Controlled release tramadol formulation

Information

  • Patent Application
  • 20010036477
  • Publication Number
    20010036477
  • Date Filed
    March 06, 2001
    23 years ago
  • Date Published
    November 01, 2001
    23 years ago
Abstract
A controlled release preparation for oral administration contains tramadol, or a pharmaceutically acceptable salt thereof, as active ingredient.
Description


[0001] The present invention relates to a controlled release preparation for oral administration, to processes for its preparation and to its medical use. In particular, the invention relates to a controlled release preparation comprising tramadol or a pharmaceutically acceptable salt thereof.


[0002] Tramadol, which has the chemical name (±)-trans-2-[(dimethylamino)methyl]-1-(3-methoxyphenyl) cyclohexanol, is an orally active opioid analgesic. Conventional release preparations in the form of capsules, drops and suppositories containing tramadol, or more particularly its hydrochloride salt, have been commercially available for many years for use in the treatment of moderate to severe pain; Such preparations, however, do not provide a controlled release of the tramadol. Moreover, despite tramadol's long-standing use, controlled release preparations for oral administration containing tramadol as active ingredient have not even previously been described in the literature.


[0003] It is an object of the present invention to provide an oral controlled release tramadol preparation suitable for at least twelve-hourly (e.g. up to twenty-four hourly) administration for the treatment of pain.


[0004] The present invention therefore provides a controlled release preparation comprising tramadol or a pharmaceutically acceptable salt thereof for oral administration.


[0005] Suitable pharmaceutically acceptable salts of tramadol for use according to the present invention are those conventionally known in the art such as pharmaceutically acceptable acid addition salts. The hydrochloride salt is particularly preferred.


[0006] A controlled release preparation according to the present invention is one that achieves slow release of a drug over an extended period of time, thereby extending the duration of drug action over that achieved by conventional delivery. Preferably such a preparation maintains a drug concentration in the blood within the therapeutic range for 12 hours or more.


[0007] The present inventors have found that in order to allow for controlled release tramadol over at least a twelve hour-period following oral administration, the in vitro release rate preferably corresponds to the following % rate of tramadol released:
1TABLE 1TIME (H)% RELEASED10-5020-7543-95810-1001220-1001630-1002450-10036>80


[0008] Another preferred preparation especially suited for twice-a-day dosing has an in vitro release rate corresponding to the following % rate of tramadol released:
2TABLE 2TIME (H)% RELEASED120-50240-75460-958 80-10012 90-100


[0009] Yet another preferred preparation particularly suited for once-a-day dosing has an in-vitro release rate corresponding to the following % rate of tramadol released:
3TABLE 3TIME (H)% RELEASED10-5020-75410-95 835-1001255-1001670-10024>90


[0010] A still further preferred preparation in accordance with the invention also particularly suited for once-a-day dosing has an in vitro release rate corresponding to the following % rate of tramadol released.
4TABLE 4TIME (H)% RELEASED10-3020-4043-55810-65 1220-75 1630-88 2450-10036>80


[0011] More preferably a preparation for once-a-day dosing has an in vitro release rate substantially as follows:
5TIME (H)% TRAMADOL RELEASED115-25225-35430-45840-601255-701660-75


[0012] Another preferred dissolution rate in vitro upon release of the controlled release preparation twice daily according to the invention, is between 5 and 50% (by weight) tramadol released after 1 hour, between 10 and 75% (by weight) tramadol released after 2 hours, between 20 and 95% (by weight) tramadol released after 4 hours, between 40 and 100% (by weight) tramadol released after 8 hours, more than 50% (by weight) tramadol released after 12 hours, more than 70% (by weight) released after 18 hours and more than 80% (by weight) tramadol released after 24 hours.


[0013] Furthermore, it is preferred in the case of a controlled release preparation for administration twice daily that after 8 hours following oral administration between 70 and 95% (by weight) tramadol is absorbed in vivo, between 77 and 97% (by weight) tramadol is absorbed after 10 hours and between 80 and 100% (by weight) tramadol is absorbed after 12 hours.


[0014] A formulation in accordance with the invention suitable for twice-a-day dosing may have a tmax of 1.5 to 8 hours, preferably 2 to 7 hours, and a W50 value in the range 7 to 16 hours.


[0015] A formulation in accordance with the invention suitable for once-a-day dosing may have a tmax in the range of 3 to 6 hours, preferably 4 to 5 hours and a W50 value in the range of 10 to 33 hours.


[0016] The W50 parameter defines the width of the plasma profile at 50% Cmax, i.e. the duration over which the plasma concentrations are equal to or greater than 50% of the peak concentration. The parameter is determined by linear interpolation of the observed data and represents the difference in time between the first (or only) upslope crossing and the last (or only) downslope crossing in the plasma profile.


[0017] The in vitro release rates mentioned herein are, except where otherwise specified, those obtained by measurement using the Ph. Eur. Paddle Method at 100 rpm in 900 ml 0.1 N hydrochloric acid at 37° C. and using UV detection at 270 nm.


[0018] The in viva absorption rate is determined from measurement of plasma concentration against time using the deconvolution techniqiue. A conventional release tramadol drop preparation (Tramal (trade mark), Grunenthal) was used as the weighting-function and the elimination half life of tramadol was taken as 7.8 hours.


[0019] The controlled release preparation according to the invention preferably contains an analgesically effective amount of tramadol or a pharmaceutically acceptable salt thereof, conveniently in the range of from 50 to 800 mg, especially 100, 200, 300, 400 to 600 mg (calculated as tramadol hydrochloride) per dosage unit.


[0020] The controlled release preparation according to the invention may be presented, for example, as granules, spheroids, pellets, multiparticulates, capsules, tablets, sachets, controlled release suspensions, or in any other suitable dosage form incorporating such granules, spheroids, pellets or multiparticulates.


[0021] The active ingredient in the preparation according to the invention may suitably be incorporated in a matrix. This may be any matrix that affords controlled release tramadol over at least a twelve hour period and preferably that affords in-vitro dissolution rates and in vivo absorption rates of tramadol within the ranges specified above. Preferably the matrix is a controlled release matrix. Alternatively, normal release matrices having a coating which provides for controlled release of the active ingredient may be used.


[0022] Suitable materials for inclusion in a controlled release matrix include


[0023] (a) Hydrophillic or hydrophobic polymers, such as gums, cellulose ethers, acrylic resins and protein derived materials. Of these polymers, the cellulose ethers, especially alkylcelluloses are preferred. The preparation may conveniently contain between 1% and 80% (by weight) of one or more hydrophillic or hydrophobic polymers.


[0024] (b) Digestible, long chain (C8-C50, especially C12-C40), substituted or unsubstituted hydrocarbons, such as fatty acids, fatty alcohols, glyceryl esters of fatty acids, mineral and vegetable oils and waxes. Hydrocarbons having a melting point of between 25 and 90° C. are preferred. Of these long chain hydrocarbon materials, fatty (aliphatic) alcohols are preferred. The preparation may conveniently contain up to 60% (by weight) of at least one digestible, long chain hydrocarbon.


[0025] (c) Polyalkylene glycols. The preparation may suitably contain up to 60% (by weight) of one or more polyalkylene glycols.


[0026] One particularly suitable controlled release matrix comprises one or more alkylcelluloses and one or more C12-C36 aliphatic alcohols. The alkylcellulose is preferably C1-C6 alkyl cellulose, especially ethyl cellulose. The controlled release preparation according to the invention preferably contains from 1 to 20% (by weight), especially from 2 to 15% (by weight) of one or more alkylcelluloses.


[0027] The aliphatic alcohol may conveniently be lauryl alcohol, myristyl alcohol or stearyl alcohol but is preferably cetyl alcohol or more preferably cetostearyl alcohol. The controlled release preparation suitably contains from 5 to 30% (by weight) of aliphatic alcohol, especially from 10 to 25% (by weight) of aliphatic alcohol.


[0028] Optionally the controlled release matrix may also contain other pharmaceutically acceptable ingredients which are conventional in the pharmaceutical art such as diluents, lubricants, binders, granulating aids, colourants, flavourants, surfactants, pH adjusters, anti-adherents and glidants, e.g. dibutyl sebacate, ammonium hydroxide, oleic acid and colloidal silica.


[0029] The controlled release preparation according to the invention may conveniently be film coated using any film coating material conventional in the pharmaceutical art. Preferably an aqueous film coating is used.


[0030] Alternatively, the controlled release preparation according to the invention may comprise a normal release matrix having a controlled release coating. Preferably the preparation comprises film coated spheroids containing the active ingredient and a spheronising agent.


[0031] The spheronising agent may be any suitable pharmaceutically acceptable material which may be spheronised together with the active ingredient to form spheroids. A preferred spheronising agent is microcrystalline cellulose. The microcrystalline cellulose used may suitably be, for example, Avicel PII 101 or Avicel PII 102 (Trade Marks, FMC Corporation).


[0032] Optionally the spheroids may contain other pharmaceutically acceptable ingredients conventional in the pharmaceutical art such as binders, bulking agents and colourants. Suitable binders include water soluble polymers, water soluble hydroxyalkyl celluloses such as hydroxypropylcellulose or water insoluble polymers (which may also contribute controlled release properties) such as acrylic polymers or copolymers for example ethylcellulose. Suitable bulking agents include lactose.


[0033] The spheroids are coated with a material which permits release of the active ingredient at a controlled rate in an aqueous medium. Suitable controlled release coating materials include water insoluble waxes and polymers such as polymethacrylates (for example Eudragit polymers, Trade Mark) or water insoluble celluloses, particularly ethylcellulose. Optionally, water soluble polymers such as polyvinylpyrrolidone or water soluble celluloses such as hydroxypropylmethylcellulose or hydroxypropylcellulose may be included. Optionally other water soluble agents such as polysorbate 80 may be added.


[0034] Alternatively the drug may be coated onto inert non-pareil beads and the drug loaded beads coated with a material which permits control of the release of the active ingredient into the aqueous medium.


[0035] In a further aspect the present invention provides a process for preparing a controlled release preparation according to the present invention comprising incorporating tramadol or a pharmaceutically acceptable salt thereof in a controlled release matrix, for example by


[0036] (a) granulating a mixture comprising tramadol or a pharmaceutically acceptable salt thereof and one or more alkylcelluloses,


[0037] (b) mixing the alkylcellulose containing granules with one or more C12-36 aliphatic alcohols; and optionally


[0038] (c) shaping and compressing the granules, and film coating, if desired; or


[0039] (d) granulating a mixture comprising tramadol or a pharmaceutically acceptable salt thereof, lactose and one or more alkylcelluloses with one or more C12-36 aliphatic alcohol; and, optionally,


[0040] (e) shaping and compressing the granules, and film coating, if desired.


[0041] The controlled release preparation according to the invention may also be prepared in the form of film coated spheroids by


[0042] (a) granulating the mixture comprising tramadol or a pharmaceutically acceptable salt thereof and a spheronising agent;


[0043] (b) extruding the granulated mixture to give an extrudate;


[0044] (c) spheronising the extrudate until spheroids are formed; and


[0045] (d) coating the spheroids with a film coat.


[0046] One preferred form of unit dose form in accordance with the invention comprises a capsule filled with controlled release particles essentially comprising the active ingredient, a hydrophobic fusible carrier or diluent and optionally a hydrophillic release modifier. In particular, the controlled release particles are preferably prepared by a process which comprises forming a mixture of dry active ingredient and fusible release control materials followed by mechanically working the mixture in a high speed mixer with an energy input sufficient to melt or soften the fusible material whereby it forms particles with the active ingredient, the resultant particles, after cooling, are suitably sieved to give particles having a size range from 0.1 to 3.0 mm, preferably 0.25 to 2.0 mm. An example according to the invention is described below which is suitable for the commercial production of dosage units.


[0047] When using such a processing technique it has been found that, in order most readily to achieve the desired release characteristics (both in vivo and in vitro as discussed above) the composition to be processed should comprises two essential ingredients namely:


[0048] (a) tramadol or salt thereof; and


[0049] (b) hydrophobic fusible carrier or diluent; optionally together with


[0050] (c) a release control component comprising a water-soluble fusible material or a particulate soluble or insoluble organic or inorganic material.


[0051] We have found that the total amount of tramadol or pharmaceutically acceptable salt thereof in the composition may vary within wide limits, for example from 10 to 90% by weight thereof.


[0052] The hydrophobic fusible component (b) should be a hydrophobic material such as a natural or synthetic wax or oil, for example hydrogenated vegetable oil, hydrogenated castor oil, microcrystalline wax, Beeswax, Carnauba wax or glyceryl monostearate, and suitably has a melting point of from 35 to 140° C., preferably 45 to 110° C.


[0053] The release modifying component (c), when a water soluble fusible material, is conveniently a polyethylene glycol and, when a particulate material, is conveniently a pharmaceutically acceptable material such as dicalcium phosphate or lactose.


[0054] Another preferred process for the manufacture of a formulation in accordance with the invention comprises


[0055] (a) mechanically working in a high-speed mixer, a mixture of tramadol or a pharmaceutically acceptable salt in particulate form and a particulate, hydrophobic fusible carrier or diluent having a melting point from 35 to 140° C. and optionally a release control component comprising a water soluble fusible material, or a particulate soluble or insoluble organic or inorganic material at a speed and energy input which allows the carrier or diluent to melt or soften, whereby it forms agglomerates,


[0056] (b) breaking down the larger agglomerates to give controlled release seeds; and


[0057] (c) continuing mechanically working with optionally a further addition of low percentage of the carrier or diluent.


[0058] (d) optionally repeating steps (c) and possibly (b) one or more times.


[0059] This process is capable of giving a high yield (over 80%) of particles in a desired size range, with a desired uniformity of release rate of tramadol or salt thereof.


[0060] The resulting particles may be sieved to eliminate any over-or undersized material then formed into the desired dosage units by for example, encapsulation into hard gelatin capsules containing the required dose of the active substance or by compression into tablets.


[0061] In this method in accordance with the invention preferaby all the tramadol or salt thereof is added in step (a) together with a major portion of the hydrophobic fusible release control material used. Preferably the amount of fusible release control material added in step (a) is between 10% and 90% w/w of the total amount of ingredients added in the entire manufacturing operation, more preferably between 20% and 70% w/w.


[0062] Stage (a) of the process may be carried out in conventional high speed mixers with a standard stainless steel interior, e.g. a Collette Vactron 75 or equivalent mixer. The mixture is processed until a bed temperature about 40° C. or above is achieved and the resulting mixture acquires a cohesive granular texture, with particle sizes ranging from about 1-3 mm to fine powder in the case of non-aggregated original material. Such material, in the case of the embodiments described below, has the appearance of agglomerates which upon cooling below 40° C. have structural integrity and resistance to crushing between the fingers. At this stage the agglomerates are of an irregular size, shape and appearance.


[0063] The agglomerates are preferably allowed to cool. The temperature to which it cools is not critical and a temperature in the range room temperature to 37° C. may be conveniently used.


[0064] The agglomerates are broken down by any suitable means, which will comminute oversize agglomerates and produce a mixture of powder and small particles preferably with a diameter under 2 mm. It is currently preferred to carry out the classification using a Jackson Crockatt granulator using a suitable sized mesh, or a Comil with an appropriate sized screen. We have found that if too small a mesh size is used in the aforementioned apparatus the agglomerates melting under the action of the beater or impeller will clog the mesh and prevent further throughput of mixture, thus reducing yield. A mesh size of 12 has been found adequate.


[0065] The classified material is returned to the high speed mixer and processing continued. It is believed that this leads to cementation of the finer particles into particles of uniform size range.


[0066] In one preferred form of the method of the invention processing of the classified materials is continued, until the hydrophobic fusible materials used begin to soften/melt and optionally additional hydrophobic fusible material is then added. Mixing is continued until the mixture has been transformed into particles of the desired predetermined size range.


[0067] In order to ensure uniform energy input into the ingredients in the high speed mixer it is preferred to supply at least part of the energy by means of microwave energy.


[0068] Energy may also be delivered through other means such as by a heating jacket or via the mixer impeller and chopper blades.


[0069] After the particles have been formed they are cooled or allowed to cool, and may then be sieved to remove any over or undersized material.


[0070] The resulting particles may be used to prepare dosage units in accordance with the invention in the form of e.g. tablets or capsules in manners known per se.


[0071] We have also found that particles containing tramadol or a salt thereof produced by a melt processing as described in application PCT/SE93/00225 and the process described and claimed in our prior unpublished UK application No. 9324045.5 filed on Nov. 23, 1993 as well as the process described herein are particularly useful for processing into the form of tablets.


[0072] We have found that by suitable selection of the materials used in forming the particles and in the tabletting and the proportions in which they are used, enables a significant degree of control in the ultimate dissolution and release rates of the tramadol or salt thereof from the compressed tablets.


[0073] Usually, to form a tablet in accordance with the invention, particles prepared as described above will be admixed with tabletting excipients e.g. one or more of the standard excipients such as diluents, lubricants, binding agents, flow aids, disintegrating agents, surface active agents or water soluble polymeric materials.


[0074] Suitable diluents are e.g. microcrystalline cellulose, lactose and dicalcium phosphate. Suitable lubricants are e.g. magnesium stearate and sodium stearyl fumarate. Suitable binding agents are e.g. hydroxypropyl methyl cellulose, polyvidone and methyl cellulose.


[0075] Suitable disintegrating agents are starch, sodium starch glycolate, crospovidone and croscarmalose sodium. Suitable surface active are Poloxamer 188®, polysorbate 80 and sodium lauryl sulfate. Suitable flow aids are talc colloidal anhydrous silica. Suitable water soluble polymers are PEG with molecular weights in the range 1000 to 6000.


[0076] To produce tablets in accordance with the invention, particles produced in accordance with the invention may be mixed or blended with the desired excipient(s), if any, using conventional procedures, e.g. using a Y-Cone or bin-blender and the resulting mixture compressed according to conventional tabletting procedure using a suitable size tabletting mould. Tablets can be produced using conventional tabletting machines, and in the embodiments described below were produced on standard single punch F3 Manesty machine or Kilian RLE15 rotary tablet machine.


[0077] Generally speaking we find that even with such a highly water soluble active agent as tramadol or salt thereof tablets formed by compression according to standard methods give very low release rates of the active ingredient e.g. corresponding to release over a period of greater than 24 hours, say more than 36. We have found that the release profile can be adjusted in a number of ways. For instance a higher loading of the drug will be associated with increased release rates; the use of larger proportions of the water soluble fusible material in the particles or surface active agent in the tabletting formulation will also be associated with a higher release rate of the active ingredient. By controlling the relative amounts of these ingredients it is possible to adjust the release profile of the tramadol or salt thereof.


[0078] In order that the invention may be well understood the following examples are given by way of illustration only.






EXAMPLE 1

[0079] Tablets having the following formulation were prepared:
6mg/tabletTramadol Hydrochloride100Lactose Ph. Eur.68.0Ethylcellulose (Surelease ® 25% solids)15Purified Water Ph. Eur.13.3*Cetostearyl Alcohol Ph. Eur.42.00(Dehydag wax O)Magnesium Stearate Ph. Eur.2.00Purified Talc Ph. Eur.3.00230.00*Removed during processing.


[0080] Tramadol hydrochloride (100 mg) and lactose (68 mg) were granulated, transferred to a fluid bed granulator and sprayed with ethylcellulose (15 mg) and water. The granules were then dried at 60° C. and passed through a 1 mm screen.


[0081] To the warmed tramadol containing granules was added molten cetostearyl alcohol (42 mg) and the whole was mixed thoroughly. The granules were allowed to cool and sieved through a 1.6 mm screen. Purified talc and magnesium stearate were added and mixed with the granules. The granules were then compressed into tablets.


[0082] The tablets were coated with a film coat having the formulation given below.
7mg/tabletHydropropylmethylcellulose0.770Ph. Eur. 15 cps (Methocel E15)Hydroxypropylmethylcellulose3.87(Ph. Eur. 5 cps (Methocel E5)Opaspray M-1-7111B (33% solids)2.57Polyethylene glycol 400 USNF0.520Purified Talc Ph. Eur.0.270Purified Water Ph. Eur.55.52**Remove during processing.



EXAMPLE 2

[0083] Tablets having the following formulation were prepared:
8mg/tabletTramadol hydrochloride100.0Lactose Ph. Eur.58.0Ethylcellulose USNF15.0(Ethocel 45 CP)Cetostearyl alcohol Ph. Eur.52.0(Dehydag wax O)Magnesium stearate Ph. Eur.2.00Purified talc Ph. Eur.3.00


[0084] A mixture of tramadol hydrochloride (100 mg), lactose (58 mg) and ethylcellulose (15 mg) was granulated whilst adding molten cetostearyl alcohol (52 mg) and the whole was mixed thoroughly. The granules were allowed to cool and sieved through a 1.6 mm screen. Purified talc and magnesium stearate were added and mixed with the granules. The granules were then compressed into tablets which were coated with a film coat having the formulation given in Example 1.



EXAMPLE 3

[0085] Film coated tablets were produced following the procedure described in Example 2 and having the following formulation:
9mg/tabletTramadol hydrochloride100.00Lactose Ph. Eur.70.50Hydroxyethylcellulose Ph. Eur.12.50Cetostearyl alcohol Ph. Eur.42.00Magnesium stearate Ph. Eur.2.00Purified talc Ph. Eur.3.00


[0086] In Vitro Dissolution Studies


[0087] In vitro dissolution studies were conducted on tablets prepared as described above. Results are given in Table 1.
10TABLE 1WT % TRAMADOL RELEASEDTime (h)Example 1Example 2*Example 31393543252476046762848827897129086*Measured on tablet core


[0088] In a trial involving 12 healthy volunteers the serum levels of tramadol following administration of one tablet according to Example 2 was found to be as illustrated in FIG. 1.



EXAMPLE 4 AND 5

[0089] Particles having the formulations given in Table 11 below were prepared by the steps of:


[0090] i. Placing the ingredients (a) and (c) (total batch weight 0.7 kg) in the bowl of a liter capacity Collette Gral Mixer (or equivalent) equipped with variable speed mixing and granulating blades;


[0091] ii. Mixing the ingredients at about 150-1000 rpm whilst applying heat until the contents of the bowl are agglomerated.


[0092] iii. Classifying the agglomerated material by passage through a Comil and/or Jackson Crockatt to obtain controlled release seeds.


[0093] iv. Warming and mixing the classified material in the bowl of a 10 liter Collette Gral, until uniform multiparticulates of the desired pre-determined size range are formed in yield of greater than 80%. This takes approximately 5 minutes.


[0094] v. Discharging the multiparticulates from the mixer and sieving them to separate out the multiparticulates collected between 0.5 and 2 mm aperture sieves.
11TABLE IIExample45(a) Tramadol HCl (Wt %)5075(b) Hydrogenated Vegetable Oil (Wt %)5025



EXAMPLE 6

[0095] Samples of the particles from Example 4 were blended with magnesium stearate and purified talc using a Y-Cone or bin-blender. The blended mixture was then compressed using either (1) 14×6 mm, (2) 16×7 mm or (3) 18.6×7.5 mm capsule shaped tooling on a single punch F3 Manesty tabletting machine to give tablets giving 200, 300 and 400 mg of tramadol HCl. The ingredients per dosage unit amounted to the following:
12TABLE IIITABLETMG/TABLETINGREDIENT123Tramadol HCl200300400Hydrogenated Vegetable Oil200300400Sub Total400600800Purified Talc12.6318.9525.26Magnesium Searate8.4212.6316.84


[0096] The tablets were assessed by the dissolution using Ph. Eur. Paddle Method 100 rpm, 0.1 N HCl.


[0097] To assess the non-compressed particles the Ph Eur. Paddle was replaced by a modified Ph Eur. Basket.


[0098] The results are shown in Table IV below;
13TABLE IVHOURS AFTERParticlesTablet 1Tablet 2Tablet 3START OF TEST% TRAMADOL HCl RELEASED1541615152682320213762825254823228286894035358934641401096504545129855494916100 63575620NR7063NR


[0099] These results confirm the effectiveness of the tabletting in reducing the release rate.



EXAMPLE 7

[0100] Samples of the particles from Example 5 were then tabletted using a procedure similar to Example 3 and the ingredients per unit dosage amounted to:
14TABLE VTABLETMG/TABLETINGREDIENT456Tramadol HCl200300400Hydrogeziated Vegetable Oil66.7100133Sub Total266.7400533Purified Talc7.6311.4415.25Magnesium Stearate5.167.6310.17


[0101] The tablets and samples of non-compressed multiparticulates (each sample containing 400 mg of tramadol hydrochloride) were assessed by the dissolution method also described above. The results are shown in Table VI below;
15TABLE VIHOURS AFTERParticlesTablet 4Tablet 5Tablet 6START OF TEST% TRAMADOL HCl RELEASED1 774340422 926455563 98756566410083727361029483848102100 919110102NR9697


[0102] These results show that by increasing the loading of the highly water soluble tramadol hydrochloride (75% w/w in this example compared with 50% w/w in Example 6) a significantly faster release rate of the active ingredient can be achieved.



EXAMPLE 8

[0103] Example 4 was repeated but with the following formulation:
16Tramadol HCl200 mg/tabletHydrogenated Vegetable Oil163.0 mg/tablet


[0104] The resulting multiparticulates were blended as described in Example 6 with the following;
17Purified Talc11.5 mg/tabletMagnesium Stearate7.66 mg/tablet


[0105] The blend was then compressed as described in Example 6 but using 15 mm×6.5 mm normal concave capsule shaped plain/plain punches.


[0106] The resulting tablets were then assessed by the dissolution method described above. The results are shown in Table V.
18HOURS AFTER START OF TEST% TRAMADOL HCl RELEASED12022733243764485010551260166720732477


[0107] In a trial involving five healthy male volunteers the plasma profile resulting from single dose administrations of the above tablet are shown in FIG. 2 in comparison to the administration of a commercial preparation of Tramadol drops 100 mg.


Claims
  • 1. A controlled release preparation comprising tramadol or a pharmaceutically acceptable salt thereof for oral administration.
  • 2. A controlled release preparation as claimed in claim 1 containing from about 50 to about 800 mg of tramadol (calculated as tramadol hydrochloride).
  • 3. A controlled release preparation as claimed in claim 1, having an in-vitro dissolution rate (measured by the Ph. Eur. Paddle method at 100 rpm in 900 ml 0.1 N hydrochloric acid at 37° C. and using UV detection at 270 mm) as set forth below:
  • 4. A controlled release preparation as claimed in claim 1, having an in-vitro dissolution rate (measured by the Ph. Eur. Paddle method at 100 rpm in 900 ml 0.1 N hydrochloric acid at 37° C. and using UV detection at 270 mm) as set forth below:
  • 5. A controlled release preparation as claimed in claim 1, having an in-vitro dissolution rate (measured by the Ph. Eur. Paddle method at 100 rpm in 900 ml 0.1 N hydrochloric acid at 37° C. and using UV detection at 270 mm) as set forth below:
  • 6. A controlled release preparation as claimed in claim 1, having an in-vitro dissolution rate (measured by the Ph. Eur. Paddle Method at 100 rpm in 900 ml 0.1 N hydrochloric acid at 37° C. and using UV detection at 270 mm) as set forth below:
  • 7. A controlled release oral dosage form according to claim 1, comprising a therapeutically effective amount of tramadol or a salt thereof in a matrix adapted to provide a controlled release of the tramadol or salt thereof upon oral administration.
  • 8. A dosage form according to claim 7, wherein said matrix comprises a controlled release matrix comprising at least one alkylcellulose, at least one C12 to C36, aliphatic alcohol and, optionally at least one polyalkylglycol.
  • 9. A dosage form as claimed in claim 8, wherein said optionally at least one polyalkylglycol is polyethylene glycol.
  • 10. A dosage form according to claim 8, wherein said at least one C12 to C36 aliphatic alcohol is a C14 to C22 aliphatic alcohol.
  • 11. A dosage form according to claim 8, wherein said alkylcellulose is a C1-C6 alkylcellulose.
  • 12. A dosage form according to claim 8, characterized in that the dosage form contains from about 1 to about 20% w/w, preferably from about 2 to about 15% w/w of one or more alkylcelluloses.
  • 13. A dosage form according to claim 8, wherein said aliphatic alcohol is selected from the group consisting of lauryl alcohol, myristyl alcohol, stearylalcohol, cetyl alcohol, cetostearyl alcohol, and mixtures of any of the foregoing.
  • 14. The dosage form of claim 13, wherein said aliphatic alcohol is cetyl alcohol or cetostearyl alcohol.
  • 15. A dosage form according to claim 8, wherein said dosage form contains from about 5 to bout 30% w/w of aliphatic alcohol.
  • 16. A dosage form according to claim 8, wherein aid dosage form contains from about 10 to about 25% w/w of aliphatic alcohol.
  • 17. A dosage form according to claim 1, in the form of film coated spheroids, wherein said spheroid matrix comprises a spheronizing agent, preferably microcrystalline cellulose.
  • 18. A dosage form according to claim 1, in the form of multiparticulates wherein said matrix comprises a hydrophobic fusible carrier or diluent having a melting point from 35 to 140° C. and optionally a release control component comprising a water soluble fusible material, or a particulate soluble or insoluble organic or inorganic material.
  • 19. A dosage form according to claim 1, which comprises a tablet formed by compressing a multiparticulate according to claim 18.
  • 20. A process for the preparation of a solid, controlled release oral dosage form, comprising incorporating a therapeutically effective amount of tramadol or a pharmaceutically acceptable salt thereof in a matrix adapted to provide a controlled release of the tramadol or salt thereof upon oral administration.
  • 21. A process according to claim 20, wherein from about 50 to about 800 mg of tramadol (calculated as tramadol hydrochloride) is incorporated in the dosage form.
  • 22. A process according to claim 20, wherein the dissolution rate (measured by the Ph. Eur. Paddle method at 100 rpm in 900 ml 0.1 N hydrochloric acid at 37° C. and using UV detection at 270 mm) is as set forth below:
  • 23. A process according to claim 20, wherein the dissolution rate (measured by the Ph. Eur. Paddle method at 100 rpm in 900 ml 0.1 N hydrochloric acid at 37° C. and using UV detection at 270 mm) is as set forth below:
  • 24. A process according to claim 20, wherein the dissolution rate (measured by the Ph. Eur. Paddle method at 100 rpm in 900 ml 0.1 N hydrochloric acid at 37° C. and using UV detection at 270 mm) is as set forth below:
  • 25. A process according to claim 20, wherein said matrix comprises a controlled release matrix comprising at least one C1 to C6 alkylcellulose, at least one C12 to C36, aliphatic alcohol and, optionally at least one polyalkylglycol.
  • 26. A process according to claim 25, wherein said aliphatic alcohol is a C14 to C22 aliphatic alcohol.
  • 27. A process according to claim 25 wherein said optionally at least one polyalkylglycol is polyethylene glycol.
  • 28. A process according to claim 20, wherein said at least one alkylcellulose is ethylcellulose.
  • 29. A process according to claim 20, wherein said dosage form comprises from about 1 to about 20% w/w of one or more alkylcelluloses.
  • 30. A process according to claim 29, wherein said dosage form contains from about 2 to about 15% w/w of one or more alkylcelluloses.
  • 31. A process according to claim 20, wherein said aliphatic alcohol comprises lauryl alcohol, myristyl alcohol or stearylalcohol.
  • 32. A process according to claim 31, wherein said aliphatic alcohol is cetyl alcohol or cetostearyl alcohol.
  • 33. A process according to claim 20, wherein said dosage form comprises from about 5 to about 30% w/w of aliphatic alcohol.
  • 34. A process according to claim 33, wherein said dosage form comprises from about 10 to about 25% w/w of aliphatic alcohol.
  • 35. A process according to claim 20, further comprising: (a) granulating a mixture comprising tramadol or a pharmaceutically acceptable salt thereof and one or more alkylcelluloses, (b) mixing the alkylcellulose containing granules with one or more C12-36 aliphatic alcohols; and, optionally (c) shaping and compressing the granules, and film coating, if desired.
  • 36. A process according to claim 20, further comprising: (a) granulating a mixture comprising tramadol or a pharmaceutically acceptable salt thereof, lactose and one or more alkylcelluloses with one or more C12-36 aliphatic alcohol; and, optionally, (b) shaping and compressing the granules, and film coating.
  • 37. A process according to claim 20, further comprising: (a) granulating the mixture comprising tramadol or a pharmaceutically acceptable salt thereof and a spheronizing agent; (b) extruding the granulated mixture to give an extrudate; (c) spheronizing the extrudate until spheroids are formed; and (d) coating the spheroids with a film coat.
  • 38. A process according to claim 20, comprising: (a) mechanically working in a high-speed mixer, a mixture of tramadol or a pharmaceutically acceptable salt thereof in particulate form and a particulate, hydrophobic fusible carrier or diluent having a melting point from 35 to 140° C. and optionally a release control component comprising a water soluble fusible material, or a particulate soluble or insoluble organic or inorganic material at a speed and energy input which allows the carrier or diluent to melt or soften, whereby it forms agglomerates; (b) breaking down the larger agglomerates to give controlled release seeds; (c) continuing mechanically working with optionally a further addition of low percentage of the carrier or diluent; and (d) optionally repeating steps (c) and possibly (b) one or more times.
  • 39. A process according to claim 20, characterized by forming a drug mixture of dry active ingredient and fusible release control materials followed by mechanically working the mixture in a high speed mixer with an energy input sufficient to melt or soften the fusible material whereby it forms particles with the active ingredient.
  • 40. A process according to claim 20, comprising compressing particles obtained by the process of claim 38.
  • 41. A process according to claim 20, comprising compressing particles obtained by the process of claim 39.
Priority Claims (4)
Number Date Country Kind
P4315525.1 May 1993 DE
9324045.5 Nov 1993 GB
9404544.4 Mar 1994 GB
9404928.5 Mar 1994 GB
Continuations (2)
Number Date Country
Parent 08677798 Jul 1996 US
Child 09800204 Mar 2001 US
Parent 08241129 May 1994 US
Child 08677798 Jul 1996 US