Unmanned systems (e.g., unmanned aerial or aircraft systems, unmanned ground systems, unmanned underwater systems) provide a low-cost and low-risk alternative to a variety of reconnaissance-type tasks performed by manned systems. Unmanned aircraft systems, for example, are used by TV news stations, by the film/television industry, the oil industry, for maritime traffic monitoring, border/shore patrol, civil disaster surveillance, drug enforcement activities, monitoring fleets of fish (e.g., tuna), etc. Law enforcement agencies use manned helicopters and airplanes as an integral part of their operations, but unmanned aircraft systems are starting to be used in a growing number of places. The uses for aviation equipment in law enforcement that can be filled by unmanned aerial systems include, for example:
Table 1 provides statistics related to the use of aviation units by large law enforcement agencies with one hundred or more full time officers in the United States.
Unmanned systems can include a Global Positioning System (GPS) receiver to obtain adequate near real time position data to know where the system is, and calculate attitude with feedback information from solid-state rate gyros. Unmanned aerial systems capable of, for example, automated take-off/launch, flight via programmed way-points, and snag-type recovery have been developed that reduce the cost to own and operate when compared to human-operated aircraft (e.g., single-pilot fixed and rotor aircraft). Unmanned vehicles that are covered by the United States Munitions List (USML) are subject to export controls administered by the U.S. Department of State under the Arms Export Control Act and the International Traffic in Arms Regulations (ITAR) defined at 22 C.F.R. §§120-130. For example, the Missile Technology Control Regime (“MTCR”) (See 22 C.F.R. §121.16) defines two categories of unmanned air vehicles subject to State Department Control, each category subject to different export controls. “MTCR Category I” vehicles are those vehicles that 1) are capable of at least 300 km of autonomous flight and navigation and 2) can carry a payload of at least 500 kg. “MTCR Category II” vehicles are those vehicles that either 1) are capable of at least 300 km of autonomous flight and navigation or 2) can carry a payload of at least 500 kg. (See 22 C.F.R. §121.16 (2011).) Commodities subject to export controls administered by other agencies (e.g., the U.S. Department of Commerce), such as unmanned air vehicles that are incapable of autonomous flight and navigation for 300 km or more and cannot carry a payload of 500 kg or more, are subject to less stringent export requirements.
The presently disclosed technology is directed generally to unmanned vehicle systems and methods configured to satisfy certain restrictions. For example, the systems and methods can satisfy Commerce Department jurisdiction requirements without falling within the purview of State Department control. Through limited range of operation, limited payload types (e.g., surveillance equipment, munitions, insecticides or other materials for agricultural crops) and capabilities, and tamper-proof or tamper-resistant features, embodiments of the unmanned vehicle system are designed to fall within the purview and under control a first set of export control regulations or requirements, such as Export Administration Regulations (“EAR”) overseen by the U.S. Commerce Department, and not within the purview and under control of a second set of export control regulations or requirements, such as MTCR, ITAR, and other State Department control thresholds. Disclosed techniques in accordance with particular embodiments provide protection against repurposing a vehicle as a weapons delivery device and repurposing a commercial vehicle for military or other operations by, for example, modifying operation of the vehicle (e.g., preventing vehicle systems from executing, preventing the vehicle from launching, preventing the vehicle's engine from starting) in response to detecting these conditions. Representative techniques can also provide protection against in-flight handoff between ground controlling authorities, eavesdropping of available data streams, and so on by, for example, restricting use of commands for performing these functions. Although this disclosure discloses particular embodiments in the context of Category II vehicles by way of example, one skilled in the art will recognize that the disclosed techniques may be applied to Category I vehicles in addition to other vehicles or commodities that may be subject to varying sets of requirements.
I. System Design and Capabilities
In some embodiments, the unmanned vehicle has a low payload capability of 3.3 lbs., (1.5 Kg), a diameter of 7 inches, a length of 42 inches, a wingspan of 10 feet, an empty weight of 26 lbs, and a gross takeoff weight of 40 lbs. Furthermore, the unmanned vehicle's design and capabilities are based on its airframe structure electronics systems and software architecture, which includes trusted computing technologies, and are described in further detail below.
A. Airframe Structure
In certain embodiments, the aircraft structure, which comprises the fuselage, main wing box, wing skin sandwich panels, winglets, fuel tank, and internal brackets, is fabricated using, for example, low cost carbon fiber/epoxy materials, fiberglass, aluminum, or molded plastics based on considerations of size, weight, power, cost, etc. and hard-tool molding commercial techniques. Such techniques have been used in, for example, bicycle frame, snow-sport and water-sport equipment manufacturing.
B. Command and Control System and Software
1. Command and Control System
In certain embodiments, the electronic hardware and software of the unmanned vehicle are configured to limit range (distance from designated point, such as a point of origin or launch location), but not necessarily endurance (total distance traveled during a flight). For example, the range can be limited to 60 nautical miles from the operator control station (e.g., ground control base station or mobile control base station) using a radio transmitter and antenna gain combination that limits the maximum physical range of communication for the provided radio link on the aircraft to the control station antenna. Flight operation limits can be achieved through the physical limits of radio frequency command and control wireless data links coupled with software commands that prevent waypoint entry beyond the radial distance of 60 nautical miles. For example, aircraft mission management software can be configured to compare control station GPS location to aircraft GPS location to maintain radio-link margin distance at all times. In the case of a lost data or communication link, the aircraft can alter course to regain the lost data or communication link with a control station. If link interruption continues, the aircraft can return to the last known GPS position of the control station to execute flight termination or emergency landing procedures. In this embodiment, travel of the unmanned vehicle beyond 60 nautical miles causes the auto pilot to steer the unmanned vehicle toward the control station GPS location to secure communication. The software may also be configured to limit the range of the unmanned vehicle or return to base at or below the 299 km distance from a launch location to meet MTCR requirements.
a. Navigation System
In some embodiments, to limit the operation of the unmanned vehicle, the unmanned vehicle is not equipped with a magnetic compass or accelerometers to estimate current altitude, speed, and direction. Instead, the unmanned vehicle can be equipped with a rudimentary navigation system. Without adequate GPS data, the unmanned vehicle cannot maintain a known navigation solution and will attempt to return to the control station or terminate travel based on one or more emergency procedure protocols known to those of ordinary skill in the art. For example, in the case of lost communications and/or lost GPS connectivity, the unmanned vehicle can deploy speed-reducing devices (e.g., parachutes or parafoils) and/or airbags and execute a spin-stall maneuver, causing the aircraft to tumble as slowly as possible to the ground. The unmanned vehicle's navigation protocol and emergency procedures are designed to prevent flight beyond the 60 nautical mile range of the Command and Control system. The unmanned vehicle may typically fly over uninhabited terrain at altitudes below 5,000 feet above the ground, thereby reducing the probability of human injury. The unmanned vehicle can be configured to tumble out of the sky using automatic auto rotation and/or automatic chute deployment in the case of lost communications and/or lost GPS connectivity.
In other embodiments, a collection of multiple control stations are available for communication with the unmanned vehicle system. For example, environment conditions (e.g., obstructions to line of sight) and communication systems may prevent the unmanned vehicle system from communicating with control stations beyond a certain distance, such as 60 nautical miles. In these embodiments, control stations and the unmanned vehicle system can perform a handoff procedure as the unmanned vehicle system approaches a specified distance (e.g., 60 nautical miles) from the control station with which the unmanned vehicle system is communicating to another control station so that the unmanned vehicle system can maintain control station connectivity and take advantage of a greater permissible range, such as 299 km from a launch location. The handoff procedure may be based on, for example, the type of vehicle and control station involved, the speed and/or direction of the vehicle and/or control station, the launch location or target of the vehicle, and so on. In this manner, the range of the unmanned vehicle can approach the “299 km from launch location” limit discussed above. However, embodiments of the system will prevent the aircraft from flying beyond the “299 km from launch location” limit discussed above. Furthermore, the aircraft can be configured to set a transponder to squawk an emergency code if the aircraft is approaching the edge of a navigation restriction zone or is within a predetermined distance (e.g., ten feet, 2000 feet, or one mile) from the edge.
In some embodiments, the unmanned vehicle system is configured to prevent flight beyond 60 nautical miles from the control station (e.g., ground control station) and/or 299 km from a launch location at least in part by:
b. Control Station and Unmanned Vehicle
In some embodiments, the control station and unmanned vehicle comprise computers, video monitors, hobby-market controllers for radio controlled hobby vehicles, keyboards, track-ball mouse, power cables and connectors and associated software.
In some embodiments, the control station and unmanned vehicle utilize Trusted Computing Group technologies modeled after implementations developed under the NSA High Assurance Platform (HAP) Program (see http://www.nsa.gov/ia/programs/h_a_p/index.shtml). The unmanned vehicle can use Trusted Platform Module (TPM) security chips, such as those provided by Infineon Technologies AG, that attest to or confirm the identity of the control station and the aircraft computer's identity and further confirm the integrity of the software running on each. Furthermore, computers within the unmanned vehicle system can use, for example, a National Institute of Standards and Technology (NIST) verified Trusted Operating System utilizing Trusted Boot to measure and attest to the boot measurements (e.g., system configuration measurements and diagnostics made at boot time) when appropriate. Remote confirmation verifies software state on client and remote machines. Trusted Computing technologies confirm that the unmanned vehicle is operating as expected based on its design (e.g., only authorized software is running on the vehicle) to ensure that the unmanned vehicle system remains compliant with Commerce Department export control requirements.
Trusted Computing technologies allow the unmanned vehicle to verify the integrity of sub-system components relative to initial configuration information. For example, at boot-time or during operation, a trusted component of the unmanned vehicle can verify that the unmanned vehicle is configured as originally designed by querying the various components for their identification and current configuration information. In this manner, the unmanned vehicle can ensure that it is equipped with components that do not render the unmanned vehicle subject to State Department export control. For example, system devices (avionics, radios, transponder, integrated flight controller, ground control station, etc.) are configured to include a software module and/or a hardware module that can publish an identification of that device and can certify identifications from some other device. In other words, one cannot, for example, swap in military mission components subject to ITAR control without causing system failures and rendering the system inoperable because the swapped-in components will have different identifications than the components of the vehicle in its initial configuration and the vehicle will not be permitted to, for example, operate, launch, accept input commands, transmit data, etc. Accordingly, an unmanned vehicle constructed and equipped to comply with Commerce Department export control requirements can be rendered inoperable after modification. In some embodiments, the unmanned vehicle may send a communication to a ground control station or satellite in response to determining that its configuration has changed.
In some embodiments, the unmanned vehicle includes a commercial Advanced Encryption Standard (AES)-256 Encrypted data interface in the onboard electronics and all data links between the unmanned vehicle and the control station. Encrypted data protocols will allow operators to maintain configuration control and limit device connection with specific encryption keys controlled by a central authority.
c. Tampering Prevention
In some embodiments, the hardware and software of the unmanned vehicle system are designed to prevent and/or detect tampering and provide security to the system. Trusted Platform Module (TPM) technology to be used in the unmanned vehicle system (e.g., Infineon Technologies, TPM Chip SLB9635T1.2, ECCN 5A992, TPM Professional Package (Software), ECCN 5D002) is controlled by the Commerce Department. In some embodiments, the unmanned vehicle may send a communication to a ground control station or satellite in response to detecting tampering. Design elements include, for example:
Sensors for the unmanned vehicle may include, for example, EAR99 (i.e., subject to Commerce Department export control) Electro-optical sensors to a commercial Sony Handycam®, LongWave Infrared Sensors, such as the Goodrich Aerospace Short Wave Infrared (SWIR).
2. Software
In some embodiments, the software of the unmanned vehicle system is written using C++ industry standard commercial language and development methodology. A modular system architecture allows feature sets of the vehicle control or control station software to be removed before compiling at the factory. Removal of features sets for the software assures the system operation is limited to the desired feature set. The feature set specific to the unmanned vehicle will be modules that are left out or added in when code is compiled and no source code or variable settings/switches will be available to the user. Moreover, human-readable characters may be removed from the code using, for example, a pre-parser. Further, the code may be subjected to obfuscation techniques or programs (See, e.g., www.preemptive.com/products/dotfuscator/overview).
In some embodiments, delivered unmanned vehicle hardware does not include programmable devices. Software and hardware upgrades to the unmanned vehicle are accomplished by delivering new hardware from the factory. Software and hardware features are limited to factory delivered configuration through the use of Trusted Computing technologies.
The control station hardware includes commercial off-the-shelf work stations and laptops using, for example, the MICROSOFT WINDOWS® operating system, which is recognized by industry as a trusted operating system allowing complete implementation of the Trusted Computing strategy applied to the unmanned vehicle system.
3. Representative Design Features:
Table 2 below identifies representative design features for several subsystems of an aircraft system configured in accordance with embodiments of the present technology.
C. General Electronics
In some embodiments, electronics used in the unmanned vehicle system include those derived from U.S. industrial and automotive grade components. For example, an auto-pilot system of the unmanned vehicle may include the Motorola/Freescale 555 processor, a widely used microprocessor in the automotive industry.
1. Circuit Cards
Circuit cards of the unmanned vehicle system can be designed by using IPC standard design and manufacturing standards commonly applied by the U.S. industry.
2. Propulsion System
The propulsion system of the unmanned vehicle can be based on publicly-available hobby aircraft 2-stroke technology (e.g., available 3W-Modellmotoren GmbH (3W Modern Motors) of Rodermark, Germany), commercially-available electric motor systems, commercially-available battery and/or fuel cell technologies, etc.
3. Generator
The electrical power system (e.g., the generator) of the unmanned vehicle can include, for example, a brushless electric motor, such as a Kollmorgen industrial brushless electric motor (EAR99) available from Kollmorgen of Radford, Va. or a Kollmorgen authorized distributor.
II. Export Control Analysis
MTCR & ITAR
The disclosed unmanned vehicle is designed with limited capability so that it will not meet ITAR-control threshold criteria (e.g., range equal to or greater than 300 km), thereby not reaching the minimum threshold for State Department export control, thereby falling within the purview of and under control of the U.S. Commerce Department export control regulations.
As described in Section I, specific safeguards have been put in place to protect concerns of National Security and U.S. government military technologies. In particular embodiments, such safeguards, which were described in more detail in Section I, include:
One feature of embodiments of the present technology is that by constructing the unmanned vehicle without ITAR-controlled components and military capability, the unmanned vehicle will not require compliance with the ITAR controls for items covered under Category VIII of the U.S. Munitions List. Rather, the unmanned vehicle is designed to be controlled under the Commerce Control List (CCL), such as Export Control Classification Number (ECCN) 9A012, which covers non-military “unmanned aerial vehicle” (UAV) with Missile Technology (MT) and National Security (NS) reasons for control. An advantage of this feature is that it can expand commercial use of the vehicle without creating compliance issues with national security regulations. Many of the techniques used to implement this feature are directly contrary to features designed into conventional vehicles and in particular, conventional aircraft. For example, typical conventional aircraft are designed to maximize payload capacity and/or range while embodiments of the present technology are designed to deliberately limit either or both of the foregoing technical features and/or other technical features.
The computing devices on which the disclosed techniques may be implemented can include a central processing unit, memory, input devices (e.g., keyboard and pointing devices), output devices (e.g., display devices), and storage devices (e.g., disk drives). The memory and storage devices are computer-readable storage media that may be encoded with computer-executable instructions that implement the technology, which means a computer-readable storage medium that stores the instructions. In addition, the instructions, data structures, and message structures may be transmitted via a computer-readable transmission medium, such as a signal on a communications link. Thus, “computer-readable media” includes both computer-readable storage media for storing and computer-readable transmission media for transmitting. Additionally, data used by the facility may be encrypted. Various communications links may be used, such as the Internet, a local area network, a wide area network, a point-to-point dial-up connection, a cell phone network, wireless networks, and so on.
The disclosed technology may be described in the general context of computer-executable instructions, such as program modules, executed by one or more computers or other devices. Generally, program modules include routines, programs, objects, components, data structures, and so on that perform particular tasks or implement particular abstract data types. Typically, the functionality of the program modules may be combined or distributed as desired in various embodiments, including cloud-based implementations.
Many embodiments of the technology described herein may take the form of computer-executable instructions, including routines executed by a programmable computer. Those skilled in the relevant art will appreciate that aspects of the technology can be practiced on computer systems other than those shown and described herein. Embodiments of the technology may be implemented in and used with various operating environments that include personal computers, server computers, handheld or laptop devices, multiprocessor systems, microprocessor-based systems, programmable consumer electronics, digital cameras, network PCs, minicomputers, mainframe computers, computing environments that include any of the above systems or devices, and so on. Moreover, the technology can be embodied in a special-purpose computer or data processor that is specifically programmed, configured or constructed to perform one or more of the computer-executable instructions described herein. Accordingly, the terms “computer” or “system” as generally used herein refer to any data processor and can include Internet appliances and hand-held devices (including palm-top computers, wearable computers, cellular or mobile phones, multi-processor systems, processor-based or programmable consumer electronics, network computers, mini computers and the like). Information handled by these computers can be presented at any suitable display medium, including a CRT display, LCD, LED display, OLED display, and so on.
The technology can also be practiced in distributed environments, where tasks or modules are performed by remote processing devices linked through a communications network. In a distributed computing environment, program modules or subroutines may be located in local and remote memory storage devices. Aspects of the technology described herein may be stored or distributed on computer-readable media, including magnetic or optically readable or removable computer disks. Furthermore, aspects of the technology may be distributed electronically over networks. Data structures and transmissions of data particular to aspects of the technology are also encompassed within the scope of the technology.
Referring now to
In one aspect of this embodiment, the end of the extendable boom 531 can be positioned at an elevation E above the local surface (e.g., the water shown in
The carriage 620 can include a gripper 680 having a pair of gripper arms 681 that releasably carry the aircraft 650. The carriage 620 can also include a first or upper portion 622 and a second or lower portion 623, each of which has rollers 621 (shown in hidden lines in
An actuator 613 can be linked to the carriage 620 to provide the squeezing force that drives the carriage portions 622, 623 toward each other and drives the carriage 620 along the launch guide 640. Many actuators 613 that are configured to release energy fast enough to launch the aircraft 650 also have a spring-like behavior. Accordingly, the actuators 613 tend to exert large forces at the beginning of a power stroke and smaller forces as the power stroke progresses and the carriage 620 moves along the launch guide 640. An embodiment of the system 610 shown in
At or near a launch point L, the carriage 620 reaches the launch speed of the aircraft 650. The first launch member 642 and the second launch member 643 can diverge (instead of converge) forward of the launch point L to form a braking ramp 644. At the braking ramp 644, the carriage 620 rapidly decelerates to release the aircraft 650. The carriage 620 then stops and returns to a rest position at least proximate to or coincident with the launch position L.
In one embodiment, the actuator 613 includes a piston 614 that moves within a cylinder 615. The piston 614 is attached to a flexible, elongated transmission element 616 (e.g., a rope or cable) via a piston rod 617. The transmission element 616 can pass through a series of guide pulleys 645 (carried by the launch guide 640) and carriage pulleys 624 (carried by the carriage 620). The guide pulleys 645 can include first guide pulleys 645a on a first side of the support structure 641, and corresponding second guide pulleys 645b on a second (opposite) side of the support structure 641. The carriage pulleys 624 can also include first carriage pulleys 624a on a first side of the carriage 620 and second pulleys 624b on a second (opposite) side of the carriage 620. One or more equalizing pulleys 646, located in a housing 647 can be positioned between (a) the first guide pulleys 645a and the first carriage pulleys 624a on the first side of the support structure 641, and (b) the second guide pulleys 645b and the second carriage pulleys 624b on the second side of the support structure 641.
In operation, one end of the transmission element 616 can be attached to the first side of the support structure 641, laced through the first pulleys 645a, 624a, around the equalizing pulley(s) 646, and then through the second pulleys 645b, 624b. The opposite end of the transmission element 616 can be attached to the second side of the support structure 641. The equalizing pulley(s) 646 can (a) guide the transmission element 616 from the first side of the support structure 641 to the second side of the support structure 641, and (b) equalize the tension in the transmission element 616 on the first side of the support structure 641 with that on the second side of the support structure 641.
When the transmission element 616 is tensioned, it squeezes the carriage portions 622, 623 together, forcing the carriage 620 along the converging launch members 642, 643. The carriage pulleys 624 and the rollers 621 (which can be coaxial with the carriage pulleys 624) are secured to the carriage 620 so that the carriage 620 rides freely along the initial flight path 611 of the aircraft 650 as the carriage portions 622, 623 move together.
As shown in
At least a portion of the mass of the gripper arms 681 can be eccentric relative to the first axis P. As a result, when the carriage 620 decelerates, the forward momentum of the gripper arms 681 causes them to fling open by pivoting about the pivot axis P, as indicated by arrows M. The forward momentum of the gripper arms 681 can accordingly overcome the over-center action described above. As the gripper arms 681 begin to open, the contact portions 682a, 682b begin to disengage from the aircraft 650. In a particular aspect of this embodiment, the gripper arms 681 pivot downwardly and away from the aircraft 650.
From the foregoing, it will be appreciated that specific embodiments of the technology have been described herein for purposes of illustration, but that various modifications may be made without deviating from the disclosure. For example, the unmanned vehicle system can include additional components or features, and/or different combinations of the components or features described herein. While particular embodiments of the technology were described above in the context of ITAR, MTCR, and EAR regulations, other embodiments using generally similar technology can be used in the context of other regulations. Such regulations may vary from one jurisdiction (e.g., national or regional jurisdictions) to another. Additionally, while advantages associated with certain embodiments of the new technology have been described in the context of those embodiments, other embodiments may also exhibit such advantages, and not all embodiments need necessarily exhibit such advantages to fall within the scope of the technology. Accordingly, the disclosure and associated technology can encompass other embodiments not expressly shown or described herein.
The present application is a continuation of International Patent Application No. PCT/US12/65360, filed Nov. 15, 2012, entitled CONTROLLED RANGE AND PAYLOAD FOR UNMANNED VEHICLES, AND ASSOCIATED SYSTEMS AND METHODS, which claims the benefit of U.S. Provisional Patent Application No. 61/560,234, filed Nov. 15, 2011, entitled CONTROLLED RANGE AND PAYLOAD FOR UNMANNED VEHICLES, AND ASSOCIATED SYSTEMS AND METHODS, each of which is incorporated by reference in its entirety. To the extent the foregoing application or any other material incorporated herein by reference conflict with the present disclosure, the present disclosure controls.
Number | Name | Date | Kind |
---|---|---|---|
965881 | Draper | Aug 1910 | A |
968339 | Geraldson | Aug 1910 | A |
975953 | Hourwich | Nov 1910 | A |
1144505 | Steffan | Jun 1915 | A |
1164967 | Thorp | Dec 1915 | A |
1317631 | Kinser | Sep 1919 | A |
1383595 | Black | Jul 1921 | A |
1384036 | Anderson | Jul 1921 | A |
1428163 | Harriss | Sep 1922 | A |
1499472 | Hazen | Jul 1924 | A |
1530010 | Neilson | Mar 1925 | A |
1556348 | Ray et al. | Oct 1925 | A |
1624188 | Simon | Apr 1927 | A |
RE16613 | Moody et al. | May 1927 | E |
1634964 | Steinmetz | Jul 1927 | A |
1680473 | Parker | Aug 1928 | A |
1686298 | Uhl | Oct 1928 | A |
1712164 | Peppin | May 1929 | A |
1716670 | Sperry | Jun 1929 | A |
1731091 | Belleville | Oct 1929 | A |
1737483 | Verret | Nov 1929 | A |
1738261 | Perkins | Dec 1929 | A |
1748663 | Tucker | Feb 1930 | A |
1749769 | Johnson | Mar 1930 | A |
1756747 | Holland | Apr 1930 | A |
1777167 | Forbes | Sep 1930 | A |
1816976 | Kirkham | Aug 1931 | A |
1836010 | Audrain | Dec 1931 | A |
1842432 | Stanton | Jan 1932 | A |
1869506 | Richardson | Aug 1932 | A |
1892357 | Moe | Dec 1932 | A |
1912723 | Perkins | Jun 1933 | A |
1925212 | Steiber | Sep 1933 | A |
1940030 | Steiber | Dec 1933 | A |
1960264 | Heinkel | May 1934 | A |
2211089 | Berlin | Aug 1940 | A |
2296988 | Endter | Sep 1942 | A |
2333559 | Grady et al. | Nov 1943 | A |
2342773 | Wellman | Feb 1944 | A |
2347561 | Howard et al. | Apr 1944 | A |
2360220 | Goldman | Oct 1944 | A |
2364527 | Haygood | Dec 1944 | A |
2365778 | Schwab | Dec 1944 | A |
2365827 | Liebert | Dec 1944 | A |
2380702 | Persons | Jul 1945 | A |
2390754 | Valdene | Dec 1945 | A |
2435197 | Brodie | Feb 1948 | A |
2436240 | Wiertz | Feb 1948 | A |
2448209 | Boyer et al. | Aug 1948 | A |
2465936 | Schultz | Mar 1949 | A |
2488050 | Brodie | Nov 1949 | A |
2515205 | Fieux | Jul 1950 | A |
2526348 | Gouge | Oct 1950 | A |
2669403 | Milligan | Feb 1954 | A |
2671938 | Roberts | Mar 1954 | A |
2735391 | Buschers | Feb 1956 | A |
2814453 | Trimble et al. | Nov 1957 | A |
2843342 | Ward | Jul 1958 | A |
2844340 | Daniels et al. | Jul 1958 | A |
2908240 | Hodge | Oct 1959 | A |
2919871 | Sorensen | Jan 1960 | A |
2933183 | Koelsch | Apr 1960 | A |
2954946 | O'Neil et al. | Oct 1960 | A |
3069118 | Bernard | Dec 1962 | A |
3163380 | Brodie | Dec 1964 | A |
3268090 | Wirkkala | Aug 1966 | A |
3411398 | Blakeley et al. | Nov 1968 | A |
3454244 | Walander | Jul 1969 | A |
3468500 | Carlsson | Sep 1969 | A |
3484061 | Niemkiewicz | Dec 1969 | A |
3512447 | Vaughn | May 1970 | A |
3516626 | Strance et al. | Jun 1970 | A |
3657956 | Bradley et al. | Apr 1972 | A |
3672214 | Yasuda | Jun 1972 | A |
3684219 | King | Aug 1972 | A |
3708200 | Richards | Jan 1973 | A |
3765625 | Myhr et al. | Oct 1973 | A |
3771484 | Schott et al. | Nov 1973 | A |
3827660 | Doolittle | Aug 1974 | A |
3939988 | Wellman et al. | Feb 1976 | A |
3943657 | Leckie et al. | Mar 1976 | A |
3980259 | Greenhalgh et al. | Sep 1976 | A |
4067139 | Pinkerton et al. | Jan 1978 | A |
4079901 | Mayhew et al. | Mar 1978 | A |
4143840 | Bernard et al. | Mar 1979 | A |
4147317 | Mayhew et al. | Apr 1979 | A |
4149840 | Tippmann | Apr 1979 | A |
D256816 | McMahon et al. | Sep 1980 | S |
4236686 | Barthelme et al. | Dec 1980 | A |
4238093 | Siegel et al. | Dec 1980 | A |
4279195 | Miller | Jul 1981 | A |
4296894 | Schnabele et al. | Oct 1981 | A |
4296898 | Watson | Oct 1981 | A |
4311290 | Koper | Jan 1982 | A |
4408737 | Schwaerzler et al. | Oct 1983 | A |
4410151 | Hoppner et al. | Oct 1983 | A |
4471923 | Hoppner et al. | Sep 1984 | A |
4523729 | Frick et al. | Jun 1985 | A |
4566658 | DiGiovanniantonio et al. | Jan 1986 | A |
4645142 | Soelter | Feb 1987 | A |
4653706 | Ragiab | Mar 1987 | A |
4678143 | Griffin et al. | Jul 1987 | A |
4730793 | Thurber, Jr. et al. | Mar 1988 | A |
4753400 | Reuter et al. | Jun 1988 | A |
4790497 | Yoffe et al. | Dec 1988 | A |
4809933 | Buzby et al. | Mar 1989 | A |
4842222 | Baird et al. | Jun 1989 | A |
4909458 | Martin et al. | Mar 1990 | A |
4979701 | Colarik et al. | Dec 1990 | A |
4991739 | Levasseur | Feb 1991 | A |
5007875 | Dasa | Apr 1991 | A |
5039034 | Burgess et al. | Aug 1991 | A |
5042750 | Winter | Aug 1991 | A |
5054717 | Taylor et al. | Oct 1991 | A |
5060888 | Vezain et al. | Oct 1991 | A |
5109788 | Heinzmann et al. | May 1992 | A |
5119935 | Stump et al. | Jun 1992 | A |
5176339 | Schmidt | Jan 1993 | A |
1909445 | Ahola | May 1993 | A |
5222694 | Smoot | Jun 1993 | A |
5253605 | Collins | Oct 1993 | A |
5253606 | Ortelli et al. | Oct 1993 | A |
5259574 | Carrot | Nov 1993 | A |
5390550 | Miller | Feb 1995 | A |
5407153 | Kirk et al. | Apr 1995 | A |
5509624 | Takahashi et al. | Apr 1996 | A |
5583311 | Rieger et al. | Dec 1996 | A |
5603592 | Sadri et al. | Feb 1997 | A |
5655944 | Fusselman | Aug 1997 | A |
5687930 | Wagner et al. | Nov 1997 | A |
5762456 | Aasgaard | Jun 1998 | A |
5816761 | Cassatt et al. | Oct 1998 | A |
5906336 | Eckstein | May 1999 | A |
6161797 | Kirk et al. | Dec 2000 | A |
6237875 | Menne et al. | May 2001 | B1 |
6264140 | McGeer et al. | Jul 2001 | B1 |
6370455 | Larson et al. | Apr 2002 | B1 |
6371410 | Cairo-Iocco et al. | Apr 2002 | B1 |
6416019 | Hilliard et al. | Jul 2002 | B1 |
6442460 | Larson et al. | Aug 2002 | B1 |
6457673 | Miller | Oct 2002 | B1 |
6478650 | Tsai et al. | Nov 2002 | B1 |
6695255 | Husain | Feb 2004 | B1 |
6835045 | Barbee et al. | Dec 2004 | B1 |
7059564 | Dennis | Jun 2006 | B2 |
7066430 | Dennis et al. | Jun 2006 | B2 |
7090166 | Dennis et al. | Aug 2006 | B2 |
7114680 | Dennis | Oct 2006 | B2 |
7121507 | Dennis et al. | Oct 2006 | B2 |
7128294 | Roeseler et al. | Oct 2006 | B2 |
7140575 | McGeer et al. | Nov 2006 | B2 |
7143974 | Roeseler et al. | Dec 2006 | B2 |
7152827 | McGeer | Dec 2006 | B2 |
7155322 | Nakahara et al. | Dec 2006 | B2 |
7165745 | McGeer et al. | Jan 2007 | B2 |
7175135 | Dennis et al. | Feb 2007 | B2 |
7219856 | Watts et al. | May 2007 | B2 |
7259357 | Walker | Aug 2007 | B2 |
7264204 | Portmann | Sep 2007 | B1 |
7410125 | Steele | Aug 2008 | B2 |
7422178 | DeLaune | Sep 2008 | B2 |
7578467 | Goodrich | Aug 2009 | B2 |
7686247 | Monson et al. | Mar 2010 | B1 |
7748661 | Harris et al. | Jul 2010 | B2 |
7798445 | Heppe et al. | Sep 2010 | B2 |
7806366 | Jackson | Oct 2010 | B2 |
8136766 | Dennis | Mar 2012 | B2 |
8313057 | Rednikov | Nov 2012 | B2 |
20020011223 | Zauner et al. | Jan 2002 | A1 |
20020100838 | McGeer et al. | Aug 2002 | A1 |
20030116107 | Laimbock | Jun 2003 | A1 |
20030122384 | Swanson et al. | Jul 2003 | A1 |
20030222173 | McGeer et al. | Dec 2003 | A1 |
20050187677 | Walker | Aug 2005 | A1 |
20060006281 | Sirkis | Jan 2006 | A1 |
20060091258 | Chiu et al. | May 2006 | A1 |
20060102783 | Dennis et al. | May 2006 | A1 |
20060249623 | Steele | Nov 2006 | A1 |
20060271251 | Hopkins | Nov 2006 | A1 |
20080156932 | McGeer et al. | Jul 2008 | A1 |
20080191091 | Hoisington et al. | Aug 2008 | A1 |
20090224097 | Kariv | Sep 2009 | A1 |
20090294584 | Lovell et al. | Dec 2009 | A1 |
20100318475 | Abrahamson | Dec 2010 | A1 |
Number | Date | Country |
---|---|---|
1032645 | May 1989 | CN |
4301671 | Jul 1993 | DE |
19602703 | Feb 1997 | DE |
0742366 | Nov 1996 | EP |
854371 | Apr 1940 | FR |
2 080 216 | Feb 1982 | GB |
2093414 | Sep 1982 | GB |
2 150 895 | Jul 1985 | GB |
2 219 777 | Dec 1989 | GB |
76726 | Jan 1991 | IL |
07-304498 | Nov 1995 | JP |
2008540217 | Nov 2008 | JP |
WO-0075014 | Dec 2000 | WO |
WO-0107318 | Feb 2001 | WO |
WO-2008015663 | Feb 2008 | WO |
WO-2011066400 | Jun 2011 | WO |
Entry |
---|
Ames Builds Advanced Yawed-Wing RPV, Aviation Week and Space Technology, Jan. 22, 1973, p. 73. |
Article: Robinson: R. Robinson, “Dynamic Analysis of a Carousel Remotely Piloted ; Vehicle Recovery System,” 1977, Naval Post-Graduate School Master's Thesis, No. ADA052401, 70 pages. |
Article: Stephen A. Whitmore, Mike Fife, and Logan Brashear: “Development of a Closed-Loop ; Strap Down Attitude System for an Ultrahigh Altitude Flight Experiment,” Jan. 1997, NASA Technical Memorandum 4775, 31 pages. |
Study: US Army: H. E. Dickard, “Mini-RPV Recovery System Conceptual Study,” Aug. 1977, Contract DA4J02-76-C-0048, Report No. USAAMRDL-TR077-24. |
Phillips, K.; “Alternate Aquila Recovery System Demonstration Recovery System Flight Test;” Final Report; Jan. 19, 1977; 67 pages. |
International Search Report and written Opinion for International Patent Application No. PCT/US2012/065360, Applicant: Insitu, Inc., mailed Feb. 21, 2013, 10 pages. |
Supplementary European Search Report for European Patent Application No. 12849894.6, Applicant: Insitu, Inc., mailed Oct. 30, 2015, 9 pages. |
Number | Date | Country | |
---|---|---|---|
20140379173 A1 | Dec 2014 | US |
Number | Date | Country | |
---|---|---|---|
61560234 | Nov 2011 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/US2012/065360 | Nov 2012 | US |
Child | 14278242 | US |