control is provided by the inlet guide vane assembly 606. Similarly, the compressor package 600 could be alternatively constructed without the inlet guide vane assembly 606 so that the drive 608 controls compressor airflow.
As with the previous embodiments, the controller 610 is operable to position vanes of the guide vane assembly 606 so that the compressor 604 provides a compressed airflow with a substantially constant velocity. Importantly, the illustrated controller 610 is also preferably configured as part of the package 600 so that the package 600 can be used as a convenient retrofit to an existing pneumatic system compressor. However, instead of the mechanical controllers disclosed in the previous compressor package embodiments, the controller 610 provides electronic control of the compressor package. The controller 610 preferably includes, among other things, a guide vane actuator 612 and a programmable logic controller 614.
The actuator 612 is preferably a servo motor, which has a closed loop position control. The actuator 612 is drivingly attached to one of the shafts connected to a corresponding guide vane. Thus, movement of the servo causes corresponding movement of the guide vanes. The actuator 612 is operably coupled to the controller 614 so that the controller 614 controls and reads servo position.
The controller 610 also includes multiple sensors. For instance, the controller 610 includes a hot wire anemometer (not shown), an oil pressure sensor (not shown), a static pressure sensor (not shown), and an ambient temperature sensor (not shown). The anemometer is preferably mounted in the compressor discharge to sense the velocity of compressor discharge airflow. The static pressure sensor is preferably installed in the compressor discharge. However, it is also within the ambit of the present invention where the pressure sensor and/or anemometer are mounted to sense the airflow at another location within the system, such as at the compressor inlet. The oil pressure sensor is installed to sense compressor hydraulic pressure. The ambient temperature sensor is mounted in any suitable location on or adjacent the compressor package to reliably measure ambient temperature.
The programmable logic controller 614 is preferably programmable as a PID controller. However, the principles of the present invention are equally applicable where other types of controller algorithms are employed to operate the compressor package 600.
Turning to
It is also within the ambit of the present invention where the media pickup temperature is alternatively determined. For instance, the temperature could be measured directly at a location slightly downstream of the media pickup location 628. Also, the temperature could be calculated by using a measured temperature of the media prior to media introduction in the main flow line and a measured temperature of airflow prior to the media pickup location 628.
At step 630, the controller 614 determines the error in MAF as the difference between MAF_TARGET and MAF. This error value is used in step 632 to adjust the inlet guide vane position. At step 634, a desired rotational speed of the impeller is determined as a function of IGV POSITION, OUTLET_P, and AMB_TEMP. At step 636, the value at which the compressor 604 will enter a surge condition (i.e., the surge flow) is calculated as a function of IGV POSITION, and N_IMP. The controller 614 then determines, at step 638, if MAF is less than the calculated surge flow. If so, a bypass valve 640 (see
The illustrated method 616 has been found to be particularly effective for controlling the centrifugal compressor package to provide substantially constant airflow velocity. The controller 614 preferably controls the guide vane assembly 606 and variable frequency drive 608 to provide responsive control of airflow velocity while permitting the compressor package to operate at optimum efficiency. The guide vane assembly 606 has been found to provide more responsive change in airflow compared to the drive 608. Thus, the control algorithm preferably uses a higher gain in connection with the guide vanes compared to the drive 608.
Again, the principles of the present invention are applicable where an alternative control algorithm is employed to provide suitable control over system operation. For instance, the controller 614 could be operated using an alternative process where the system 602 does not include an inlet guide vane assembly (or where the inlet guide vane assembly is held in an open condition). It is also within the ambit of the present invention where the controller 614 is operated using a process where the system 602 does not include a variable frequency drive (or where the variable frequency drive is not utilized to provide variable impeller speeds during system operation). Turning to
The preferred forms of the invention described above are to be used as illustration only, and should not be utilized in a limiting sense in interpreting the scope of the present invention. Obvious modifications to the exemplary embodiments, as hereinabove set forth, could be readily made by those skilled in the art without departing from the spirit of the present invention.
The inventors hereby state their intent to rely on the Doctrine of Equivalents to determine and assess the reasonably fair scope of the present invention as pertains to any apparatus not materially departing from but outside the literal scope of the invention as set forth in the following claims.
This application is a continuation-in-part of U.S. application Ser. No. 12/764,042, filed Apr. 20, 2010, entitled COMPRESSOR INLET GUIDE VANE CONTROL, which claims the priority benefit of U.S. Provisional Application Ser. No. 61/220,635, filed Jun. 26, 2009, entitled COMPRESSOR DRIVE AND PNEUMATIC CONVEYING COMPRESSOR, all of which are hereby incorporated in their entirety by reference herein.
Number | Date | Country | |
---|---|---|---|
61220635 | Jun 2009 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12764042 | Apr 2010 | US |
Child | 13090982 | US |