1. Field of the Invention
This invention relates to a container and a method for using the container, and more particularly, to a container for storing a refrigerant and a method for delivering refrigerant while controlling leakage.
2. Related Art
Refrigerant containers are generally known in the art. Kerr et al. (U.S. Pat. No. 2,925,103), White ((U.S. Pat. No. 3,976,110), Hatch (U.S. Pat. No. 4,664,982) and Vogel (U.S. Pat. No. 5,305,925) all teach systems and containers that are adapted to store and dispense refrigerants. Vogel also teaches a container that includes a single fill feature, where the container is designed to be filled only once and includes provisions that prevent the container from being filled a second time.
The related art also teaches containers that include a pressure relief feature. Examples include Park (U.S. patent application number US 2003/0071078 A1), Tsutsui et al. (U.S. Pat. No. 6,510,968), Schneider et al. (U.S. Pat. No. 5,232,124), Stevens (U.S. Pat. No. 3,866,804), Bruce (U.S. Pat. No. 3,664,557), Webster (U.S. Pat. No. 3,155,292) and Both et al. (U.S. Pat. No. 2,757,964). These references teach systems and devices that can relief excessive internal pressure in a container.
Other references in the general art of pressurized containers include Marecki (U.S. Pat. No. 6,030,682), which teaches a number of different materials that can be used and various properties for those materials. Baudin (U.S. Pat. No. 5,183,189) teaches a pressure relief valve in combination with a primary valve. Groys (U.S. patent application number US 2004/0040978 A1) teaches a valve that can be used with a pressurized container.
While the related art teaches refrigerant containers in various forms, there are many shortcomings. Those refrigerant containers are unable to properly re-seal after a container is used in a variety of different circumstances and after a portion of its contents have been discharged. The various valve arrangements are not backward compatible with existing connections, and the use of these containers with existing connections can cause damage and failure of the valve assemblies.
The devices taught by the related art do not provide a convenient and inexpensive system that provides a pressure relief function in the event of an internal pressure build up. These and other shortcomings indicate a need for a canister that overcomes these problems and provides for the environmentally safe delivery of refrigerant.
A container for storing refrigerant is disclosed. The container includes a storage portion; an upper portion associated with the storage portion and acting as a cap for the storage portion. The upper portion includes a rim disposed about an outer periphery, a bottom portion disposed radially inward from the rim and axially spaced from the rim, and a coupling portion disposed radially inward from the bottom portion. The coupling portion has an external thread configured to mate with a corresponding internal thread. The container also includes a valve associated with the upper portion and disposed within the storage portion of the container, the valve includes an actuator including a cup. The cup is configured to receive a needle of a piercing valve. This arrangement permits the valve to be automatically opened when the coupling portion is engaged to a connector and automatically closed when the coupling portion is disengaged from the connector.
In another aspect, the actuator moves axially and the motion of the actuator opens and closes the valve.
In another aspect, the valve includes a valve gasket axially spaced from the bottom portion of the upper portion of the container.
In another aspect, the valve includes a valve gasket confronting an interior surface of the storage portion and a valve plate disposed adjacent to the valve gasket, and wherein a valve spring biases the valve plate against the valve gasket and biases the valve gasket against an inner surface of the storage portion, thereby sealing the storage portion.
In another aspect, a pressure relief system is provided.
In another aspect, the pressure relief system includes a bleeder spring biasing the actuator towards the storage portion of the container.
In another aspect, a hole is formed in a valve gasket and a valve plate to expose an exterior surface of the actuator to contents in the storage portion of the container.
In another aspect, a predetermined internal pressure of the storage portion causes the actuator to move away from the storage portion against the force of a bleeder spring biasing the actuator towards the storage portion; and wherein the separation of actuator from a valve gasket causes fluid contained in the storage portion to escape.
In another aspect, the actuator moves towards the storage portion of the container after a portion of fluid has escaped, re-sealing the storage portion of the container.
In another aspect, the invention includes provisions to prevent backflow into the storage portion of the container.
In another aspect, the provisions to prevent backflow include a check valve disposed proximate the valve.
In another aspect, the invention provides a method for dispensing fluid stored under pressure in a container comprising the steps of: engaging a connector to a coupling portion of the container by screwing the connector onto the coupling portion; moving an actuator towards a storage portion of the container by advancing the connector further onto the coupling portion; opening a valve disposed in the storage portion of the container by moving the actuator; dispensing fluid from inside the storage portion; moving the actuator away from the storage portion by unscrewing the connector from the coupling portion; and closing the valve and re-sealing the container by further unscrewing the connector from the coupling portion and moving the actuator further away from the storage portion of the container.
In another aspect, the step of opening the valve includes moving a valve gasket away from an interior surface of the storage portion of the container.
In another aspect, the step of opening the valve includes moving an actuator disk with a needle received by a cup disposed in an end of an actuator stem.
In another aspect, the step of closing the valve includes moving a valve gasket towards an interior surface of the container by using a valve spring biased to close the valve.
In another aspect, the invention provides a valve adapted for use with a refrigerant and adapted for use inside a container with a coupling portion having an external thread comprising: a valve gasket supported by a valve plate, the valve plate being biased by a valve spring disposed between a valve plate and a housing; an actuator disposed coaxial with the valve gasket and the valve plate; the actuator having a first end associated with the valve gasket and a second end including a cup, wherein the cup is adapted to receive a needle of a piercing valve; and wherein displacement of the cup by the needle moves the actuator and the actuator moves the valve gasket to open the valve.
In another aspect, the invention provides a bleeder valve spring biasing the actuator towards the valve spring.
In another aspect, the valve gasket includes an aperture proximate the actuator.
In another aspect, the invention provides a check valve disposed in a housing, the housing defining a pressure chamber.
In another aspect, the check valve includes a ball confined between a portion of the housing and a ball trap wherein the check valve prevents backflow out of the pressure chamber.
In another aspect, the actuator is capable of rotating.
Other systems, methods, features and advantages of the invention will be, or will become, apparent to one with skill in the art upon examination of the following figures and detailed description. It is intended that all such additional systems, methods, features and advantages be included within this description, be within the scope of the invention, and be protected by the following claims.
The invention can be better understood with reference to the following drawings and description. The components in the figures are not necessarily to scale, emphasis instead being placed upon illustrating the principles of the invention. Moreover, in the figures, like reference numerals designate corresponding parts throughout the different views.
Receiver 106 collects high pressure liquid and delivers the high pressure liquid, through third high pressure line 114 to evaporator 108. Evaporator 108 acts as a heat exchanger and provides cool air for use in a passenger cabin. From evaporator 108, low pressure gas is then delivered to compressor 102 via low pressure line 116. As shown schematically in
This air conditioning circuit is generally known. Over time, these kinds of AC systems experience a natural loss of the refrigerant that is used as the working fluid. The refrigerant must be periodically checked and recharged.
Generally, the high pressure portions of AC system 100 are at much higher pressures than the low pressure portions. In some cases, the high pressure portions are at a pressure that is an order of magnitude higher than the low pressure portions. Because it can be dangerous for technicians, mechanics and users to interact with the high pressure portions of the AC system, most recharging systems are designed to interact and engage the low pressure portions of AC system 100.
In the embodiment shown in
Hose assembly 220 preferably includes first connector 224 and second connector 226 disposed on opposite ends of hose 222. Preferably, second connector 226 is a quick-connect type connector and second connector 226 is adapted to engage a corresponding quick-connect type connector 202. First connector 224 can include a unique fitting. In some cases, a certain type of unique fitting has been recommended or mandated for use with certain refrigerants. In the case of refrigerant R-134a, a particular threaded connector, called an ACME thread, has been established by the EPA and SAE. Preferably, first connector 224 includes an internally threaded portion 318. Preferably, threaded portion 318 conforms to the ACME thread configuration.
Upper portion 212 of container 200 includes a rim 350 disposed about an outer periphery and a bottom portion 408 disposed radially inward from rim 350 and axially spaced from rim 350. In the embodiment shown in
Upper portion 212 of container 200 can include coupling portion 304 disposed radially inward from bottom portion 408. Preferably, coupling portion 304 includes external ACME threads that mate with internal threads 318 of first connector 224. Delivery portion 306 is disposed at an outer end of coupling portion 304. Delivery portion 306 is preferably used to convey fluid from container 200 to hose 222 via first connector 224.
A first connector gasket 316 and a needle 320 are preferably disposed within recess 314 of first connector 224. First connector gasket 316 is used to engage the outer periphery of delivery portion 306 and provides a seal. Needle 320 can be part of a piercing valve assembly where a petcock (not shown) is used to screw needle into delivery portion 306. This causes needle 320 to penetrate delivery portion 306 and place storage portion 210 of container 200 in flow communication with hose 222. In other cases, needle 320 is fixed relative to first connector 224 and the act of screwing in first connector 224 onto coupling portion 304 causes needle to penetrate into delivery portion 306. As first connector 224 is screwed on further, first connector 224 advances down coupling portion 304 along with needle 320. In some cases, needle 320 can travel anywhere from 0.250 inches up to 0.500 inches.
Upper housing portion 402 of housing 401 is preferably designed to mate or engage upper container portion 212. To facilitate this interface, upper housing portion 402 preferably includes projection 404 and base 406. Projection 404 is preferably received by coupling portion 304 of upper container portion 212. Base 406 includes an exterior base surface 410 and an interior base surface 412. A portion of base 406, preferably exterior base surface 410, confronts bottom portion 408 of upper container portion 212. Interior base surface 412 preferably faces the interior of storage portion 210 (see
In the embodiment shown in
In the embodiment shown in
Actuator disk 420 preferably confronts valve gasket 432. Valve gasket 432 can be made of any suitable material, however, a rubber-type material is preferred. Valve gasket 432 is preferably formed in a disk shape and engages interior base surface 412. The size or diameter and the thickness of valve gasket 432 can be varied to suit different pressures, flow rates, refrigerants and other performance objectives. Valve gaskets that have diameters between 30–95% of the diameter of interior base surface 412 are contemplated. In the embodiment shown in
Valve gasket 432 can be biased against interior base surface 412. In the embodiment shown in
In some embodiments, valve gasket 432 and valve plate 436 are comprised of a composite material. One example is an elastomeric material. In other embodiments, valve gasket 432 and valve plate 436 are formed as a single monolithic material.
Some embodiments include provisions to prevent backflow. Although any kind of backflow prevention mechanism can be used, a one way valve is preferred. Different one way valves can used, however, a ball check valve 438 is preferred. In the embodiment shown in
Generally, ball 440 moves freely within the confines of a space created by ball trap 442 and lower housing portion 404. However, when a high pressure condition exists in projection cavity 430, housing 401 will act as a pressure chamber and the high pressure within the pressure chamber will cause ball 440 to move deeper into aperture 444. Preferably, aperture 444 is appropriately sized to capture ball 440. In some embodiments, aperture 444 has a generally decreasing diameter, and in other embodiments, aperture 444 has a rounded stepped shape designed to capture ball 440. As ball 440 becomes seated in aperture 444, the seal between ball 440 and aperture 444 becomes tighter and ball 440 prevents the high pressure condition from entering storage portion 210 (see
Referring to
First connector 224 engages upper container portion 212. To avoid the improper introduction of an incompatible refrigerant into AC system 100 (see
To dispense the contents of container 200, second connector 226 is attached to low pressure connector 202 on compressor 102. After that connection has been established, first connector 224 is attached to upper portion 212 of container 200. As disclosed above, some existing connectors include a piercing valve structure. Preferably, upper portion 212 includes provisions to engage existing connectors and to insure backward compatibility with existing connectors.
Coupling portion 304 of upper portion 212 preferably includes external threads. In the embodiment shown in the Figures, those external threads are in accordance with the ACME standard. First connector 224 includes internal ACME threads and coupling portion 304 is capable of receiving first connector 224.
In some embodiments, first connector 224 can include a piercing needle 320. This piercing needle 320 is received by cup 424 on actuator stem 422. Piercing needle 320 is arranged within first connector 224 in such a way that when first connector 224 is screwed onto coupling portion 304, piercing needle 320 moves towards container 200 (downward, as shown in
In most cases, piercing needle 320 spins as it advances axially. Preferably, actuator 418 is designed to accommodate this spinning motion of piercing needle 320. In a preferred embodiment, actuator 418 is able to spin or rotate with piercing needle 320. In the embodiment shown in the Figures, actuator 418 is symmetric, includes a smooth outer surface and does not include a key or other device that would hinder rotation.
The motion of actuator 418 urges actuator disk 420 against valve gasket 432 and begins to defect and move valve gasket 432 away from interior base surface 412 against the spring bias created by valve spring 434. Eventually, valve gasket 432 will separate from interior base surface 412. This will create a pressure differential across valve gasket 432, with higher pressure fluid inside storage portion 210 of container 200 and relatively lower pressure in projection cavity 430. This pressure difference will cause fluid to flow from storage portion 210, through projection cavity 430, and into hose 222. Because hose 222 is in flow communication with a low pressure region of compressor 102 via low pressure connector 202, fluid will flow from container 200 into compressor 102. This procedure can be used to recharge AC system 100 (see
After a desired amount of fluid or refrigerant has been dispensed, first connector 224 can be disconnected from container 200. As first connector 224 is unscrewed or removed from coupling portion 304, it is preferred that the remaining contents of container 200 are sealed and leakage into the environment prevented. Preferably provisions are provided that prevent this leakage.
As shown in the Figures, as piercing needle 320 is moved away from container 200, cup 424 of actuator 418 follows the motion of piercing needle 320 because of the force applied by valve spring 434. The force applied by valve spring 434 and the motion of actuator 418 causes other components to move as well. Valve plate 436 and valve gasket 432 also move with actuator 418 towards upper portion 212. As piercing needle 320 is further withdrawn from coupling portion 304, valve gasket 432 will again contact and engage interior base surface 412. Eventually, valve gasket 432 tightly seals against interior base surface 412 and re-forms its original fluid tight seal. In this way, internal valve 400 can provide automatic actuation and automatic sealing.
This arrangement assists in retaining the unused portion of contents that remain in container 200 after use. The leakage of contents during a disconnect operation, when first connector 224 is removed from coupling portion 304 can be controlled. The amount of leakage during a disconnect operation is affected by many factors. The type of connector that is used, the way the connector is removed, the speed at which the connector is removed, the design, the material selection of the parts, and other factors affect the amount of leakage during a disconnect operation.
Preferably, the amount of leakage during a disconnect procedure is less than about 200 grams of fluid. The term fluid refers to either a gas or a liquid. Using embodiments of the present invention it is possible to reduce the amount of leakage during a disconnect procedure to 100 grams of fluid or less. It is also possible to reduce the amount of leakage even further to 50 grams of fluid or less. In some preferred embodiments, a further reduction in leakage, around 20 grams or less, during a disconnect procedure is possible. Depending on the size of upper portion 212 and projection 404, it is also possible to reduce the amount of leakage to nearly the contents of projection cavity 430. In these cases, the amount of fluid leakage during a disconnect procedure can be 10 grams of fluid or less; or even 5 grams of fluid or less. In exemplary embodiments, 2 grams or less of fluid leakage is possible. In still other exemplary embodiments, 1 gram or less of fluid leakage is possible.
As an optional feature, internal valve 400 can also include provisions to prevent catastrophic explosion or leakage. In some cases, container 200 can experience high internal pressure. This can occur if container 200 is placed in a high temperature environment. One example is a situation where container 200 is left in the trunk of an automobile. On hot sunny days, the trunk can become very hot and, in turn, heat container 200. As container 200 is heated, a high internal pressure can build. If this internal pressure becomes excessive, the structural integrity of container 200 can fail. In some cases, this failure is catastrophic and container 200 can explode. In other cases, structural failure of container 200 leads to abruptly leaks its contents.
To avoid these problems, container 200 can optionally include provisions to that provide pressure relief in the event container 200 attains a high internal pressure. This pressure relief feature is also sometimes referred to as venting or bleeding fluid. Although the pressure relief function can be provided in many different ways, it is preferred that the pressure relief function be provided by structure and components that also perform other tasks.
Referring to
As pressure builds in housing 401, pressure is also exerted onto the exterior surface of actuator disk 420. Eventually, the internal pressure experienced by actuator disk 420 overcomes the spring bias provided by bleeder spring 414. When this occurs, actuator disk 420 is separated from valve gasket 432 and the fluid in the pressure chamber and in storage portion 210 of container 200 is vented to the ambient environment. The dimensions and arrangement of actuator disk 420, first and second pressure relief holes 502 and 504, respectively, and bleeder spring 414 can all be adjusted to achieve a pressure relief function at a desired or pre-set internal pressure.
This arrangement offers a pressure relief function that uses some of the components that are used to evacuate container 200 and prevent leakage after a portion of the contents of container 200 have been dispensed. This preferred design is mechanically efficient and cost effective.
However, it should be kept in mind that this pressure relief feature is an optional feature and need not be used in every embodiment. For those embodiments that do not have a pressure relief feature, first and second pressure relief holes 502 and 504, respectively, need not be provided, bleeder spring 414 can be eliminated and actuator disk 420 can be attached, in some cases permanently attached, to valve gasket 432.
The embodiment shown in
This embodiment also shows a modified valve gasket 932 and a modified valve plate 936. Modified valve plate 936 includes one or more holes 964 and modified valve gasket 932 includes one or more corresponding projections 962. The projections 962 preferably enter into corresponding holes 964. This can help stabilize modified valve gasket 932 and prevent delamination of modified valve gasket 932 from modified valve plate 936.
The modified valve gasket 932 and modified valve plate 936 assembly is preferably made by over-molding the modified valve gasket 932 on to modified valve plate 964. This helps to bond modified valve gasket 932 to modified valve plate 964. This over-molding process also helps to insure that the valve gasket material flows in to cracks and holes 964 formed on modified valve plate 936. In this way, projections 962 are formed in holes 964. Regardless of the embodiment and the configuration of the valve gasket and the valve plate, this over-molding process is the preferred method of making the valve assembly.
The embodiment shown in
It is preferred that housing 1302 is made with a diameter D1 that is less than the interior diameter D2 of upper portion 212. D1 can be any desired size. In some cases D1 can be between 30% and 95% of D2. Preferably, D1 is between 50% and 85% of D2, and in an exemplary embodiment, D1 is about 70% to 80% of D2. In one embodiment, D1 is about 75% of D2. This difference in diameter forms ledge 1308. This ledge is helpful because existing machines and conveyor systems can use ledge 1308 during manufacture.
First cap 1400 can include an internal seal 1404 and a centrally located moving member 1406. Moving member 1406 is configured to engage cup 424 of actuator 418 (see
Second cap 1500 serves a similar purpose as first cap 1400, however, second cap 1500 is re-sealable. Second cap includes moving member 1506. Like first cap 1400, moving member 1506 associated with second cap 1500 moves in response to motion by actuator 418. As moving member 1506 moves away from container 200 (see
Each of the various components, steps or features disclosed can be used alone or in combination with other components, steps or features. These other components, steps or features can be known or can be components, steps or features that are disclosed above. Each of the components, steps or features can be considered discrete and independent building blocks. In some cases, combinations of the components, steps or features can be considered a discrete unit.
While various embodiments of the invention have been described, it will be apparent to those of ordinary skill in the art that may more embodiments and implementations are possible that are within the scope of the invention. Accordingly, the invention is not to be restricted except as specifically recited in the following claims and their equivalents.
Number | Name | Date | Kind |
---|---|---|---|
2456913 | Buttner et al. | Dec 1948 | A |
2757964 | Both et al. | Aug 1956 | A |
2822961 | Seaquist | Feb 1958 | A |
2925103 | Kerr et al. | Feb 1960 | A |
2956708 | Nusbaum | Oct 1960 | A |
3029981 | Webster et al. | Apr 1962 | A |
3155292 | Webster | Nov 1964 | A |
3258160 | Allen | Jun 1966 | A |
3357601 | Crawford et al. | Dec 1967 | A |
3384133 | Gordon | May 1968 | A |
3452906 | Daniels | Jul 1969 | A |
3554227 | Yocum | Jan 1971 | A |
3578788 | Potter, Jr. et al. | May 1971 | A |
3648893 | Whiting | Mar 1972 | A |
3664557 | Bruce | May 1972 | A |
3759291 | Moore et al. | Sep 1973 | A |
3815534 | Kneusel | Jun 1974 | A |
3817302 | Kowal et al. | Jun 1974 | A |
3851796 | Moos | Dec 1974 | A |
3866804 | Stevens | Feb 1975 | A |
3976110 | White | Aug 1976 | A |
3977560 | Stumpf et al. | Aug 1976 | A |
3998274 | Liautaud | Dec 1976 | A |
4054163 | Brown, Jr. et al. | Oct 1977 | A |
4059858 | Lambel et al. | Nov 1977 | A |
4281775 | Turner | Aug 1981 | A |
4313306 | Torre | Feb 1982 | A |
4431117 | Genbauffe et al. | Feb 1984 | A |
4494570 | Adkins | Jan 1985 | A |
4545759 | Giles et al. | Oct 1985 | A |
4644982 | Hatch | Feb 1987 | A |
4662393 | Genbauffe et al. | May 1987 | A |
4697611 | Winland et al. | Oct 1987 | A |
4753267 | Starr et al. | Jun 1988 | A |
4971224 | Scremin | Nov 1990 | A |
5022423 | Britt | Jun 1991 | A |
5183189 | Baudin | Feb 1993 | A |
5211317 | Diamond et al. | May 1993 | A |
5232124 | Schneider et al. | Aug 1993 | A |
5234019 | Forner | Aug 1993 | A |
5246045 | Clothier et al. | Sep 1993 | A |
5295502 | Lane | Mar 1994 | A |
5305925 | Vogel | Apr 1994 | A |
5356045 | Parks et al. | Oct 1994 | A |
5407096 | Smith | Apr 1995 | A |
5415329 | Westlund | May 1995 | A |
5485872 | Kerger | Jan 1996 | A |
5765601 | Wells et al. | Jun 1998 | A |
5848740 | Burghaus | Dec 1998 | A |
5975151 | Packo | Nov 1999 | A |
5975356 | Yquel et al. | Nov 1999 | A |
6016934 | Moriguichi | Jan 2000 | A |
6030682 | Marecki | Feb 2000 | A |
6058960 | Kopp | May 2000 | A |
6089032 | Trachtenberg | Jul 2000 | A |
6253970 | Kohn et al. | Jul 2001 | B1 |
6385986 | Ferris et al. | May 2002 | B1 |
6438970 | Ferris et al. | Aug 2002 | B1 |
6510968 | Tsutsui et al. | Jan 2003 | B1 |
6539988 | Cowan et al. | Apr 2003 | B1 |
6561237 | Brass et al. | May 2003 | B1 |
6595486 | Chen | Jul 2003 | B1 |
6648035 | Cowan et al. | Nov 2003 | B1 |
6722141 | Ferris et al. | Apr 2004 | B1 |
20030071078 | Park | Apr 2003 | A1 |
20040040978 | Groys | Mar 2004 | A1 |
20040060605 | Jhurani | Apr 2004 | A1 |
Number | Date | Country | |
---|---|---|---|
20050269350 A1 | Dec 2005 | US |