CONTROLLED-RELEASE AND STRATIFIED CYCLODEXTRIN INCLUSION COMPLEX VEHICLES

Abstract
The invention provides cyclodextrin inclusion complex delivery vehicles, in which the cyclodextrin inclusion complex is provided together with enzyme having a cyclodextrin-degrading activity capable of digesting the cyclodextrin, so that upon delivery of the vehicle to a target the enzyme is activated and releases the guest molecule from the cyclodextrin cavity. In alternative aspects, these cyclodextrin inclusion complex delivery vehicles are for example provided in the form of medicaments, food ingredients, medical food ingredients, nutritional supplement ingredients, dietary supplement ingredients, herbicides, insecticides, fungicides, animal repellents, pheromones, plant growth regulators, fragrances, fabrics or packaging materials.
Description
FIELD OF THE INVENTION

The invention is in the field of biochemical constructs for delivery of bioactive agents, including delivery vehicles comprised of molecules carried as inclusions within cyclodextrins that are delivered together with selected enzymes having cyclodextrin-degrading activities.


BACKGROUND OF THE INVENTION

Cyclodextrins are non-reducing cyclic glucose oligosaccharides, frequently the product of cyclomaltodextrin glucanotransferase (E.C. 2.4.1.19; CGTase) catalyzed degradation of starch. Cyclodextrins may have a variety of structures (see Saenger et al., Chem. Rev. 98 (1998) 1787-1802), including three common cyclodextrins with 6, 7 or 8 D-glucopyranosyl residues (α-, β-, and γ-cyclodextrin respectively) linked in a ring by α-1,4 glycosidic bonds. The frustoconical shape of cyclodextrins forms a cavity or lumen, with the cavities having different diameters depending on the number of glucose units. The scale of selected cyclodextrin (CD) structures is set out in Table 1. Larger cyclodextrins such as cyclomaltononaose (δ-CD) and cyclomaltodecaose (ε-CD) are also possible, as well as a variety of cyclodextrin-based supra-molecular structures (see Zhang and Ma, Adv Drug Deliv Rev. 2013 August; 65(9):1215-33).









TABLE 1







cyclodextrin structures










Lumen diameter (nm)












Cyclodextrin
Inner rim
Outer rim







α, (glucose)6
0.45
0.53



β, (glucose)7
0.60
0.65



γ, (glucose)8
0.75
0.85










Cyclodextrins are generally amphipathic, with the wider rim of the lumen displaying the 2- and 3-OH groups and the narrower rim displaying 6-OH. These hydrophilic hydroxyl groups are accordingly on the outside of the lumen, whereas the inner surface is generally hydrophobic and lined with the anomeric oxygen atoms and the C3-H and C5-H hydrogen atoms. In aqueous solution, this hydrophobic lumen may contain water molecules, for example about 3 (α-CD), 7 (β-CD) or 9 (γ-CD) poorly held but low entropy, and hence relatively easily displaceable water molecules. Thus, otherwise hydrophilic cyclodextrins may bind retain one or more suitably-sized molecules within, or partially within, the lumen of the CD, forming a cyclodextrin inclusion body or complex. For example, non-polar aliphatic and aromatic compounds, including drugs, such as lipophilic drugs, may be bound so as to increase the water solubility of normally hydrophobic compounds or minimize undesirable properties such as odor or taste in certain food additives. For this reason, cyclodextrin inclusions are widely used in the pharmaceutical, food and cosmetic fields (see Hedges, Chem. Rev. 98 (1998) 2035-2044). Cyclodextrins have for example been used in a variety of sustained release drug preparations, such as for inclusion complexes of a medical compound with a hydrophobic cyclodextrin derivative (U.S. Pat. No. 4,869,904).


Cyclodextrins may be chemically modified in a wide variety of ways. For example, to modify the inclusion specificity, physical and chemical properties of the cyclodextrin. Hydroxyl groups of a CD may for example be derivatized. For example, two modified CDs have been used in a number of pharmaceutical products: SPF-β-CD, or Captisol, a polyanionic variably substituted sulfobutyl ether of β-CD, and HP-β-CD, a modified CD commercially developed by Janssen. Additional CD derivatives include sugammadex or Org-25969, in which the 6-hydroxy groups on γ-CD have been replaced by carboxythio acetate ether linkages, and hydroxybutenyl-β-CD. Alternative forms of cyclodextrin include: 2,6-Di-O-methyl-β-CD (DIMEB), 2-hydroxylpropyl-β-cyclodextrin (HP-β-CD), randomly methylated-β-cyclodextrin (RAMEB), sulfobutyl ether β-cyclodextrin (SBE-β-CD), and sulfobutylether-γ-cyclodextrin (SBEγCD), sulfobutylated beta-cyclodextrin sodium salt, sulfobutylated beta-cyclodextrin sodium salt, (2-Hydroxypropyl)-alpha-cyclodextrin, (2-Hydroxypropyl)-beta-cyclodextrin, (2-Hydroxypropyl)-gam ma-cyclodextrin, DIMEB-50 Heptakis(2,6-di-O-methyl)-beta-cyclodextrin, TRIMEB Heptakis(2,3,6-tri-O-methyl)-beta-cyclodextrin, methyl-beta-cyclodextrin, octakis(6-deoxy-6-iodo)-gamma-cyclodextrin, and, octakis(6-deoxy-6-bromo)-gamma-cyclodextrin. Although CDs such as these have been developed with favorable pharmacological and toxicological profiles, there is the potential that, following administration, residual CDs may perturb the pharmacokinetic properties of drugs, including coadministered drugs, particularly after parenteral administration (see Stella and He, Toxicol Pathol January 2008 vol. 36 no. 1 30-42).


The concern regarding the physiological effect of residual CDs derived from therapeutic CD inclusion complexes follows from the observation that CDs, such as α-CD and β-CD, are resistant to stomach acid and salivary and pancreatic enzyme digestion, and γ-CD is digested only partly by amylases in the GIT. It is generally accepted that only relatively small amounts of oral CDs are absorbed, and the absorbed CDs are understood to be excreted in the urine without undergoing significant metabolism. Unabsorbed CDs are understood to be fermented by intestinal microbiota.


Cyclodextrins are variably susceptible to enzymatic digestion. For example, γ-CD is relatively easily hydrolyzed by α-amylases whereas α-cyclodextrin is more poorly hydrolyzed. CD based therapeutics generally depend on the activity of endogenous amylases to digest the CD. There is however significant variability in amylase activity between patients. For example, patients with pancreatic insufficiency, cystic fibrosis, celiac disease or Crohn's disease, may lack normal amounts of amylase. Similarly, patients, particularly geriatric patients, may be deficient in gastric acid production and thereby fail to create conditions of appropriately low pH in the duodenum to properly trigger release of pancreatic amylase. A similar effect may result from the increasing common use of antacids, histamine-2 blockers, proton pump inhibitors or alternative acid blockers.


A variety of microbial cyclodextrin digesting enzymes have been identified. CD-degrading enzymes include cyclomaltodextrinase (or cyclodextrinase, or CDase, EC 3.2.1.54), maltogenic amylase (EC 3.2.1.133), neopullulanase (EC 3.2.1.135), which have been reported to be capable of hydrolyzing CDs and in some cases additional substrates such as pullulan, and starch. Cyclodextrinase (CDase) catalyzes the hydrolysis of CDs to form linear oligosaccharides of α-1,4-linkages, and it can accordingly release substances from CD inclusion complexes. A CDase from Bacillus macerans was reported in 1968, and many CDases from bacteria have since been characterized, such as enzymes from Bacillus sp., Thermoanaerobacter ethanolicus strain 39E, Flavobacterium sp., and Klebsiella oxytoca strain M5a1. Archaea CDases have been characterized from Archaeoglobus fulgidus, Thermococcus sp. B1001, Thermococcus sp. CL1, Thermofilum pendens, and Pyrococcus furiosus. The structure of the CDase from Flavobacterium sp. has been characterized in detail (see Sun et al., Archaea, Volume 2015 (2015), Article ID 397924, reporting the identification of a gene encoding a cyclodextrinase from Thermococcus kodakarensis KOD1 (CDase-Tk)).





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a chart illustrating the typical baseline sleep cycle pattern of a subject, based on 912 sleep cycles.



FIG. 2 is a chart illustrating the sleep cycle of the subject, following administration of a hemp oil cyclodextrin inclusion complex formulation without amylase, showing significantly less deep sleep that the sleep pattern of the subject following administration of the hemp oil cyclodextrin inclusion complex formulation with amylase.



FIG. 3 is a chart illustrating the sleep cycle of the subject, following administration of a hemp oil cyclodextrin inclusion complex formulation with amylase, showing a dramatically deeper sleep pattern than the baseline sleep cycle pattern of the subject.





SUMMARY OF THE INVENTION

Cyclodextrin inclusion complex delivery vehicles are provided, in which the cyclodextrin has a cavity, with a biologically active molecule that is at least partially retained as a guest molecule within the cavity, forming a cyclodextrin inclusion complex. A biologically acceptable carrier may be provided for the cyclodextrin inclusion complex, so that the guest molecule is stably retained by the cyclodextrin within the biologically acceptable carrier. An enzyme may also be provided in the vehicle, having a cyclodextrin-degrading activity capable of digesting the cyclodextrin retaining the guest molecule. The enzyme may be formulated so that the cyclodextrin-degrading activity is activated on delivery of the vehicle to a target so as to release the guest molecule from the cyclodextrin cavity.


In alternative aspects of the delivery vehicle, the enzyme may be co-formulated with the cyclodextrin inclusion complex or the enzyme may be co-packaged in the delivery vehicle with the cyclodextrin inclusion complex. When the enzyme is co-packaged, the delivery vehicle may further include a biochemically acceptable carrier for the enzyme.


The target may for example be a host organism, such as a human patient, or the target may be an inanimate environment, such as fabric or packaging material.


The enzyme may for example be an amylase, a cyclodextrinase, maltogenic amylase or neopullulanase. An amylase may for example be a mammalian salivary amylase or a pancreatic amylase, or an amylase of fungal, or bacterial origin. A cyclodextrinase may for example be a microbial cyclodextrinase.


The cyclodextrin may for example be a CD derivative, such as a hydrophobic alkylated cyclodextrin or a mixed methylated/ethylated cyclodextrin.


The ratio of the cyclodextrin to the guest molecule may for example be 5:1, 4:1, 3:1, 2:1, 1:1, 1:2, 1:3, 1:4 or 1:5, although a wide range of alternative values for this parameter are also possible, including non-integer ratios.


The cyclodextrin may for example be an alpha, beta or gamma cyclodextrin, although again a very wide range of alternative CD structures may be used.


In select embodiments, the guest molecule may for example be a drug or pro-drug, and in that circumstance the biologically acceptable carrier may advantageously be a pharmaceutically acceptable carrier. Delivery vehicles of this kind may for example be formulated for delivery by a route that is: parenteral, intravenous, intradermal, subcutaneous, intramuscular, intracranial, intraorbital, ophthalmic, intraventricular, intracapsular, intraspinal, intrathecal, intracisternal, intraperitoneal, intranasal, inhalational, aerosol, topical, intratumoral, sublingual or oral. Similarly, the delivery vehicle may be formulated for sustained release of the drug or pro-drug.


In alternative aspects, the delivery vehicle may include a guest molecule that is a herbicide, insecticide, fungicide, animal repellent, pheromone, or plant growth regulator. In a further alternative, the guest molecule may for example be a fragrance molecule.


In this way, the invention provides alternative embodiments in which CD delivery vehicles may be used as a medicament, as a food ingredient, medical food ingredient, nutritional supplement ingredient, dietary supplement ingredient, a fragrance, as a fabric or packaging, or in an agricultural context as a herbicide, insecticide, fungicide, animal repellent, pheromone, or plant growth regulator.


In various aspects the delivery vehicles accordingly provide a CD inclusion complex together with effective amount of an enzyme having CD-degrading activity, thereby facilitating the release of the guest molecule from the CD in a predictable manner.


DETAILED DESCRIPTION OF THE INVENTION

A wide variety of biologically active compounds may be included in delivery vehicles of the invention, for example in the form of pharmaceutical compositions, such as: Docetaxel (US Patent Publications 20140336149, 20130296268); carbamazepine (US Patent Publication 20140080812); Rifampicin (U.S. Pat. No. 7,001,893): cardiac glycosides, particularly digoxin (U.S. Pat. No. 4,555,504), progesterone (see Zoppetti et al., Journal of Inclusion Phenomena and Macrocyclic Chemistry, April 2007, Volume 57, Issue 1, pp 283-288); Albendazole, Mebendazole, Ricobendazole, Fenoprofen, Ketoprofen, Cocaine, Gliclazide, Digitoxin, Macrocyclic compounds (MCCs), Ibuproxam, Prochloro-methazine, DY-9760e, NSC-639829, ETH-615, Piroxicam, Levemopamil HCl, Ziprasdone mesylate, Sulindac, Mebendazole, Sulindac, Phenolphthalein, Danazol (see Challa et al., 2005, AAPS PharmSciTech 2005; 6 (2) Article 43); itraconazole, nelfinavirmesylate, telmisartan, 5-fluorouracile and other nucleoside analogues, camptothecin, or flavonoids.


Similarly, in the field of agricultural chemicals, delivery vehicles may be provided that include guest molecules having a wide variety of activities, such as herbicides, insecticides, fungicides, repellents, pheromones, and growth regulators.


Cyclodextrin delivery vehicles of the invention may also include cyclodextrin inclusion complexes with fragrance or other bioactive molecules in a textile or fabric or packaging material (see Wang and Chen, 2005, Journal of Industrial Textiles, Vol. 34, No. 3, 157-166; U.S. Patent Publications: 20150375521, 20150217896, 20150150256, 20140315780, 20130251926). For example, the cyclodextrin digesting enzyme may be incorporated into the textile and the cyclodextrin inclusion complex may be subsequently applied to the enzyme-containing fabric to form the delivery vehicle. Conversely, the CD inclusion complex may be incorporated into the textile, and the enzyme subsequently applied to the textile to form the delivery vehicle. Similarly, both the CD inclusion complex and the enzyme may be incorporated into the textile during manufacture. Enzymes may for example be incorporated into textiles through immobilization involving layered assemblies and/or nanocoatings, with the enzyme attached to the textile substrate so that it retains catalytic activity (analogous for example to processes for antibacterial functionalization of wool by immobilization of lysozymes, as described by Wang et al., 2009, Bioprocess Biosyst Eng 32:633-639, and as reviewed in Advances in Textile Biotechnology, Nierstrasz and Cavaco-Paulo eds., Elsevier, 2010).


In addition to CDs and CD derivatives, a variety of cyclodextrin-based supra-molecular systems are available for delivery of the foregoing range of biologically active molecules (reviewed by Zhang and Ma, Adv Drug Deliv Rev. 2013 August; 65(9):1215-33). Aspects of cyclodextrin-based delivery vehicles accordingly include embodiments that have been characterized as cyclodextrin based nanosponges. These systems may for example be adapted in the context of the present invention for controlled delivery of biologically active molecules, such as drugs.


In select embodiments, the enzyme provided in the vehicle may be formulated so that the cyclodextrin-degrading activity is activated on delivery of the vehicle to a target so as to release the guest molecule from the cyclodextrin cavity. Enzyme activation may for example be accomplished in a medicament, for example for oral delivery, in a dry dosage form, such as a capsule or tablet, in which the enzyme is admixed, so that the enzyme will not be active until activated by moisture in the gastrointestinal tract of a host. Similarly, a wide variety of time release matrices and formulations are known, which may be adapted for use in CD delivery vehicles so as to orchestrate the appropriate activation of the CD-degrading enzyme upon delivery to the target.


In various aspects, CD delivery vehicles may have the enzyme co-formulated with the cyclodextrin inclusion complex, as for example discussed above, or the enzyme may be co-packaged in the delivery vehicle with the cyclodextrin inclusion complex. In the case of co-packaging, the delivery vehicle may for example include a biochemically acceptable carrier for the enzyme—distinct from the carrier for the CD inclusion complex. For example, delivery vehicles may be provided with separated compartments containing the CD inclusion complex and the CD-degrading enzyme, so that the delivery vehicle will be made up of a CD inclusion complex compartment connected to a CD-degrading enzyme compartment. Mechanisms may be provided for the combined release of the CD inclusion complex and the CD-degrading enzyme from the respective compartments in the delivery vehicle. For example, syringes may be provided having distinct compartments of this kind that are discharged by a common discharge mechanism, such as a mechanism that cooperatively displaces pistons in each compartment so as to discharge aliquots of CD inclusion complex and CD-degrading enzyme, so that the enzyme and the complex may then be comingled to activate the enzymatic release of the guest molecule from the CD. Vehicles of this kind may for example be used to dispense a topical cream or other surface-active formulations. A wide variety of delivery vehicles of this kind may be adapted from devices that are known for dispensing two-part compositions such as epoxy resins, two-part medicaments or dental formulations, as for example disclosed in U.S. Pat. Nos. 4,538,920, 8,100,295, 8,308,340, 8,875,947, 8,499,976 and International Patent Publications WO2007041266 and WO2000021842.


There are a wide variety of techniques available to prepare CD inclusion complexes, as for example described in Chaudhary & Patel, IJPSR, 2013; Vol. 4(1): 68-76; US Patent Publication US20090029020; U.S. Pat. Nos. 5,070,081; 5,552,378; and 8,658,692. A common approach is known as the kneading method, which involves mixing CDs with water or an aqueous alcohol to provide a paste. The bioactive molecule may then be added to the paste and kneaded for a specified time. The kneaded mixture may then be dried and passed through sieve if desired. Other known approaches to preparing CD inclusions involve lyophilization, microwave irradiation, and a supercritical fluid antisolvent technique.


The CD delivery vehicles of the invention can be provided alone or in combination with other compounds (for example, nucleic acid molecules, small molecules, peptides, or peptide analogues), in the presence of a carrier, such as a liposome, an adjuvant, or any pharmaceutically or biologically acceptable carrier. Select embodiments include medicaments in a form suitable for administration to animal hosts, such as mammals, for example, humans. As used herein “pharmaceutically acceptable carrier” or “excipient” includes any and all solvents, dispersion media, coatings, antibacterial and antifungal agents, isotonic and absorption delaying agents, and the like that are physiologically compatible. The carrier can be suitable for any appropriate form of administration, including topical, subcutaneous, intradermal, intravenous, parenteral, intraperitoneal, intramuscular, sublingual, inhalational, intratumoral or oral administration. Pharmaceutically acceptable carriers include sterile aqueous solutions or dispersions and sterile powders for the extemporaneous preparation of sterile injectable solutions or dispersion. The use of such media and agents for pharmaceutically active substances is well known in the art. Except insofar as any conventional media or agent is incompatible with the biologically active compound, use thereof in the pharmaceutical compositions of the invention is contemplated. Supplementary active compounds can also be incorporated into the compositions.


Conventional pharmaceutical practice may be employed to provide suitable formulations or compositions to administer the delivery vehicles to subjects. Any appropriate route of administration may be employed, for example, parenteral, intravenous, intradermal, subcutaneous, intramuscular, intracranial, intraorbital, ophthalmic, intraventricular, intracapsular, intraspinal, intrathecal, intracisternal, intraperitoneal, intranasal, inhalational, aerosol, topical, intratumoral, sublingual or oral administration. Therapeutic formulations may be in the form of liquid solutions or suspensions; for oral administration, formulations may be in the form of tablets or capsules; for intranasal formulations, in the form of powders, nasal drops, or aerosols; and for sublingual formulations, in the form of drops, aerosols or tablets.


Cyclodextrin-degrading or digesting enzymes may for example be formulated for oral delivery. Enteric enzyme formulations may for example be provided, such as submicron particle formulations prepared by emulsion solvent evaporation (Sharma et al., Pharm Dev Technol. 2013 May-June; 18(3):560-9). Similarly, delivery vehicles may be formulated as hydrogels (see US Patent Publication 20140094433), or medicated gums (see US Patent Publication 20130022652).


Methods well known in the art for making formulations are found in, for example, “Remington's Pharmaceutical Sciences” (20th edition), ed. A. Gennaro, 2000, Mack Publishing Company, Easton, Pa. Formulations for parenteral administration may, for example, contain excipients, sterile water, or saline, polyalkylene glycols such as polyethylene glycol, oils of vegetable origin, or hydrogenated napthalenes. Biocompatible, biodegradable lactide polymer, lactide/glycolide copolymer, or polyoxyethylene-polyoxypropylene copolymers may be used to control the release of the compounds. Other potentially useful parenteral delivery systems for include ethylene-vinyl acetate copolymer particles, osmotic pumps, implantable infusion systems, and liposomes. Formulations for inhalation may contain excipients, for example, lactose, or may be aqueous solutions containing, for example, polyoxyethylene-9-lauryl ether, glycocholate and deoxycholate, or may be oily solutions for administration in the form of nasal drops, or as a gel.


Pharmaceutical compositions of the present invention may be in any form which allows for the composition to be administered to a patient. For example, the composition may be in the form of a solid, liquid or gas (aerosol). Typical routes of administration include, without limitation, oral, topical, parenteral, sublingual, rectal, vaginal, and intranasal. The term parenteral as used herein includes subcutaneous injections, intravenous, intramuscular, epidural, intrasternal injection or infusion techniques. Pharmaceutical composition of the invention are formulated so as to allow the active ingredients contained therein to be bioavailable upon administration of the composition to a patient. Compositions that will be administered to a patient take the form of one or more dosage units, where for example, a tablet, capsule or cachet may be a single dosage unit, and a container of the compound in aerosol form may hold a plurality of dosage units.


Materials used in preparing the pharmaceutical compositions should be pharmaceutically pure and non-toxic in the amounts used. The inventive compositions may include one or more compounds (active ingredients) known for a particularly desirable effect. It will be evident to those of ordinary skill in the art that the optimal dosage of the active ingredient(s) in the pharmaceutical composition will depend on a variety of factors. Relevant factors include, without limitation, the type of subject (e.g., human), the particular form of the active ingredient, the manner of administration and the composition employed.


In general, the pharmaceutical composition includes a delivery vehicle of the present invention as described herein, in admixture with one or more carriers. The carrier(s) may be particulate, so that the compositions are, for example, in tablet or powder form. The carrier(s) may be liquid, with the compositions being, for example, an oral syrup or injectable liquid. In addition, the carrier(s) may be gaseous, so as to provide an aerosol composition useful in, e.g., inhalatory administration.


When intended for oral administration, the composition is preferably in either solid or liquid form, where semi-solid, semi-liquid, suspension and gel forms are included within the forms considered herein as either solid or liquid.


As a solid composition for oral administration, the composition may be formulated into a powder, granule, compressed tablet, pill, capsule, cachet, chewing gum, wafer, lozenges, or the like form. Such a solid composition will typically contain one or more inert diluents or edible carriers. In addition, one or more of the following adjuvants may be present: binders such as syrups, acacia, sorbitol, polyvinylpyrrolidone, carboxymethylcellulose, ethyl cellulose, microcrystalline cellulose, gum tragacanth or gelatin, and mixtures thereof; excipients such as starch, lactose or dextrins, disintegrating agents such as alginic acid, sodium alginate, Primogel, corn starch and the like; lubricants such as magnesium stearate or Sterotex; fillers such as lactose, mannitols, starch, calcium phosphate, sorbitol, methylcellulose, and mixtures thereof; lubricants such as magnesium stearate, high molecular weight polymers such as polyethylene glycol, high molecular weight fatty acids such as stearic acid, silica, wetting agents such as sodium lauryl sulfate, glidants such as colloidal silicon dioxide; sweetening agents such as sucrose or saccharin, a flavoring agent such as peppermint, methyl salicylate or orange flavoring, and a coloring agent.


When the composition is in the form of a capsule, e.g., a gelatin capsule, it may contain, in addition to materials of the above type, a liquid carrier such as polyethylene glycol or a fatty oil.


The composition may be in the form of a liquid, e.g., an elixir, syrup, solution, aqueous or oily emulsion or suspension, or even dry powders which may be reconstituted with water and/or other liquid media prior to use. The liquid may be for oral administration or for delivery by injection, as two examples. When intended for oral administration, preferred compositions contain, in addition to the present compounds, one or more of a sweetening agent, thickening agent, preservative (e.g., alkyl p-hydroxybenzoate), dye/colorant and flavor enhancer (flavorant). In a composition intended to be administered by injection, one or more of a surfactant, preservative (e.g., alkyl p-hydroxybenzoate), wetting agent, dispersing agent, suspending agent (e.g., sorbitol, glucose, or other sugar syrups), buffer, stabilizer and isotonic agent may be included. The emulsifying agent may be selected from lecithin or sorbitol monooleate.


The liquid pharmaceutical compositions of the invention, whether they be solutions, suspensions or other like form, may include one or more of the following adjuvants: sterile diluents such as water for injection, saline solution, preferably physiological saline, Ringer's solution, isotonic sodium chloride, fixed oils such as synthetic mono or digylcerides which may serve as the solvent or suspending medium, polyethylene glycols, glycerin, propylene glycol or other solvents; antibacterial agents such as benzyl alcohol or methyl paraben; antioxidants such as ascorbic acid or sodium bisulfite; chelating agents such as ethylenediaminetetraacetic acid; buffers such as acetates, citrates or phosphates and agents for the adjustment of tonicity such as sodium chloride or dextrose. The parenteral preparation can be enclosed in ampoules, disposable syringes or multiple dose vials made of glass or plastic. Physiological saline is a preferred adjuvant. An injectable pharmaceutical composition is preferably sterile.


The pharmaceutical composition may be intended for topical administration, in which case the carrier may suitably comprise a solution, emulsion, ointment, cream or gel base. The base, for example, may comprise one or more of the following: petrolatum, lanolin, polyethylene glycols, bee wax, mineral oil, diluents such as water and alcohol, and emulsifiers and stabilizers. Thickening agents may be present in a pharmaceutical composition for topical administration. If intended for transdermal administration, the composition may include a transdermal patch or iontophoresis device. Topical formulations may contain a concentration of the biologically active compound of from about 0.1 to about 25% w/v (weight per unit volume).


The composition may be intended for rectal administration, in the form, e.g., of a suppository which will melt in the rectum and release the drug. The composition for rectal administration may contain an oleaginous base as a suitable nonirritating excipient. Such bases include, without limitation, lanolin, cocoa butter and polyethylene glycol. Low-melting waxes are preferred for the preparation of a suppository, where mixtures of fatty acid glycerides and/or cocoa butter are suitable waxes. The waxes may be melted, and the aminocyclohexyl ether compound is dispersed homogeneously therein by stirring. The molten homogeneous mixture is then poured into convenient sized molds, allowed to cool and thereby solidify.


The composition may include various materials which modify the physical form of a solid or liquid dosage unit. For example, the composition may include materials that form a coating shell around the active ingredients. The materials which form the coating shell are typically inert, and may be selected from, for example, sugar, shellac, and other enteric coating agents. Alternatively, the active ingredients may be encased in a gelatin capsule or cachet.


The pharmaceutical composition of the present invention may consist of gaseous dosage units, e.g., it may be in the form of an aerosol. The term aerosol is used to denote a variety of systems ranging from those of colloidal nature to systems consisting of pressurized packages. Delivery may be by a liquefied or compressed gas or by a suitable pump system which dispenses the active ingredients. Aerosols of compounds of the invention may be delivered in single phase, bi-phasic, or tri-phasic systems in order to deliver the active ingredient(s). Delivery of the aerosol includes the necessary container, activators, valves, subcontainers, and the like, which together may form a kit.


The biologically active compounds may be in the form of the free base or in the form of a pharmaceutically acceptable salt such as the hydrochloride, sulfate, phosphate, citrate, fumarate, methanesulfonate, acetate, tartrate, maleate, lactate, mandelate, salicylate, succinate and other salts known in the art. The appropriate salt would be chosen to enhance bioavailability or stability of the compound for the appropriate mode of employment (e.g., oral or parenteral routes of administration).


A composition intended to be administered by injection can be prepared by combining the delivery vehicle of the present invention with water, and preferably buffering agents, so as to form a solution. The water is preferably sterile pyrogen-free water. A surfactant may be added to facilitate the formation of a homogeneous solution or suspension. Surfactants are compounds that non-covalently interact with the aminocyclohexyl ether compound so as to facilitate dissolution or homogeneous suspension of the aminocyclohexyl ether compound in the aqueous delivery system. Surfactants are desirably present in aqueous compositions of the invention because the aminocyclohexyl ether compounds according to the present invention may be hydrophobic. Other carriers for injection include, without limitation, sterile peroxide-free ethyl oleate, dehydrated alcohols, propylene glycol, as well as mixtures thereof.


Suitable pharmaceutical adjuvants for the injecting solutions include stabilizing agents, solubilizing agents, buffers, and viscosity regulators. Examples of these adjuvants include ethanol, ethylenediaminetetraacetic acid (EDTA), tartrate buffers, citrate buffers, and high molecular weight polyethylene oxide viscosity regulators. These pharmaceutical formulations may be injected intramuscularly, epidurally, intraperitoneally, or intravenously.


The present invention also provides kits that contain a pharmaceutical composition which includes one or more delivery vehicles. The kit also includes instructions for the use of the pharmaceutical. Preferably, a commercial package will contain one or more unit doses of the pharmaceutical composition. For example, such a unit dose may be an amount sufficient for the preparation of an intravenous injection. It will be evident to those of ordinary skill in the art that compounds which are light and/or air sensitive may require special packaging and/or formulation. For example, packaging may be used which is opaque to light, and/or sealed from contact with ambient air, and/or formulated with suitable coatings or excipients.


An “effective amount” of a CD inclusion complex delivery vehicle according to the invention includes a therapeutically effective amount or a prophylactically effective amount. A “therapeutically effective amount” refers to an amount effective, at dosages and for periods of time necessary, to achieve the desired therapeutic result. A therapeutically effective amount of a delivery vehicle may vary according to factors such as the disease state, age, sex, and weight of the individual, and the ability of the compound to elicit a desired response in the individual. Dosage regimens may be adjusted to provide the optimum therapeutic response. A therapeutically effective amount may also be one in which any toxic or detrimental effects of the delivery vehicle or active compound are outweighed by the therapeutically beneficial effects. A “prophylactically effective amount” refers to an amount effective, at dosages and for periods of time necessary, to achieve the desired prophylactic result. Typically, a prophylactic dose is used in subjects prior to or at an earlier stage of disease, so that a prophylactically effective amount may be less than a therapeutically effective amount. For any particular subject, the timing and dose of treatments may be adjusted over time (e.g., timing may be daily, every other day, weekly, monthly) according to the individual need and the professional judgment of the person administering or supervising the administration of the compositions.


In select embodiments, the present invention provides a composition or medicament that includes one or more biologically active molecules, selected from biologically active compounds or a solvate, pharmaceutically acceptable salt, ester, amide, complex, chelate, stereoisomer, stereoisomeric mixture, geometric isomer, crystalline or amorphous form, metabolite, metabolic precursor or prodrug thereof, including isolated enantiomeric, diastereomeric and geometric isomers thereof, and mixtures thereof, in combination with a pharmaceutically acceptable carrier, diluent or excipient, and further provides a method for the manufacture of such a composition or medicament.


Although various embodiments of the invention are disclosed herein, many adaptations and modifications may be made within the scope of the invention in accordance with the common general knowledge of those skilled in this art. Such modifications include the substitution of known equivalents for any aspect of the invention in order to achieve the same result in substantially the same way. Numeric ranges are inclusive of the numbers defining the range. The word “comprising” is used herein as an open-ended term, substantially equivalent to the phrase “including, but not limited to”, and the word “comprises” has a corresponding meaning. As used herein, the singular forms “a”, “an” and “the” include plural referents unless the context clearly dictates otherwise. Thus, for example, reference to “a thing” includes more than one such thing.


Citation of references herein is not an admission that such references are prior art to the present invention. Any priority document(s) and all publications, including but not limited to patents and patent applications, cited in this specification are incorporated herein by reference. All documents cited or referenced in herein cited documents, together with any manufacturer's instructions, descriptions, product specifications, and product sheets for any products mentioned herein or in any document incorporated by reference herein, are hereby incorporated herein by reference, and may be employed in the practice of the invention. More specifically, all referenced documents are incorporated by reference to the same extent as if each individual publication were specifically and individually indicated to be incorporated by reference herein and as though fully set forth herein. The invention includes all embodiments and variations substantially as hereinbefore described and with reference to the examples and drawings.


In some embodiments, the invention excludes steps that involve medical or surgical treatment.


Examples
Example 1: Serenoa and Prunus Extract

An inclusion complex was made of gamma cyclodextrin (GCD, Wacker Chemi, Germany) with Serenoa repens purified seed extract (Indena, Italy) and Prunus africana bark extract (Indena, France) in a 2:1 ratio respectively, utilizing the kneading method. The Serenoa extract is rich in fatty acids and phytosterols. Serenoa extracts may for example include triglycerides and/or free fatty acids such as: oleic acid; lauric acid; caprylic acid; capric acid; tridecanoic acid; myristic acid; pentadecanoic acid; palmitic acid; palmitoleic acid; heptadecanoic acid; stearic acid; vaccenic acid; linoleic acid; linolenic acid; arachidic acid; gondoic acid; behenic acid; lignoceric acid. Phytosterols in Serenoa extracts may for example include: campesterol, β-sitosterol; and stigmasterol. Similarly, the Prunus extract includes a wide variety of such compounds, which may for example include: N-butylbenzenesulfonamide, atraric acid, β-sitosterol, β-sitostenone, and fatty acids such as linoleic, palmitic, oleic, stearic, linolenic, lauric, and myristic acids, docosanol, behenic acid, ursolic acid, lignoceric acid, ferulic acid and friedelin.



Serenoa extract oil is amber in color while Prunus extract resembles “tar balls” comprising an almost black, hardened extract that can be kneaded by hand. Both extracts have an almost pleasant deep fruit odor, which disappears almost entirely when included in the cyclodextrin inclusion complex.


After drying and grinding, samples of the inclusion complex were assayed for susceptibility to enzymatic release of the herbal extracts. In this assay, 1 gram of the inclusion complex was mixed into 20 ml of distilled water in Vessel 1 and an equal amount of 1 gram inclusion complex and 20 ml of distilled water, along with 20 mg of undiluted amylase powder (Enzyme Development Corporation, New York) was mixed in Vessel 2. Both vessels were heated to 37° C. with stirring every 5 minutes.


At the 20-minute point of the assay, color change started to become evident in Vessel 2 and was quite prominent at the 30-minute point. In contrast, in Vessel 1, without the addition of the enzyme, an off white color was maintained (consistent throughout 5 more hours). The contents of Vessel 2 became markedly darker as the amylase digested the GCD inclusion complex. After 30 minutes, Vessel 2 was revealing some of the native color of the extracts as the protective envelope of the GCD was broken down by the enzyme, allowing the raw ingredients to become visible again. In addition, after 30 minutes, in Vessel 2 but not Vessel 1, the odor of the two ingredients again became apparent. At 30 minutes, there was no separation of ingredients in Vessel 1, as evidenced by the lack of any lipid presence, with the contents of the vessel remaining as flecks of inclusion complex. However, in Vessel 2 at 30 minutes, the breakdown of the inclusion complex was evident not only in the body of the solution, but by a ring of Serenoa and Prunus extracts that, as lipid substances, create an oily slick around the vessel—with droplets of the oils visible on the white ceramic surface of Vessel 2.


This example illustrates the effective release of fatty acids and phytosterols from plant extracts formulated as CD inclusion complexes. This embodiment is accordingly exemplary of inclusion complexes that comprise one or more fatty acids and/or phytosterols such as: oleic acid; lauric acid; caprylic acid; capric acid; tridecanoic acid; myristic acid; pentadecanoic acid; palmitic acid; palmitoleic acid; heptadecanoic acid; stearic acid; vaccenic acid; linoleic acid; linolenic acid; arachidic acid; gondoic acid; behenic acid; lignoceric acid; campesterol, β-sitosterol; stigmasterol; N-butylbenzenesulfonamide, atraric acid, β-sitostenone, docosanol, behenic acid, ursolic acid, lignoceric acid, ferulic acid and friedelin.


Example 2: Butyric Acid

An inclusion complex was made of alpha cyclodextrin (ACD, Wacker Chemi, Germany) with butyric acid (Vigon, USA), utilizing the kneading method. Butyric acid is a fatty acid (also known as butanoic acid), which at room temperature is a clear, lightweight oil which has an unpleasant, somewhat rancid odor that disappears almost entirely when included in a cyclodextrin inclusion complex. Butyric acid odor can be detected by the human nose in concentrations above 10 ppm, and can be irritating to the skin, eyes and respiratory system.


After drying and grinding, samples of the inclusion complex were assayed for susceptibility to enzymatic release of butyric acid. In this assay, 1 gram of the inclusion complex was mixed into 20 ml of distilled water in Vessel 1 and an equal amount of 1 gram inclusion complex and 20 ml of distilled water, along with 20 mg of undiluted amylase powder (Enzyme Development Corporation, New York) was mixed in Vessel 2. Both vessels were heated to 37° C. with stirring every 5 minutes.


At the 25-minute point butyric acid odor started to become evident in Vessel 2, and became yet more prominent at the 35-minute point. In contrast, Vessel 1, without the addition of the enzyme, maintained the same faint odor without increase for 5 more hours.


Example 3: Hemp Oil Extract

An inclusion complex was made of gamma cyclodextrin (GCD, Wacker Chemi, Germany) with purified hemp oil extract (CV Sciences, USA), utilizing the kneading method. Hemp oil typically contains a variety of fatty acids, phytosterols and physiologically active ingredients, such as: linoleic acid, α-linolenic acid, oleic acid, β-sitosterol, campesterol, phytol, cycloartenol, γ-tocopherol and cannabidiol, as well as a small percentage of terpene-like substances, labelled for reference herein, “Hemp Essential Oils” as discussed below.


After drying and grinding, samples of the inclusion complex were assayed for susceptibility to in vivo enzymatic release of the hemp oil extract. In this assay, 390 mg of the inclusion complex was encapsulated in size 0 capsules. A second set of capsules was prepared, containing 390 mg of the inclusion complex along with 10 mg of undiluted amylase powder (Enzyme Development Corporation, New York).


A 43 year-old male subject, in good health, with 912 nights of sleep cycle recording was given 2 capsules of each preparation on different days 30 minutes before his standard bedtime of 11 p.m., well after his evening meal, with no food to induce salivary amylase.



FIG. 1 shows the typical sleep pattern of the subject with duration and level of deep sleep. FIG. 2 shows the sleep pattern after taking the inclusion complex without any addition of amylase, illustrating a sleep pattern that shows slightly more deep sleep than the typical baseline, with the subject reporting an average sleep in his rating. FIG. 3 dramatically demonstrates what the subject described as “his most restful sleep in years”. Except for arising to use the bathroom briefly, with a quick return to sleep, the entire sleep pattern reaches a previously unachieved sleep depth and deep sleep time.


This Example illustrates the in vivo release of physiologically active ingredients from an inclusion complex utilizing an amylase added to the inclusion complex formulation. An aspect of this Example is the independence of the formulation from any reliance on salivary or digestive amylase to release the active ingredients.


Example 4: Glaucoma

The subject in this Example is a California Medical Doctor with experience utilizing medical marijuana since 1996. The subject self administered capsules prepared as described in Example 3, containing 390 mg of the hemp oil inclusion complex with 10 mg of amylase powder. After several days of sequential use, the subject had noticeable improvement in his glaucoma, with these results from use of the inclusion complex being better than any combination of isolated cannabidiol or standardized product that the subject had utilized in the past.


Example 5: Stratified Inclusion Complexes

This Example relates to the production of CD inclusion complex mixtures, in which a plurality of alternative guest molecules form inclusion complexes with a plurality of alternative cyclodextrins, with each of the guest molecules matched in size and/or affinity to a corresponding cyclodextrin having a cavity sized or adapted to stably retain the guest molecule. In this way, a complex mixture of distinct, for example differently-sized, biologically active molecules may be formulated as a stratified inclusion complex mixture.


In an exemplified embodiment, Hemp Essential Oil, (see Table 2 for ratio by percent) was sequentially formulated with alpha and beta cyclodextrins. A sample of, Hemp Essential Oil, was first added to a slurry of alpha cyclodextrin and water, with kneading over time to form inclusion complexes of guest molecules sized to fit within the cavity of alpha cyclodextrin. Next, a cyclodextrin having a larger cavity, beta cyclodextrin, was added over time with additional water and kneading to complete the size stratified inclusion complex mixture by forming inclusion complexes of guest molecules too large to fit within the cavity of alpha cyclodextrins. By first forming the inclusion complexes with a cyclodextrin having a smaller cavity, and then forming the inclusion complexes with a cyclodextrin having a larger cavity, this process provides an inclusion complex mixture in which guest molecules are housed in the cyclodextrin with which they form the most stable inclusion complex, avoiding the suboptimal capture of small molecules by the larger CD. This process may be iterative, with a succession of larger or differently modified CDs used to form complex stratified inclusion complexes in which the guest molecules are successively retained in chemically or sterically matched cyclodextrins.









TABLE 2







Hemp Essential Oil Analysis








Compound
Content %











ALPHA THUJENE
0.09


ALPHA PINENE
7.6


CAMPHENE
0.12


OCTEN 1 OL 3
0.02


SABINENE
0.09


BETA PINENE
3.03


MYRCENE
31.1


ALPHA PHELLANDRENE
0.24


DELTA-3-CARENE
0.78


ALPHA TERPINENE
0.17


PARACYMENE
0.17


LIMONENE
0.95


EUCALYPTOL
0.72


BETA PHELLANDRENE
0.26


OCIMENE CIS BETA
1.13


OCIMENE TRANS BETA
10.21


GAMMA TERPINENE
0.19


TRANS 4 THUYANOL
0.06


PARA ALPHA DIMETHYL STYRENE
0.13


TERPINOLENE
8.9


CIS EPOXY OCIMENE
0.06


EPOXY TERPINOLENE
0.33


PARACYMENE 8 OL
0.43


TERPINENE 4 OL
0.06


ALPHA TERPINEOL
0.03


HEXYLE BUTYRATE
0.07


TRANS ANETHOL
0.14


HEXYLE HEXANOATE
0.1


ALPHA YLANGENE
0.03


ALPHA COPAENE
0.04


BETA BOURBONENE
0.04


ISOCARYOPHYLLENE
0.19


CIS ALPHA BERGAMOTENE
0.21


BETA CARYOPHYLLENE
13.69


TRANS ALPHA BERGAMOTENE
1.3


ALPHA GUAIENE
0.12


TRANS BETA FARNESENE
1.72


ALPHA HUMULENE
4.47


ALLO-AROMADENDRENE
0.43


GAMMA MUUROLENE
0.14


BETA SELINENE
0.95


ALPHA SELINENE
0.69


ALPHA MUUROLENE
0.23


BETA BISABOLENE
0.37


GAMMA CADINENE
0.07


7 EPI-ALPHA SELINENE
0.35


BETA SESQUIPHELLENDRENE + DELTA CADINENE
0.09


GAMMA SELINENE
0.5


SELINA-3,7(11)-DIENE
0.44


NEROLIDOL
0.1


GERMACRENE B
0.1


SPATHULENOL
0.21


OXYDE DE CARYOPHYLLENE
2.21


EPOXYDE HUMULENE
0.65


CARYOPHYLLANE 4(12),8(13)DIENE 5-BETA-OL
0.1


TOTAL %
96.62









Synthetic mixtures of stratified inclusion complexes may be formulated so as to provide an altered ratio of biologically active molecules compared to an initial mixture from which the inclusion complexes are made. To take the exemplified embodiment described above, the alpha cyclodextrin inclusion complexes from a series of, Hemp Essential Oil, samples may be pooled, and then to this pooled alpha cyclodextrin formulation a single aliquot of beta cyclodextrin inclusion complex may be added, to provide a formulation that is enriched in smaller biologically active molecules, in the form of inclusion complexes, compared to the composition of the original, Hemp Essential Oil. Alternatively, as described above, the synthetic mixture of stratified inclusion complexes may be produced so as to recapitulate the relative abundance of biologically active molecules in a selected starting material. In the exemplified embodiment, this was achieved by using a 4:1 ratio of alpha cyclodextrin to beta cyclodextrin, reflecting the fact that approximately 80% of the, Hemp Essential Oil, sample was made up of biologically active molecules sized to fit within alpha cyclodextrin, with bulk of the remaining 20% sized to fit within beta cyclodextrin inclusion complexes.


In exemplary embodiments, synthetic mixtures of stratified inclusion complexes are provided that contain adjusted ratios of cannabinoids and terpenes, for example derived from Cannabis or hemp samples or extracts. These mixtures may contain inclusion complexes of various cannabinoids, such as cannabigerol (CBG), cannabichromene (CBC), tetrahydrocannabivarin (THCV), tetrahydrocannabinol (THC), cannabidiol (CBD), and cannabinol (CBN). Terpenes (isoprenoids) in these mixtures may for example include: a-pinene, ocimene, caryophyllene (β-caryophyllene), camphene, camphor, eucatyptol, humulene (α-humulene), myrcene, g-terpinene, cis-nerolidol, carene, terpinolene, terpineol, trans-nerolidol, cymene (p-cymene), linalool, phellandrene, guaiol, limonene, iso-pulegol, cary-oxide, a-terpinene, geraniol, valencene, fenchol, borneol (isoborneol), phytol, sabinene, menthol, cedrene, nerolidol, isopulegol, geranyl acetate, pulegone and bisabolol.


Stratified inclusion complexes may be formulated for delivery with one or more enzymes having cyclodextrin-degrading activities capable of digesting the cyclodextrins retaining the guest molecules. In select embodiments, enzymes may for example be selected that have preferential or exclusive activity on a subset of the cyclodextrins found in the mixture. In this way, the stratified cyclodextrin inclusion complex delivery vehicle may be adapted so that there are two or more distinct enzymes, and the distinct enzymes are formulated to have distinct cyclodextrin-degrading activities that are activated on delivery of the vehicle to two or more distinct targets, for example two distinct portions of the gastrointestinal tract.

Claims
  • 1. A cyclodextrin inclusion complex delivery vehicle, comprising: a cyclodextrin having a cavity;a biologically active molecule that is at least partially retained as a guest molecule within the cavity of the cyclodextrin, forming a cyclodextrin inclusion complex;a biologically acceptable carrier for the cyclodextrin inclusion complex, wherein the guest molecule is stably retained by the cyclodextrin within the biologically acceptable carrier; and,an enzyme having a cyclodextrin-degrading activity capable of digesting the cyclodextrin retaining the guest molecule, wherein the enzyme is formulated so that the cyclodextrin-degrading activity is activated on delivery of the vehicle to a target so as to release the guest molecule from the cyclodextrin cavity.
  • 2. The delivery vehicle of claim 1, wherein the enzyme is co-formulated with the cyclodextrin inclusion complex.
  • 3. The delivery vehicle of claim 1, wherein the enzyme is co-packaged in the delivery vehicle with the cyclodextrin inclusion complex, the delivery vehicle further comprising a biochemically acceptable carrier for the enzyme.
  • 4. The delivery vehicle of claim 1, wherein the target is a host organism.
  • 5. The delivery vehicle of claim 1, wherein the target is an inanimate environment.
  • 6. The delivery vehicle of claim 1, wherein the enzyme is an amylase, a cyclodextrinase, maltogenic amylase or neopullulanase.
  • 7. The delivery vehicle of claim 6, wherein the amylase is a mammalian salivary amylase, a mammalian pancreatic amylase or a microbial amylase.
  • 8. The delivery vehicle of claim 6, wherein the cyclodextrinase is a microbial cyclodextrinase.
  • 9. The delivery vehicle of claim 1, wherein the cyclodextrin is a hydrophobic alkylated cyclodextrin.
  • 10. The delivery vehicle of claim 1, wherein the cyclodextrin is a mixed methylated/ethylated cyclodextrin.
  • 11. The delivery vehicle of claim 1, wherein the ratio of the cyclodextrin to the guest molecule is from 5:1 to 1:5.
  • 12. The delivery vehicle of claim 1, wherein the cyclodextrin is an alpha, beta or gamma cyclodextrin.
  • 13. The delivery vehicle of claim 1, wherein the guest molecule is a drug or pro-drug, and the biologically acceptable carrier is a pharmaceutically acceptable carrier.
  • 14. The delivery vehicle of claim 13, wherein the delivery vehicle is formulated for delivery by a route that is: parenteral, intravenous, intradermal, subcutaneous, intramuscular, intracranial, intraorbital, ophthalmic, intraventricular, intracapsular, intraspinal, intrathecal, intracisternal, intraperitoneal, intranasal, inhalational, aerosol, topical, intratumoral, sublingual or oral.
  • 15. The delivery vehicle of claim 13, wherein the delivery vehicle is formulated for sustained release of the drug or pro-drug.
  • 16. The delivery vehicle of claim 1, wherein the guest molecule is a fatty acid, terpene, phytosterol or cannabinoid.
  • 17. The delivery vehicle of claim 1, wherein the guest molecule is one or more of: oleic acid; lauric acid; caprylic acid; capric acid; tridecanoic acid; myristic acid; pentadecanoic acid; palmitic acid; palmitoleic acid; heptadecanoic acid; stearic acid; vaccenic acid; linoleic acid; linolenic acid; arachidic acid; gondoic acid; behenic acid; lignoceric acid; campesterol, β-sitosterol; stigmasterol; N-butylbenzenesulfonamide, atraric acid, β-sitostenone, docosanol, behenic acid, ursolic acid, lignoceric acid, ferulic acid; friedelin; phytol; cycloartenol; γ-tocopherol; and, cannabidiol.
  • 18. The delivery vehicle of claim 1, wherein the guest molecule is a herbicide, insecticide, fungicide, animal repellent, pheromone, or plant growth regulator.
  • 19. The delivery vehicle of claim 1, wherein the guest molecule is a fragrance molecule.
  • 20. A method of formulating a cyclodextrin inclusion complex delivery vehicle, comprising: providing a cyclodextrin having a cavity;providing biologically active molecule that is at least partially retained as a guest molecule within the cavity of the cyclodextrin, forming a cyclodextrin inclusion complex;providing a biologically acceptable carrier for the cyclodextrin inclusion complex, wherein the guest molecule is stably retained by the cyclodextrin within the biologically acceptable carrier; and,providing an enzyme having a cyclodextrin-degrading activity capable of digesting the cyclodextrin retaining the guest molecule, wherein the enzyme is co-formulated with the cyclodextrin inclusion complex so that the cyclodextrin-degrading activity is activated on delivery of the vehicle to a target so as to release the guest molecule from the cyclodextrin cavity.
  • 21. A stratified cyclodextrin inclusion complex delivery vehicle, comprising: a first cyclodextrin having a cavity;a first biologically active molecule that is at least partially retained as a first guest molecule within the cavity of the first cyclodextrin, forming a first cyclodextrin inclusion complex;a second cyclodextrin having a cavity;a second biologically active molecule that is at least partially retained as a second guest molecule within the cavity of the second cyclodextrin, forming a second cyclodextrin inclusion complex;a biologically acceptable carrier for the cyclodextrin inclusion complexes, wherein the first guest molecule is more stably retained by the first cyclodextrin, compared to an inclusion complex of the first guest molecule and the second cyclodextrin, within the biologically acceptable carrier.
  • 22. The stratified cyclodextrin inclusion complex delivery vehicle of claim 21, wherein the cavity of the first cyclodextrin is smaller than the cavity of the second cyclodextrin.
  • 23. The stratified cyclodextrin inclusion complex delivery vehicle of claim 22, wherein the second biologically active molecule is larger than the cavity of the first cyclodextrin.
  • 24. The stratified cyclodextrin inclusion complex delivery vehicle of claim 21, further comprising one or more enzymes having cyclodextrin-degrading activities that together are capable of digesting the first and second cyclodextrins retaining the first and second guest molecules.
  • 25. The stratified cyclodextrin inclusion complex delivery vehicle of claim 24, wherein the one or more enzymes are formulated so that one or more of the cyclodextrin-degrading activities are activated on delivery of the vehicle to a target so as to release one or more of the guest molecules from the cyclodextrin cavities.
  • 26. The stratified cyclodextrin inclusion complex delivery vehicle of claim 25, wherein there are two or more distinct enzymes, and the distinct enzymes are formulated to have distinct cyclodextrin-degrading activities that are activated on delivery of the vehicle to two or more distinct targets.
  • 27. A method of forming a stratified cyclodextrin inclusion complex delivery vehicle, comprising: providing a first cyclodextrin having a cavity;providing a first biologically active molecule that is at least partially retained as a first guest molecule within the cavity of the first cyclodextrin, forming a first cyclodextrin inclusion complex;providing a second cyclodextrin having a cavity;providing a second biologically active molecule that is at least partially retained as a second guest molecule within the cavity of the second cyclodextrin, forming a second cyclodextrin inclusion complex;providing a biologically acceptable carrier for the cyclodextrin inclusion complexes, wherein the first guest molecule is more stably retained by the first cyclodextrin, compared to an inclusion complex of the first guest molecule and the second cyclodextrin, within the biologically acceptable carrier.
  • 28. The method of claim 27, wherein the first cyclodextrin inclusion complex is formed prior to formation of the second cyclodextrin inclusion complex, and the cavity of the first cyclodextrin is smaller than the cavity of the second cyclodextrin.
CROSS REFERENCE TO RELATED APPLICATION

This application claims the benefit of provisional application No. 62/291,202, filed Feb. 4, 2016, the entirety of which is incorporated by reference.

Provisional Applications (1)
Number Date Country
62291202 Feb 2016 US