The following embodiments are illustrative to explain the present invention, and the present invention is not limited to only these embodiments. The present invention can be carried out in various forms so long as the gist of the present invention is not deviated from.
There are no particular limitations on the acid-unstable physiologically active substance used in the present invention, but specific examples include a gastric ulcer-treating drug, an antibiotic, an analgesic, an anti-dementia drug, an anti-platelet drug, an antidepressant, a cerebral circulation/metabolism ameliorant, and an antiallergic drug. Examples of publicly known gastric ulcer-treating drug include benzimidazole-based compounds that have a proton pump inhibitory action and strongly suppress gastric acid secretion and physiologically acceptable salts thereof, specifically rabeprazole (I), omeprazole (II), esomeprazole (III), lansoprazole (IV), pantoprazole (V) and tenatoprazole (VI) represented by the chemical formulae shown below and alkali metal salts or alkaline earth metal salts thereof. As an alkali metal salt, a sodium salt or a potassium salt is preferable, and as an alkaline earth metal salt, a magnesium salt is preferable. A particularly preferable gastric ulcer-treating drug is rabeprazole sodium.
A benzimidazole-based compound used in the present invention can be produced using a publicly known method. For example, the benzimidazole-based compound can be produced using one of the methods disclosed in Japanese Patent Publication Laid-open No. S52-62275, Japanese Patent Publication Laid-open No. 54-141783, Japanese Patent Publication Laid-open No. H1-6270 and so on. More specifically, rabeprazole (I) can be produced according to the method described in the specification of U.S. Pat. No. 5,045,552, omeprazole (II) according to the method described in the specification of U.S. Pat. No. 4,255,431, esomeprazole (III) according to the method described in the specification of U.S. Pat. No. 5,948,789, lansoprazole (IV) according to the method described in the specification of U.S. Pat. No. 4,628,098, pantoprazole (V) according to the method described in the specification of U.S. Pat. No. 4,758,579, and tenatoprazole (VI) according to the method described in the specification of U.S. Pat. No. 4,808,596.
The controlled-release pharmaceutical composition according to the present invention is preferably made to contain at least one alkaline additive in the core as a stabilizer for the acid-unstable physiologically active substance. For example, a benzimidazole-based compound as described above is very unstable in an acidic state, and a pharmaceutical composition containing such a benzimidazole-based compound has a characteristic of readily undergoing discoloration due to production of decomposition products under high-temperature high-humidity conditions. Moreover, benzimidazole-based compounds are unstable in an acidic pH region, but the stability in a neutral pH region varies according to the drug; for example, the half-life at pH 7 is 23 hours for omeprazole, 13 hours for lansoprazole, 39 hours for pantoprazole, and 30 minutes for rabeprazole. Rabeprazole or the like may thus decompose upon intestinal juice penetrating into the core. The stability of the acid-unstable physiologically active substance can thus be secured by adding an alkaline additive such as sodium hydroxide into the core so that the inside of the core will remain alkaline even if intestinal juice penetrates therein. There are no particular limitations on the alkaline additive, but specific examples include sodium hydroxide, potassium hydroxide, magnesium oxide, calcium oxide, magnesium hydroxide, calcium hydroxide, sodium carbonate, sodium phosphate and potassium carbonate, with sodium hydroxide, potassium hydroxide, magnesium oxide, calcium oxide, magnesium hydroxide and calcium hydroxide being preferable, and sodium hydroxide and/or magnesium oxide being particularly preferable.
The amount added of the alkaline additive represented by sodium hydroxide and potassium hydroxide is generally 0.1 to 40 wt %, preferably 1.0 to 20 wt %, more preferably 2.0 to 15 wt %, based on the weight of the benzimidazole-based compound. Furthermore, in the case of using an alkaline additive other than sodium hydroxide or potassium hydroxide, this amount is generally 10 to 5000 wt %, preferably 100 to 2000 wt %, more preferably 200 to 1000 wt %, based on the weight of the benzimidazole-based compound.
The “core” according to the present invention means a core substance that contains the physiologically active substance alone, or also contains at least one pharmaceutical composition additive, and generally has the form of a tablet, granules, fine granules or the like.
There are no particular limitations on the disintegrant contained in the core in the present invention, so long as this disintegrant has a characteristic of expanding the volume upon absorbing water; the core contains at least one such disintegrant. Although there are no particular limitations, specific examples of disintegrants that can be used in the present invention include crospovidone, low-substituted hydroxypropyl cellulose, croscarmellose sodium and/or carmellose calcium, with crospovidone or low-substituted hydroxypropyl cellulose being particularly preferable. In particular, with the benzimidazole-based compound, crospovidone not only has a swelling characteristic as a disintegrant, but also has a marked stabilization effect of suppressing discoloration due to decomposition of the benzimidazole-based compound, and is thus particularly preferable. The amount added of the disintegrant is generally 1 to 50 wt %, preferably 5 to 40 wt %, particularly preferably 10 to 35 wt %, based on the weight of the core. In particular, in the case of using crospovidone with the benzimidazole-based compound, the amount added of the crospovidone is preferably 10 to 1000 wt %, more preferably 20 to 800 wt %, yet more preferably 50 to 500 wt %, most preferably 100 to 300 wt %, based on the weight of the benzimidazole-based compound.
The core may be made to contain any of various other pharmaceutical composition additives, for example, an excipient, a binder, and a lubricant, which are commonly known and so on, can be used as appropriate.
The core in the present invention can be produced using a commonly used method. For example, sodium hydroxide, crospovidone or the like as a stabilizer is mixed with the benzimidazole-based compound, the excipient, the binder and so on are added, and wet granulation such as high shear granulation or extrusion granulation, or dry granulation is carried out. The disintegrant, a lubricant and so on are then added as required, and compression into a tablet is carried out, whereby the core can be produced. There is of course no limitation to such a method.
The coating that covers the core in the present invention is a release-controlling coating containing a water-insoluble polymer, an enteric polymer and a hydrophobic wax. In the present invention, in the case of a controlled-release pharmaceutical composition, particularly a pulsed-release pharmaceutical composition, containing an acid-unstable physiologically active substance, by coating the core with the release-controlling coating containing the water-insoluble polymer, the enteric polymer and the hydrophobic wax, a pharmaceutical composition having little variation in dissolution lag time and high reliability of dissolution characteristics can be produced. That is, the controlled-release pharmaceutical composition having little variation in percentage of dissolution over time and dissolution lag time within a lot or between lots in the same test solution, and having little variation in percentage of dissolution and dissolution lag time with various pH in test solutions is made possible. Furthermore, due to using such a release-controlling coating, the controlled-release pharmaceutical composition according to the present invention is a controlled-release pharmaceutical composition for which changes in external appearance (e.g. cracks in the coating) do not arise even upon being left under high-humidity conditions.
There are no particular limitations on the water-insoluble polymer used in the present invention so long as this water-insoluble polymer has the characteristic of hardly dissolving in water but dissolving or uniformly dispersing in organic solvents such as methanol, ethanol, propanol, isopropanol and acetone. Preferable examples include ethyl cellulose, an aminoalkyl methacrylate copolymer RS (Eudragit RS's (manufactured by Röhm Pharma)) and/or shellac, with ethyl cellulose being particularly preferable. In the present invention, these can be used singly or a plurality can be used in combination.
There are no particular limitations on the enteric polymer used in the present invention, but an example is at least one polymer selected from the group consisting of hydroxypropyl methyl cellulose phthalate, hydroxypropyl methyl cellulose acetate succinate, a methacrylic acid-methyl methacrylate copolymer (Eudragit L (manufactured by Röhm Pharma), Eudragit S (manufactured by Röhm Pharma)) and a methacrylic acid-ethyl acrylate copolymer (Eudragit LD (manufactured by Röhm Pharma)); a methacrylic acid-methyl methacrylate copolymer (Eudragit L, Eudragit S) and/or a methacrylic acid-ethyl acrylate copolymer (Eudragit LD) is preferable, with a methacrylic acid-methyl methacrylate copolymer (Eudragit L) being particularly preferable.
The hydrophobic wax used in the present invention is a hydrophobic additive that has ductility and a lubricant effect; examples include 1) a higher fatty acid having at least 10 carbon atoms and an alkaline earth metal salt thereof and an ester thereof, and 2) wax and so on. There are no particular limitations, but specific examples of 1) and 2) include magnesium stearate, calcium stearate, stearic acid, carnauba wax, glyceryl dibehenate, sucrose fatty acid esters and glycerol fatty acid esters having an HLB value of not more than 5, white beeswax, a hydrogenated oil, and waxes such as microcrystalline wax. The hydrophobic wax is preferably at least one selected from the group consisting of magnesium stearate, calcium stearate, stearic acid, carnauba wax, glyceryl dibehenate and a hydrogenated oil, with magnesium stearate or calcium stearate being particularly preferable.
The dissolution lag time for the release-controlling coating can be controlled through the composition of the release-controlling coating (the proportions of the water-insoluble polymer, the enteric polymer and the hydrophobic wax) and the thickness of the coating. For example, if an amount of the water-insoluble polymer in the release-controlling coating is increased, then the dissolution lag time will become longer, whereas if an amount of the hydrophobic wax is increased, then the dissolution lag time can be made shorter. Moreover, upon increasing the thickness of the coating, the dissolution lag time will become longer.
There are no particular limitations on the amount of the water-insoluble polymer in the release-controlling coating, but this amount is generally 3.0 to 95 wt %, preferably 5.0 to 90 wt %, more preferably 10 to 85 wt %, based on the total amount of the water-insoluble polymer and the enteric polymer in the release-controlling coating. Moreover, there are no particular limitations on the total amount of the water-insoluble polymer and the enteric polymer in the release-controlling coating, but this total amount is generally 30 to 85 wt %, preferably 40 to 75 wt %, more preferably 50 to 65 wt %, based on the weight of the release-controlling coating.
There are no particular limitations on the amount of the hydrophobic wax in the release-controlling coating, but this amount is generally 5 to 65 wt %, preferably 8 to 50 wt %, more preferably 10 to 35 wt %, particularly preferably 20 to 35 wt %, based on the weight of the release-controlling coating.
In a preferable form of the present invention, the release-controlling coating contains ethyl cellulose as the water-insoluble polymer, a methacrylic acid-methyl methacrylate copolymer (Eudragit L, Eudragit S) as the enteric polymer, and magnesium stearate or calcium stearate as the hydrophobic wax.
Furthermore, the release-controlling coating according to the present invention is preferably made to contain a plasticizer. There are no particular limitations on the plasticizer used in the present invention, but specific examples include triethyl citrate, cetyl alcohol, a glycerol fatty acid ester, and propylene glycol; one of these may be used, or a plurality may be used in combination. Cetyl alcohol or triethyl citrate is preferable. In the case that the proportion added of the water-insoluble polymer based on the total amount added of the water-insoluble polymer and the enteric polymer is high, it is preferable to add cetyl alcohol as the plasticizer, whereas in the case that the proportion added of the water-insoluble polymer is low, it is preferable to add triethyl citrate as the plasticizer. There are no particular limitations on the amount of the plasticizer in the release-controlling coating, but this amount is generally 0.1 to 20 wt %, preferably 0.5 to 15 wt %, more preferably 1.0 to 15 wt %, based on the weight of the release-controlling coating. More specifically, in the case that the proportion added of the water-insoluble polymer based on the total amount of the water-insoluble polymer and the enteric polymer is high and hence cetyl alcohol is added, the amount of the cetyl alcohol is generally 0.1 to 10 wt %, preferably 0.5 to 7.0 wt %, more preferably 1.0 to 5.0 wt %, based on the weight of the release-controlling coating. On the other hand, in the case that the proportion added of the water-insoluble polymer based on the total amount of the water-insoluble polymer and the enteric polymer is low and hence triethyl citrate is added, the amount of the triethyl citrate is generally 3.0 to 20 wt %, preferably 6.0 to 15 wt %, more preferably 7.5 to 12 wt %, based on the weight of the release-controlling coating. In particular, in the case that the proportion added of the water-insoluble polymer based on the total amount of the water-insoluble polymer and the enteric polymer is low and hence triethyl citrate is added, it is preferable to add the triethyl citrate in an amount of at least 7.5 wt % based on the weight of the release-controlling coating from the viewpoint of preventing lengthening of the dissolution lag time of the controlled-release pharmaceutical composition according to the present invention.
In the present invention, the covering of the core with the release-controlling coating containing the water-insoluble polymer, the enteric polymer and the hydrophobic wax can be carried out by dissolving or suspending the water-insoluble polymer, the enteric polymer and the hydrophobic wax in a solvent, and using fluidized bed coating, pan coating or the like. Here, the liquid obtained by dissolving or suspending the water-insoluble polymer, the enteric polymer and the hydrophobic wax in the solvent is sprayed into a bed in which the core or a core that has been covered with an inert intermediate coating has been fluidized or agitated, and the solvent is dried off, thus forming the release-controlling coating on the outside of the core or the core that has been covered with the inert intermediate coating.
There are no particular limitations on the solvent of the coating solution containing the water-insoluble polymer, the enteric polymer and the hydrophobic wax used in the present invention, so long as this solvent has the characteristic that the water-insoluble polymer, the enteric polymer and the hydrophobic wax can be dissolved or uniformly dispersed therein. Examples include water, methanol, ethanol, propanol, isopropanol and acetone and the like, with methanol, ethanol, propanol and isopropanol being preferable, and ethanol or isopropanol being particularly preferable. One of these solvents may be used, or a plurality may be used mixed together as appropriate.
The enteric polymer in the release-controlling coating will be acidic, and hence it is undesirable for the enteric polymer to come into direct contact with the benzimidazole-based compound that is the acid-unstable physiologically active substance. In the controlled-release pharmaceutical composition according to the present invention, it is thus preferable to provide an inert intermediate coating that does not have an adverse effect on the stability of the benzimidazole-based compound between the core containing the benzimidazole-based compound and the release-controlling coating containing the water-insoluble polymer, the enteric polymer and the hydrophobic wax. There are no particular limitations on the inert intermediate coating, but this is generally a coating containing a water-soluble polymer, a water-insoluble polymer and/or a water-dispersible substance. There are no particular limitations on the inert intermediate coating used in the present invention, but specific examples include hydroxypropyl cellulose, hydroxypropyl methyl cellulose, an aminoalkyl methacrylate copolymer, ethyl cellulose, lactose, mannitol, and crystalline cellulose and the like. Moreover, the intermediate coating comprising a dispersion of water-insoluble fine particles in a water-insoluble polymer as disclosed in Japanese Patent Publication Laid-open No. H1-29062 may be used.
The controlled-release pharmaceutical composition, particularly a pulsed-release pharmaceutical composition, according to the present invention is a revolutionary pharmaceutical composition having both acid resistance and reliable pulsed dissolution characteristics after a desired dissolution lag time. Regarding the release-controlling coating that contains the water-insoluble polymer, the enteric polymer and the hydrophobic wax and covers the core containing the acid-unstable physiologically active substance and the disintegrant, under acidic conditions the enteric polymer will not dissolve, and hence dissolving out of the physiologically active substance in the core will not occur. Under neutral pH conditions, the enteric polymer will dissolve, and hence small holes will arise in the release-controlling coating, and thus the dissolving liquid will penetrate into the core, and hence the disintegrant contained in the core will swell and cracks will be produced in the release-controlling coating, whereby the physiologically active substance will be dissolved out in a pulsed way. At this time, the hydrophobic wax coexisting with the water-insoluble polymer and the enteric polymer in the release-controlling coating has an action of regulating the strength and fragility of the release-controlling coating, and hence has an action of regulating the dissolution lag time when the physiologically active substance is dissolved out in a pulsed way a desired time after the pharmaceutical composition according to the present invention has been immersed in a solution or internally administered. Accordingly, with the controlled-release pharmaceutical composition, particularly the pulsed-release pharmaceutical composition, according to the present invention, after the set lag time, dissolution occurs with little variation in the dissolution lag time, and there is little variation in the percentage of dissolution over time within a lot or between lots, and hence highly reliable dissolution can be attained.
The dissolution lag time of the controlled-release pharmaceutical composition, particularly the pulsed-release pharmaceutical composition, containing a hydrophobic wax according to the present invention has excellent characteristics, with there being little variation in the characteristics under the same conditions, and the characteristics being little affected by the pH of the dissolving liquid. Moreover, once dissolution starts to take place, the majority of the physiologically active substance dissolves out in a short time. At least 70% of the acid-unstable physiologically active substance generally dissolves out within 3 hours, preferably within 2 hours, more preferably within 1 hour, after the desired dissolution lag time. Consequently, the controlled-release pharmaceutical composition, particularly the pulsed-release pharmaceutical composition, containing a hydrophobic wax according to the present invention has the characteristic of there being very little variation in the dissolution lag time or variation in the percentage of dissolution over time even if the pH in the intestines varies.
From the viewpoint of the dissolution and absorptivity of an active ingredient contained in the pharmaceutical composition and the moisture resistance of the pharmaceutical composition itself, in a preferred aspect of the controlled-release pharmaceutical composition according to the present invention, particularly a pulsed-release pharmaceutical composition, the controlled-release pharmaceutical composition comprises: rabeprazole sodium as the acid-unstable physiologically active substance; the release-controlling coating containing Eudragit L or S and ethyl cellulose with the amount of ethyl cellulose being 10 to 25 wt %, preferably 11 to 20 wt % based on the total amount of Eudragit L or S and ethyl cellulose in the release-controlling coating: calcium stearate with the amount of calcium stearate being 10 to 35 wt %, preferably 20 to 35 wt % based on the weight of the release-controlling coating; and triethy citrate with the amount of triethy citrate being 6.0 to 15 wt %, preferably 7.5 to 12 wt % based on the weight of the release-controlling coating.
Example of the form of the controlled-release pharmaceutical composition according to the present invention includes a tablet, a granule, and a fine granule, although there are no particular limitations so long as the pharmaceutical composition is solid.
In the case of a solid pharmaceutical composition for internal administration of the acid-unstable physiologically active substance, the controlled-release pharmaceutical composition according to the present invention may be filled into a capsule together with an enteric pharmaceutical composition in which a core containing the acid-unstable physiologically active substance is covered with an enteric coating, thus producing a capsule preparation. As a result, the patient taking the drug can be given both a fast-acting medical benefit due to the enteric pharmaceutical composition and a sustained medical benefit due to the controlled-release pharmaceutical composition. It is particularly preferable for the controlled-release pharmaceutical composition to be a pulsed-release pharmaceutical composition. That is, a pharmaceutical composition having both a fast-acting effect due to the enteric pharmaceutical composition and ability for the drug to dissolve out after a certain dissolution lag time due to the pulsed-release pharmaceutical composition can be provided. Note that the capsule used in the present invention may be a hard capsule or a soft capsule, and moreover there are no particular limitations on the capsule material, although examples include gelatin, hydroxypropyl methyl cellulose, pullulan and the like. One or a plurality of the controlled-release pharmaceutical composition and one or a plurality of the enteric pharmaceutical composition may be filled into the capsule. For example, a plurality of reduced-diameter mini-tablets of the enteric pharmaceutical composition and a plurality of reduced-diameter mini-tablets of the controlled-release pharmaceutical composition may be filled into a hard capsule, or granules or fine granules of the controlled-release pharmaceutical composition and the enteric pharmaceutical composition may be filled into the capsule, or tablets of the controlled-release pharmaceutical composition and granules or fine granules of the enteric pharmaceutical composition, or granules or fine granules of the controlled-release pharmaceutical composition and tablets of the enteric pharmaceutical composition may be filled into the capsule.
Moreover, the controlled-release pharmaceutical composition according to the present invention may be made into a pharmaceutical composition package in which the controlled-release pharmaceutical composition and an enteric pharmaceutical composition in which a core containing the acid-unstable physiologically active substance is covered with an enteric coating are filled into the same packaging container. There are no particular limitations on the packaging container, although examples are sachet and blister packaging. As a result, the patient taking the drug can be given both a fast-acting medical benefit due to the enteric pharmaceutical composition and a sustained medical benefit due to the controlled-release pharmaceutical composition. It is particularly preferable for the controlled-release pharmaceutical composition to be a pulsed-release pharmaceutical composition. That is, a pharmaceutical composition having both a fast-acting effect due to the enteric pharmaceutical composition and ability for the drug to dissolve out after a certain dissolution lag time due to the pulsed-release pharmaceutical composition can be provided. Moreover, a capsule preparation filled with the controlled-release pharmaceutical composition and an enteric pharmaceutical composition as described above may be filled into a packaging container as described above to produce a pharmaceutical composition package.
Moreover, the present invention also provides a method for producing a controlled-release pharmaceutical composition comprising a step of forming a release-controlling coating by spraying a solution containing a mixture of a water-insoluble polymer, an enteric polymer and a hydrophobic wax onto a core containing an acid-unstable physiologically active substance and a disintegrant to form a coating covering the core. The core may further contain an alkaline additive. Moreover, the release-controlling coating may further contain a plasticizer. Furthermore, to prevent the enteric polymer in the release-controlling coating from coming into direct contact with the acid-unstable physiologically active substance, it is preferable to further include a step of forming an inert intermediate coating between the core and the release-controlling coating. In the present invention, the controlled-release pharmaceutical composition is preferably a pulsed-release pharmaceutical composition.
Furthermore, the present invention also provides a method of controlling release to reduce variation in the dissolution lag time, particularly of a pulsed-release pharmaceutical composition, by covering a core containing an acid-unstable physiologically active substance and a disintegrant with a release-controlling coating containing a water-insoluble polymer, an enteric polymer and a hydrophobic wax.
A controlled-release pharmaceutical composition according to the present invention can, for example, be produced through a method as follows.
(5 mg Tablet of Rabeprazole Sodium)
6.72 kg of mannitol, 2.4 kg of crospovidone and 0.5 kg of hydroxypropyl cellulose are added to and mixed with 1.0 kg of rabeprazole sodium, 4 kg of ethanol having 0.1 kg of sodium hydroxide dissolved therein is added, and granulation is carried out. The granules thus produced are dried using a tray dryer, and then passed through a 1.5 mm screen, and then 0.3 kg of crospovidone and 0.18 kg of sodium stearyl fumarate are added and mixed in, and the mixed granules are compressed into tablets using a tablet machine, thus preparing tablets (uncoated tablets) each weighing 56 mg and containing 5 mg of rabeprazole sodium. Next, the uncoated tablets are made to flow in a fluidized bed coating apparatus, and an intermediate coating solution obtained by dissolving 318 g of ethyl cellulose and 540 g of hydroxypropyl cellulose in 16.0 kg of ethanol, and uniformly dispersing 252 g of magnesium stearate into the solution is sprayed on, thus forming an intermediate coating in an amount of 4 mg per tablet, and hence preparing intermediate coating-covered tablets each weighing 60 mg and containing 5 mg of rabeprazole sodium. Moreover, separately, an ethanol solution obtained by dissolving 120 g of Eudragit L100, 480 g of ethyl cellulose and 36 g of cetyl alcohol in 14.26 kg of ethanol, and adding 360 g of magnesium stearate, 90 g of talc and 54 g of titanium dioxide and uniformly dispersing is prepared, and is sprayed onto the intermediate coating-covered tablets flowing in the fluidized bed, thus forming a 10 mg pulsed release-controlling coating, whereby a controlled-release pharmaceutical composition containing 5 mg of rabeprazole sodium in a 70 mg tablet can be produced.
Moreover, when producing such a controlled-release pharmaceutical composition, the uncoated tablets can also be produced using the following composition and production method. For example, 3.0 kg of mannitol, 5.0 kg of magnesium oxide, 0.6 kg of hydroxypropyl cellulose and 0.9 kg of low-substituted hydroxypropyl cellulose are added to and mixed with 1.0 kg of rabeprazole sodium, 3.4 L of ethanol is added, and granulation is carried out. The granules thus produced are dried using a tray dryer, and then passed through a 1.5 mm screen, and then 0.58 kg of low-substituted hydroxypropyl cellulose and 0.12 kg of magnesium stearate are added and mixed in, and the granules are compressed into tablets using a tablet machine, thus preparing tablets (uncoated tablets) each weighing 56 mg and containing 5 mg of rabeprazole sodium.
(10 mg Tablet of Rabeprazole Sodium: Production Method 1)
5.192 kg of mannitol, 3.96 kg of crospovidone and 0.33 kg of hydroxypropyl cellulose are added to and mixed with 2.2 kg of rabeprazole sodium, 4.4 kg of ethanol having 0.11 kg of sodium hydroxide dissolved therein is added, and granulation is carried out. The granules thus produced are dried using a tray dryer, and then passed through a 1.5 mm screen, and then 0.33 kg of crospovidone and 0.198 kg of sodium stearyl fumarate are added and mixed in, and the granules are compressed into tablets using a tablet machine, thus preparing tablets (uncoated tablets) each weighing 56 mg and containing 10 mg of rabeprazole sodium. Next, the uncoated tablets are made to flow in a fluidized bed coating apparatus, and an intermediate coating solution obtained by dissolving 191 g of ethyl cellulose and 324 g of hydroxypropyl cellulose in 9.58 kg of ethanol and uniformly dispersing 151 g of magnesium stearate into the solution is sprayed on, thus forming an intermediate coating in an amount of 3.7 mg per tablet, and hence preparing intermediate coating-covered tablets each weighing 59.7 mg and containing 10 mg of rabeprazole sodium. Moreover, separately, an ethanol solution is prepared by dissolving 143 g of Eudragit L100, 536 g of ethyl cellulose and 40 g of cetyl alcohol in 13.11 kg of ethanol, and adding 268 g of magnesium stearate, 101 g of talc and 60 g of titanium dioxide and uniformly dispersing, and is sprayed onto the intermediate coating-covered tablets flowing in the fluidized bed, thus forming a 10 mg pulsed release-controlling coating, whereby a controlled-release pharmaceutical composition containing 10 mg of rabeprazole sodium in a 69.7 mg tablet can be produced.
4.92 kg of mannitol and 3 kg of crospovidone are added to and mixed with 2 kg of rabeprazole sodium, 4 kg of ethanol having 0.1 kg of sodium hydroxide dissolved therein is added, and granulation is carried out. The granules thus produced are dried using a tray dryer, and then passed through a 1 mm screen, and then 0.3 kg of crospovidone and 0.18 kg of sodium stearyl fumarate are added and mixed in, and the granules are compressed into tablets using a tablet machine, thus preparing tablets (uncoated tablets) each weighing 52.5 mg and containing 10 mg of rabeprazole sodium. Next, the uncoated tablets are made to flow in a fluidized bed coating apparatus, and an intermediate coating solution obtained by dissolving 651 g of hydroxypropyl cellulose in 12.52 kg of ethanol and uniformly dispersing 219 g of calcium stearate into the solution is sprayed on, thus forming an intermediate coating in an amount of 2.9 mg per tablet, and hence preparing intermediate coating-covered tablets each weighing 55.4 mg and containing 10 mg of rabeprazole sodium. Moreover, separately, an ethanol solution obtained by dissolving 2.2 kg of Eudragit L100, 275 g of ethyl cellulose and 446 g of triethyl citrate in 55 kg of ethanol, and adding 1485 g of calcium stearate, 372 g of talc and 223 g of titanium dioxide and uniformly dispersing is prepared, and is sprayed onto the intermediate coating-covered tablets flowing in the fluidized bed, thus forming an 8 mg pulsed release-controlling coating, whereby a controlled-release pharmaceutical composition containing 10 mg of rabeprazole sodium in a 63.4 mg tablet can be produced.
According to the present invention, in the case of a controlled-release pharmaceutical composition, particularly a pulsed-release pharmaceutical composition, containing an acid-unstable physiologically active substance, a pharmaceutical composition having little variation in dissolution lag time and percentage of dissolution over time, and high reliability of dissolution characteristics can be prepared. In particular, with the controlled-release pharmaceutical composition according to the present invention, the dissolution and absorptivity of the active ingredient are good, and moreover the pharmaceutical composition itself has excellent moisture resistance. The advantageous effects of the present invention will now be described together with the following experimental examples.
Effect of reducing variation in percentage of dissolution over time and variation in dissolution lag time for pharmaceutical composition and thus increasing dissolution precision through adding hydrophobic wax to release-controlling coating
Using rabeprazole sodium as the acid-unstable physiologically active substance, controlled-release pharmaceutical compositions having release-controlling coatings of various compositions and coating amounts were prepared following Examples 1 to 8 described below, and dissolution tests were carried out thereon. The composition of the release-controlling coating was adjusted by changing the amounts added of the water-insoluble polymer, the enteric polymer and the hydrophobic wax, and the coating amount was adjusted through the amount coated on.
For the controlled-release pharmaceutical compositions of Examples 1 to 3, the proportions of Eudragit L100 (enteric polymer), ethyl cellulose (water-insoluble polymer), magnesium stearate (hydrophobic wax) and cetyl alcohol in the release-controlling coating were 10.5 wt %, 42.1 wt %, 31.6 wt % (amount of hydrophobic wax in the release-controlling coating based on the weight of release-controlling coating=31.6 wt %, amount of water-insoluble polymer in release-controlling coating based on the total amount of water-insoluble polymer and enteric polymer in release-controlling coating=80 wt %) and 3.2 wt % respectively, and the coating amount per tablet (containing 5 mg of rabeprazole sodium) was changed between 10 mg, 15 mg and 20 mg. Moreover, for the controlled-release pharmaceutical compositions of Examples 4 to 6, the proportions of Eudragit L100 (enteric polymer), ethyl cellulose (water-insoluble polymer) and magnesium stearate (hydrophobic wax) in the release-controlling coating were 15 wt %, 40 wt % and 30 wt % respectively (amount of hydrophobic wax in release-controlling coating based on the weight of release-controlling coating=30 wt %, amount of water-insoluble polymer in release-controlling coating based on the total amount of water-insoluble polymer and enteric polymer in release-controlling coating=72.7 wt %), and the coating amount per tablet (containing 5 mg of rabeprazole sodium) was changed between 10 mg, 15 mg and 20 mg.
For the controlled-release pharmaceutical composition of Example 7, the proportions of Eudragit L100 (enteric polymer), ethyl cellulose (water-insoluble polymer) and magnesium stearate (hydrophobic wax) in the release-controlling coating were 11.8 wt %, 47.1 wt % and 23.5 wt % respectively (amount of hydrophobic wax in release-controlling coating based on the weight of release-controlling coating=23.5 wt %, amount of water-insoluble polymer in release-controlling coating based on the total amount of water-insoluble polymer and enteric polymer in release-controlling coating=80 wt %), and the coating amount per tablet (containing 10 mg of rabeprazole sodium) was made to be 8 mg.
For the controlled-release pharmaceutical composition of Example 11, the proportions of Eudragit L100 (enteric polymer), ethyl cellulose (water-insoluble polymer), calcium stearate (hydrophobic wax) and triethyl citrate in the release-controlling coating were 39.6 wt %, 9.9 wt %, 29.7 wt % (amount of hydrophobic wax in release-controlling coating based on the weight of release-controlling coating=29.7 wt %, amount of water-insoluble polymer in release-controlling coating based on the total amount of water-insoluble polymer and enteric polymer in release-controlling coating=20 wt %) and 9 wt % respectively, and the coating amount per tablet (containing 10 mg of rabeprazole sodium) was made to be 8 mg.
For the controlled-release pharmaceutical composition of Example 12, the proportions of Eudragit L100 (enteric polymer), ethyl cellulose (water-insoluble polymer), calcium stearate (hydrophobic wax) and triethyl citrate in the release-controlling coating were 44.0 wt %, 5.5 wt %, 29.7 wt % (amount of hydrophobic wax in release-controlling coating based on the weight of release-controlling coating=29.7 wt %, amount of water-insoluble polymer in release-controlling coating based on the total amount of water-insoluble polymer and enteric polymer in release-controlling coating=11.1 wt %) and 8.9 wt % respectively, and the coating amount per tablet (containing 10 mg of rabeprazole sodium) was made to be 8 mg.
For the controlled-release pharmaceutical compositions of Examples 13 to 15, the proportions of Eudragit L100 (enteric polymer), ethyl cellulose (water-insoluble polymer), calcium stearate (hydrophobic wax) and a plasticizer in the release-controlling coating were 42.5 wt %, 7 wt %, 29.7 wt % (amount of hydrophobic wax in release-controlling coating based on the weight of release-controlling coating=29.7 wt %, amount of water-insoluble polymer in release-controlling coating based on the total amount of water-insoluble polymer and enteric polymer in release-controlling coating=14.1 wt %) and 8.9 wt % respectively (Example 13: triethyl citrate, Example 14: cetyl alcohol, Example 15: glycerol fatty acid ester), and the coating amount per tablet (containing 10 mg of rabeprazole sodium) was changed between various values (6, 10 and 14 mg).
Moreover, as control experiments regarding pharmaceutical compositions covered with a coating not containing a hydrophobic wax (i.e. containing a water-insoluble polymer and an enteric polymer), pharmaceutical compositions having coatings of various compositions and coating amounts were prepared following Controls 1 to 3 described below, and evaluation was similarly carried out.
For the pharmaceutical compositions of Controls 1 and 2, the proportions of Eudragit L100 (enteric polymer) and ethyl cellulose (water-insoluble polymer) in the coating were 40 wt % and 40 wt % respectively (hydrophobic wax not contained in release-controlling coating, amount of water-insoluble polymer in release-controlling coating based on the total amount of water-insoluble polymer and enteric polymer in release-controlling coating=50 wt %), and the coating amount per tablet was made to be 5 or 10 mg. Moreover, for the pharmaceutical composition of Control 3, the proportions of Eudragit L100 (enteric polymer) and ethyl cellulose (water-insoluble polymer) in the coating were 15.4 wt % and 61.5 wt % respectively (hydrophobic wax not contained in release-controlling coating, amount of water-insoluble polymer in release-controlling coating based on the total amount of water-insoluble polymer and enteric polymer in release-controlling coating=80 wt %), and the coating amount per tablet was made to be 5 mg.
This dissolution test was carried out using the following method for Examples 1 to 7 with n (number of cases)=2.
One tablet of the controlled-release pharmaceutical composition was put into 750 mL of a 0.1 N hydrochloric acid solution, and stirring was carried out for 2 hours using a paddle method (50 rpm). After that, 250 mL of a 0.2 M trisodium phosphate solution was immediately added, thus adjusting the pH of the solution to 6.8, and the dissolution test was carried out continuously. Sampling was carried out using a flow cell, and absorbance measurements (wavelength 290 nm) were carried out using an ultraviolet spectrophotometer, thus measuring the change in the percentage of rabeprazole sodium dissolved out over time. The results of the dissolution test are shown in
From the results shown in
For the controlled-release pharmaceutical composition of Example 7, compared with Example 1, the amount added of the hydrophobic wax was lower (Example 7: 23.5%, Example 1: 31.6%), and hence the dissolution lag time tended to be longer, but the pulsed dissolution ability was good.
From the results shown in
On the other hand, from the results shown in
This dissolution test was carried out using the following method for Examples 11 and 12 with n (number of cases)=6.
One tablet of the controlled-release pharmaceutical composition was put into 750 mL of a 0.1 N hydrochloric acid solution, and stirring was carried out for 2 hours using a paddle method (50 rpm). After that, replacement with a dissolution test solution A (900 mL) that had been kept at 37° C. in advance was carried out immediately, and the dissolution test was carried out continuously. Sampling was carried out using a flow cell, and absorbance measurements (wavelength 290 nm) were carried out using an ultraviolet spectrophotometer, thus measuring the change in the percentage of rabeprazole sodium dissolution over time.
Next, for the pharmaceutical compositions of Examples 1 to 3, 30 tablets of each and 1 g of a desiccant were put into a polyethylene bottle, the cap was put on, and the tablets were stored for two weeks at 60° C. A dissolution test (test method (1)) was then carried out on the samples, and the dissolution lag time was determined. From the results shown in
It was clear that due to adding a hydrophobic wax into the release-controlling coating, a controlled-release pharmaceutical composition of an acid-unstable physiologically active substance according to the present invention has reliable dissolution characteristics, with there being little variation in dissolution lag time, and little variation in percentage of dissolution over time, and hence the dissolution precision in terms of reproducibility and so on being excellent. According to the present invention, the controlled-release pharmaceutical composition having a desired dissolution lag time to high precision can be produced.
Effect of reducing variation in dissolution lag time with pH of dissolving liquid and thus increasing dissolution precision through adding hydrophobic wax to release-controlling coating
Using rabeprazole sodium as the acid-unstable physiologically active substance, dissolution tests were carried out at pH 6.8 and pH 8 for Examples 1 to 3 described below. Moreover, as control experiments, regarding pharmaceutical compositions covered with a coating not containing a hydrophobic wax (i.e. containing a water-insoluble polymer and an enteric polymer), pharmaceutical compositions having coatings of various compositions and coating amounts were prepared following Controls 4 to 7 described below, and evaluation was similarly carried out.
For the pharmaceutical compositions of Controls 4 to 7, the proportions of Eudragit L100 (enteric polymer) and ethyl cellulose (water-insoluble polymer) in the coating were 42.1 wt % and 42.1 wt % respectively (hydrophobic wax not contained in release-controlling coating, amount of water-insoluble polymer in release-controlling coating based on the total amount of water-insoluble polymer and enteric polymer in release-controlling coating=50 wt %), and the coating amount per tablet was changed between 15 mg, 20 mg, 25 mg and 30 mg.
The dissolution test at pH 6.8 was carried out using the method of dissolution test (1) described earlier. Moreover, the dissolution test at pH 8 was carried out using the method described below (dissolution test (3)). Note that for Examples 1 to 3 and Controls 4 to 7, n (number of cases)=2, and for Examples 11 and 12, n (number of cases)=6.
One tablet of the controlled-release pharmaceutical composition was put into 700 mL of a 0.1 N hydrochloric acid solution, and stirring was carried out for 2 hours using a paddle method (50 rpm). After that, 300 mL of a 0.57 mol/L 2-amino-2-hydroxymethyl-1,3-propanediol solution was immediately added, thus adjusting the pH of the solution to 8, and the dissolution test was carried out continuously. For the sampling liquid, the percentage of rabeprazole sodium dissolved out was measured over time using HPLC.
Mobile phase: Methanol/50 mmol/L phosphate buffer (pH 7.0) mixed liquid (60:40, V/V)
From the results shown in
As is clear from the results shown in
Effect of plasticizer on change in external appearance, and effect of plasticizer on lengthening of dissolution lag time after storage
Ten tablets were stored in a desiccator at 75% RH (relative humidity) prepared using a sodium chloride saturated salt solution, and changes in the external appearance over time at 25° C. were observed visually.
From the results shown in
Using the controlled-release pharmaceutical compositions of Examples 13 to 15 according to the present invention, a comparison was carried out between the dissolution lag time after storing for 1 week at 60° C. and the initial dissolution lag time after production of the controlled-release pharmaceutical composition. For the dissolution tests, the test solution of dissolution test (2) was used.
From the above description, it was clear that the controlled-release pharmaceutical composition of the acid-unstable physiologically active substance according to the present invention has reliable dissolution characteristics, with there being little variation in the dissolution lag time with pH of the dissolving liquid, and the dissolution precision in terms of reproducibility and so on being high.
Relationship between in vitro and in vivo for controlled-release pharmaceutical compositions according to the present invention
Using Examples 11 and 12 as shown in
The values on the horizontal axis shown in
Capsule preparation containing enteric pharmaceutical composition and the controlled-release pharmaceutical composition according to the present invention
The enteric pharmaceutical composition of Example 16 is a pharmaceutical composition in which uncoated tablets the same as those described in Example 11 are used, an intermediate coating comprising ethyl cellulose, hydroxypropyl cellulose and magnesium stearate is provided on the uncoated tablets, and then an enteric coating consisting mainly of hydroxypropyl methyl cellulose phthalate is coated on.
The enteric pharmaceutical composition of Example 16 was evaluated using the methods of dissolution test (2) and dissolution test (1) described earlier.
It can be seen that the value of the dissolution lag time for a controlled-release pharmaceutical composition according to the present invention according to the method of dissolution test (2) is significantly higher than the value obtained for Example 16. Accordingly, if the enteric pharmaceutical composition of Example 16 and the controlled-release pharmaceutical composition according to the present invention are filled into a single capsule, and the resulting capsule preparation is administered to a human or an animal such as a beagle, then there can be designed a pharmaceutical composition for which the drug dissolves out from the enteric pharmaceutical composition immediately after administration, and then the drug dissolves out from the controlled-release pharmaceutical composition according to the present invention thereafter.
On the other hand, as shown in
Following is a detailed description of the preparation and so on of examples and controls; however, the present invention is not limited by these examples.
Uncoated tablets of the following composition were produced, an intermediate coating was coated on, and then a release-controlling coating was coated on.
6.72 kg of mannitol, 2.4 kg of crospovidone and 0.5 kg of hydroxypropyl cellulose were added to and mixed with 1.0 kg of rabeprazole sodium, 4 kg of ethanol having 0.1 kg of sodium hydroxide dissolved therein was added, and granulation was carried out. The granules thus produced were dried for 20 hours at 50° C., and then passed through a 1.5 mm screen, and then 0.3 kg of crospovidone and 0.18 kg of sodium stearyl fumarate were added and mixed in, and tablet formation was carried out using a rotary tablet machine, thus obtaining tablets (uncoated tablets) each weighing 56 mg. Next, 3 kg of the tablets were put into a coating pan, and an intermediate coating solution of the following composition was sprayed on, thus forming an intermediate coating in an amount of 3.7 mg per tablet. The intermediate coating solution was prepared by dissolving 318 g of ethyl cellulose and 540 g of hydroxypropyl cellulose in 16.0 kg of ethanol, and uniformly dispersing 252 g of magnesium stearate into the solution using a Polytron. Next, a 10 mg pulsed release-controlling coating of the following composition was coated onto each 59.7 mg intermediate coating-covered tablet using a pan coating machine, thus obtaining a controlled-release pharmaceutical composition containing 5 mg of rabeprazole sodium in a 69.7 mg tablet. The pulsed release-controlling coating was formed by spraying onto the intermediate coating-covered tablet an ethanol solution obtained by dissolving 120 g of Eudragit L100, 480 g of ethyl cellulose and 36 g of cetyl alcohol in 14.26 kg of ethanol, and adding 360 g of magnesium stearate, 90 g of talc and 54 g of titanium dioxide and uniformly dispersing using a Polytron.
A 15 mg pulsed release-controlling coating of the following composition was coated using a pan coating machine onto intermediate coating-covered tablets each weighing 59.7 mg produced as in Example 1, thus obtaining a controlled-release pharmaceutical composition containing 5 mg of rabeprazole sodium in a 74.7 mg tablet.
A 20 mg pulsed release-controlling coating of the following composition was coated using a pan coating machine onto intermediate coating-covered tablets each weighing 59.7 mg produced as in Example 1, thus obtaining a controlled-release pharmaceutical composition containing 5 mg of rabeprazole sodium in a 79.7 mg tablet.
A 10 mg pulsed release-controlling coating of the following composition was coated using a pan coating machine onto intermediate coating-covered tablets each weighing 59.7 mg produced as in Example 1, thus obtaining a controlled-release pharmaceutical composition containing 5 mg of rabeprazole sodium in a 69.7 mg tablet.
The pulsed release-controlling coating was formed by spraying onto the intermediate coating-covered tablet an ethanol solution obtained by dissolving 180 g of Eudragit L100, 480 g of ethyl cellulose and 36 g of cetyl alcohol in 1500 g of ethanol, and adding 360 g of magnesium stearate, 90 g of talc and 54 g of titanium dioxide and uniformly dispersing using a Polytron.
A 15 mg pulsed release-controlling coating of the following composition was coated using a pan coating machine onto intermediate coating-covered tablets each weighing 59.7 mg using the same method as in Example 4, thus obtaining a controlled-release pharmaceutical composition containing 5 mg of rabeprazole sodium in a 74.7 mg tablet.
A 20.5 mg pulsed release-controlling coating of the following composition was coated using a pan coating machine onto intermediate coating-covered tablets each weighing 59.7 mg using the same method as in Example 4, thus obtaining a controlled-release pharmaceutical composition containing 5 mg of rabeprazole sodium in an 80.2 mg tablet.
Uncoated tablets of the following composition were produced, an intermediate coating was coated on, and then a release-controlling coating was coated on.
5.192 kg of mannitol, 3.96 kg of crospovidone and 0.33 kg of hydroxypropyl cellulose were added to and mixed with 2.2 kg of rabeprazole sodium, 4.4 kg of ethanol having 0.11 kg of sodium hydroxide dissolved therein was added, and granulation was carried out. The granules thus produced were dried using a tray dryer, and then passed through a 1.5 mm screen, and then 0.33 kg of crospovidone and 0.198 kg of sodium stearyl fumarate were added and mixed in, and tablet formation was carried out using a tablet machine, thus obtaining tablets (uncoated tablets) each weighing 56 mg and containing 10 mg of rabeprazole sodium. Next, 3 kg of the tablets were put into a coating pan, and an intermediate coating solution of the following composition was sprayed on, thus forming an intermediate coating in an amount of 3.7 mg per tablet. The intermediate coating solution was prepared by dissolving 191 g of ethyl cellulose and 324 g of hydroxypropyl cellulose in 9.58 kg of ethanol, and uniformly dispersing 151 g of magnesium stearate into the solution using a Polytron. Next, a 10 mg pulsed release-controlling coating of the following composition was coated onto each 59.7 mg intermediate coating-covered tablet using a pan coating machine, thus obtaining a controlled-release pharmaceutical composition containing 10 mg of rabeprazole sodium in a 69.7 mg tablet. The pulsed release-controlling coating was formed by spraying onto the intermediate coating-covered tablet an ethanol solution obtained by dissolving 134 g of Eudragit L100, 536 g of ethyl cellulose and 40 g of cetyl alcohol in 13.11 kg of ethanol, and adding 268 g of magnesium stearate, 101 g of talc and 60 g of titanium dioxide and uniformly dispersing using a Polytron.
An 8 mg pulsed release-controlling coating of the following composition was coated using a pan coating machine onto intermediate coating-covered tablets each weighing 59.7 mg using the same method as in Example 7, thus obtaining a controlled-release pharmaceutical composition containing 10 mg of rabeprazole sodium in a 67.7 mg tablet. Dissolution test results for the controlled-release pharmaceutical composition according to the method of dissolution test (1) described earlier are shown in
Uncoated tablets of the following composition were produced, an intermediate coating was coated on, and then a release-controlling coating was coated on.
3.0 kg of mannitol, 5.0 kg of magnesium oxide, 0.6 kg of hydroxypropyl cellulose and 0.9 kg of low-substituted hydroxypropyl cellulose were added to and mixed with 1.0 kg of rabeprazole sodium, 3.4 L of ethanol was added, and granulation was carried out. The granules thus produced were dried using a tray dryer, and then passed through a 1.5 mm screen, and then 0.58 kg of low-substituted hydroxypropyl cellulose and 0.12 kg of magnesium stearate were added and mixed in, and tablet formation was carried out using a tablet machine, thus obtaining tablets (uncoated tablets) each weighing 56 mg and containing 5 mg of rabeprazole sodium. Intermediate coating-covered tablets were then produced as in Example 1, thus obtaining a pharmaceutical with a weight per tablet of 59.7 mg. A 6 mg pulsed release-controlling coating of the following composition was then coated on using a pan coating machine, thus obtaining a controlled-release pharmaceutical composition containing 5 mg of rabeprazole sodium in a 65.7 mg tablet.
Dissolution test results for the controlled-release pharmaceutical composition according to the method of dissolution test (1) described earlier are shown in
A 15 mg pulsed release-controlling coating of the following composition was coated using a pan coating machine onto intermediate coating-covered tablets each weighing 59.7 mg produced as in Example 1, thus obtaining a controlled-release pharmaceutical composition containing 5 mg of rabeprazole sodium in a 74.7 mg tablet. Dissolution test results for the controlled-release pharmaceutical composition according to the method of dissolution test (1) described earlier are shown in
Uncoated tablets of the following composition were produced, an intermediate coating was coated on, and then a release-controlling coating was coated on.
4.92 kg of mannitol and 3 kg of crospovidone were added to and mixed with 2 kg of rabeprazole sodium, 4 kg of ethanol having 0.1 kg of sodium hydroxide dissolved therein was added, and granulation was carried out. The granules thus produced were dried using a tray dryer, and then passed through a 1 mm screen, and then 0.3 kg of crospovidone and 0.18 kg of sodium stearyl fumarate were added and mixed in, and tablet formation was carried out using a tablet machine, thus preparing tablets (uncoated tablets) each weighing 52.5 mg and containing 10 mg of rabeprazole sodium. Next, the uncoated tablets were made to flow in a fluidized bed coating apparatus, and an intermediate coating solution obtained by dissolving 651 g of hydroxypropyl cellulose in 12.52 kg of ethanol and uniformly dispersing 219 g of calcium stearate into the solution was sprayed on, thus forming an intermediate coating in an amount of 2.9 mg per tablet, and hence preparing intermediate coating-covered tablets each weighing 55.4 mg and containing 10 mg of rabeprazole sodium. Moreover, separately, an ethanol solution obtained by dissolving 1980 g of Eudragit L100, 495 g of ethyl cellulose and 446 g of triethyl citrate in 55 kg of ethanol, and adding 1485 g of calcium stearate, 372 g of talc and 223 g of titanium dioxide and uniformly dispersing was prepared, and was sprayed onto the intermediate coating-covered tablets flowing in the fluidized bed, thus forming an 8 mg pulsed release-controlling coating, and hence producing a controlled-release pharmaceutical composition containing 10 mg of rabeprazole sodium in a 63.4 mg tablet.
Uncoated tablets of the following composition were produced, an intermediate coating was coated on, and then a release-controlling coating was coated on.
4.92 kg of mannitol and 3 kg of crospovidone were added to and mixed with 2 kg of rabeprazole sodium, 4 kg of ethanol having 0.1 kg of sodium hydroxide dissolved therein was added, and granulation was carried out. The granules thus produced were dried using a tray dryer, and then passed through a 1 mm screen, and then 0.3 kg of crospovidone and 0.18 kg of sodium stearyl fumarate were added and mixed in, and tablet formation was carried out using a tablet machine, thus preparing tablets (uncoated tablets) each weighing 52.5 mg and containing 10 mg of rabeprazole sodium. Next, the uncoated tablets were made to flow in a fluidized bed coating apparatus, and an intermediate coating solution obtained by dissolving 651 g of hydroxypropyl cellulose in 12.52 kg of ethanol and uniformly dispersing 219 g of calcium stearate into the solution was sprayed on, thus forming an intermediate coating in an amount of 2.9 mg per tablet, and hence preparing intermediate coating-covered tablets each weighing 55.4 mg and containing 10 mg of rabeprazole sodium. Moreover, separately, an ethanol solution obtained by dissolving 2200 g of Eudragit L100, 275 g of ethyl cellulose and 446 g of triethyl citrate in 55 kg of ethanol, and adding 1485 g of calcium stearate, 372 g of talc and 223 g of titanium dioxide and uniformly dispersing was prepared, and was sprayed onto the intermediate coating-covered tablets flowing in the fluidized bed, thus forming an 8 mg pulsed release-controlling coating, and hence producing a controlled-release pharmaceutical composition containing 10 mg of rabeprazole sodium in a 63.4 mg tablet.
6, 10 or 14 mg pulsed release-controlling coatings of the following composition were coated using a pan coating machine onto intermediate coating-covered tablets each weighing 55.4 mg using the same method as in Example 11, thus obtaining controlled-release pharmaceutical compositions each containing 10 mg of rabeprazole sodium in a tablet.
6, 10 or 14 mg pulsed release-controlling coatings of the following composition were coated using a pan coating machine onto intermediate coating-covered tablets each weighing 55.4 mg using the same method as in Example 11, thus obtaining controlled-release pharmaceutical compositions each containing 10 mg of rabeprazole sodium in a tablet.
6, 10 or 14 mg pulsed release-controlling coatings of the following composition were coated using a pan coating machine onto intermediate coating-covered tablets each weighing 55.4 mg using the same method as in Example 11, thus obtaining controlled-release pharmaceutical compositions each containing 10 mg of rabeprazole sodium in a tablet.
Uncoated tablets of the following composition were produced, an intermediate coating was coated on, and then an enteric coating was coated on.
5.192 kg of mannitol, 3.96 kg of crospovidone and 0.33 kg of hydroxypropyl cellulose were added to and mixed with 2.2 kg of rabeprazole sodium, 4.4 kg of ethanol having 0.11 kg of sodium hydroxide dissolved therein was added, and granulation was carried out. The granules thus produced were dried using a tray dryer, and then passed through a 1.5 mm screen, and then 0.33 kg of crospovidone and 0.198 kg of sodium stearyl fumarate were added and mixed in, and tablet formation was carried out using a tablet machine, thus preparing tablets (uncoated tablets) each weighing 56 mg and containing 10 mg of rabeprazole sodium. Next, the uncoated tablets were made to flow in a fluidized bed coating apparatus, and an intermediate coating solution obtained by dissolving 191 g of ethyl cellulose and 324 g of hydroxypropyl cellulose in 9.58 kg of ethanol and uniformly dispersing 151 g of magnesium stearate into the solution was sprayed on, thus forming an intermediate coating in an amount of 3.7 mg per tablet, and hence preparing intermediate coating-covered tablets each weighing 59.7 mg and containing 10 mg of rabeprazole sodium. Moreover, separately, an enteric coating solution was prepared by dissolving 1726 g of hydroxypropyl methyl cellulose phthalate and 172 g of glycerol fatty acid ester in 20.8 kg of 80% ethanol and adding a suspension obtained by uniformly dispersing 163 g of talc, 10 g of yellow iron oxide and 87 g of titanium dioxide in 5.2 kg of an 80% ethanol solution, and the enteric coating solution was sprayed onto the intermediate coating-covered tablets flowing in the fluidized bed coating apparatus, thus forming an 8.3 mg enteric coating, and hence producing an enteric pharmaceutical composition containing 10 mg of rabeprazole sodium in a 67.2 mg tablet.
To show the remarkable effects of the controlled-release pharmaceutical compositions according to the above examples, controls will now be described.
A 5 mg coating of the following composition (not containing magnesium stearate) was coated using a pan coating machine onto intermediate coating-covered tablets each weighing 59.7 mg produced as in Example 1, thus obtaining a pharmaceutical composition containing 5 mg of rabeprazole sodium in a 64.7 mg tablet.
A 10 mg coating of the following composition (not containing magnesium stearate) was coated using a pan coating machine onto intermediate coating-covered tablets each weighing 59.7 mg produced as in Example 1, thus obtaining a pharmaceutical composition containing 5 mg of rabeprazole sodium in a 69.7 mg tablet.
A 5 mg coating of the following composition (not containing magnesium stearate) was coated using a pan coating machine onto intermediate coating-covered tablets each weighing 59.7 mg produced as in Example 1, thus obtaining a pharmaceutical composition containing 5 mg of rabeprazole sodium in a 64.7 mg tablet.
A 15 mg coating of the following composition (not containing magnesium stearate) was coated using a pan coating machine onto intermediate coating-covered tablets each weighing 59.7 mg produced as in Example 1, thus obtaining a pharmaceutical composition containing 5 mg of rabeprazole sodium in a 74.7 mg tablet.
A 20 mg coating of the following composition (not containing magnesium stearate) was coated using a pan coating machine onto intermediate coating-covered tablets each weighing 59.7 mg produced as in Example 1, thus obtaining a pharmaceutical composition containing 5 mg of rabeprazole sodium in a 79.7 mg tablet.
A 25 mg coating of the following composition (not containing magnesium stearate) was coated using a pan coating machine onto intermediate coating-covered tablets each weighing 59.7 mg produced as in Example 1, thus obtaining a pharmaceutical composition containing 5 mg of rabeprazole sodium in an 84.7 mg tablet.
A 30 mg coating of the following composition (not containing magnesium stearate) was coated using a pan coating machine onto intermediate coating-covered tablets each weighing 59.7 mg produced as in Example 1, thus obtaining a pharmaceutical composition containing 5 mg of rabeprazole sodium in an 89.7 mg tablet.
According to the present invention, in the case of a controlled-release pharmaceutical composition, particularly a pulsed-release pharmaceutical composition, containing an acid-unstable physiologically active substance, a pharmaceutical composition having little variation in dissolution lag time and percentage of dissolution over time, and high reliability of dissolution characteristics can be realized. Furthermore, a capsule preparation obtained by filling an enteric pharmaceutical composition and the controlled-release pharmaceutical composition according to the present invention into a capsule enables design of a pharmaceutical composition having an increased medical benefit duration.
Number | Date | Country | Kind |
---|---|---|---|
2004-093506 | Mar 2004 | JP | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/JP05/05217 | 3/23/2005 | WO | 00 | 9/26/2006 |