Claims
- 1. A method of casting an article, said method comprising the steps of providing a mold having an open ended cavity with a configuration corresponding to the configuration of the article to be cast, providing a body of molten metal, lowering the mold into the body of molten metal with the open end of the mold cavity facing downwardly to fill the mold cavity with molten metal, withdrawing the mold form the body of molten metal, maintaining the level of an upper surface of the body of molten metal substantially constant as the mold is withdrawn from the body of molten metal, said step of maintaining the level of the body of molten metal constant as the mold is withdrawn from the body of molten metal includes the step of lowering into the body of molten metal a makeup body having a cross sectional volume which varies from the lower end of the makeup body to the uper end portion of the makeup body in the same manner as in which the cross sectional volume of the mold varies from the upper end of the portion of the mold in the body of molten metal to the lower end of the mold, and solidifying the molten metal in the mold cavity with the open end of the mold cavity facing downwardly and while performing said step of withdrawing the mold from the body of molten metal.
- 2. A method as set forth in claim 1 further including the step of melting the makeup body as it is lowered into the body of molten metal.
- 3. A method as set forth in claim 1 further including the step of withdrawing the makeup body from the body of molten metal after the mold has been withdrawn from the body of molten metal.
- 4. A method as set forth in claim 1 further including the steps of providing a solid body of metal in the mold and engaging the solid body of metal with the molten metal during completion of said step of lowering the mold into the body of molten metal.
- 5. A method as set forth in claim 4 wherein said step of providing a solid body of metal in the mold includes the step of providing a body of metal which is a single crystal, said step of solidifying the molten metal in the mold cavity includes the step of solidifying the molten metal to form a single crystal article in the mold cavity.
- 6. A method as set forth in claim 4 wherein said step of providing a solid body of metal in the mold includes the step of providing a chill member in the mold, said step of solidifying the molten metal in the mold cavity includes the step of conducting heat through the chill member at a greater rate than heat is conducted through side portions of the mold disposed above the body of molten metal, said step of solidifying the molten metal includes the step of solidifying the molten metal as a plurality of elongated columnar grains which extend downwardly from the chill member toward the lower end of the mold cavity.
- 7. A method as set forth in claim 1 wherein said step of providing a mold includes providing a mold having a mold cavity with an opening at one end of the mold and a chill cavity having an opening at another end of the mold, said method further including the step of inserting a chill member into the chill cavity, said step of lowering the mold into the body of molten metal includes lowering the mold with the chill member extending from the upper end of the mold, said method further including the step of cooling the chill member while performing said step of solidifying the molten metal in the mold cavity.
- 8. A method as set forth in claim 1 further including the step of providing a baffle plate over the top of the body of molten metal, said step of lowering the mold into the body of molten metal includes the step of moving the mold through an opening in the baffle plate.
- 9. A method as set forth in claim 1 wherein said step of lowering the mold into the body of molten metal includes lowering the mold into the body of molten metal while the mold is at a temperature which is below the temperature of the molten metal, said step of withdrawing the mold from the body of molten metal being performed after the mold has been heated to substantially the same temperature as the body of molten metal.
- 10. A method as set forth in claim 1 further including the step of inserting a material into the molten metal in the mold cavity at a rate which is a function of the rate at which the mold is withdrawn from the body of molten metal during performance of said step of withdrawing the mold from the body of molten metal to thereby promote an even distribution of the inserted material in at least a portion of the molten metal solidified in the mold cavity.
- 11. A method as set forth in claim 1 further including the step of positioning the mold and a hollow tubular member with an end portion of the hollow tubular member disposed in the mold cavity at a location beneath the upper surface of the body of molten metal and forcing material out of the end portion of the hollow tubular member into the molten metal in the mold cavity as the mold is withdrawn from the body of molten metal while maintaining the end portion of the tubular member beneath the surface of the molten metal in the mold cavity.
- 12. A method as set forth in claim 1 further including the step of adding material to the molten metal in the mold cavity as the mold is withdrawn from the molten metal to form a dispersoid in the mold cavity.
- 13. A method of casting an article, said method comprising the steps of providing a mold having a mold cavity with a configuration corresponding to the configuration of the article to be cast and with a first end and an open second end, lowering the mold into a body of molten metal with the open second end of the mold facing downwardly to fill the mold cavity with molten metal through the open second end of the mold cavity, withdrawing the mold from the body of molten metal to effect solidification of the molten metal in the mold cavity at an interface which moves from the first end of the mold cavity toward the second end of the mold cavity, and dispensing an additive material into the molten metal in the mold cavity as the interface moves from the first end of the mold cavity to the second end of the mold cavity to disperse the additive material into the molten metal immediately before it solidifies, said step of dispensing additive material into the molten metal includes the step of introducing the additive material directly into the molten metal at a location which is disposed in the mold and is beneath the interface as the interface moves from the first end of the mold cavity to the second end of the mold cavity.
- 14. A method of casting an article, said method comprising the steps of providing a mold having an open ended cavity with a configuration corresponding to the configuration of the article to be cast, providing a body of molten metal, lowering the mold into the body of molten metal with the open end of the mold cavity facing downwardly to fill the mold cavity with molten metal, withdrawing the mold from the body of molten metal, maintaining the level of an upper surface of the body of molten metal substantially constant as the mold is withdrawn from the body of molten metal, said step of maintaining the level of the body of molten metal constant as the mold is withdrawn includes the step of adding metal to the body of molten metal by lowering a makeup body of solid metal into the body of molten metal at a rate which varies as a function of the rate of withdrawal of the mold from the body of molten metal, and solidifying the molten metal in the mold cavity with the open end of the mold cavity facing downwardly and while performing said step of withdrawing the mold from the body of molten metal.
- 15. A method as set forth in claim 14 further including the step of providing a baffle plate over the top of the body of molten metal, said step of withdrawing the mold from the body of molten metal includes the step of moving the mold through an opening in the baffle plate, said step of lowering a makeup body of metal into the body of molten metal includes the step of moving the makeup body of metal downwardly through a second opening in the baffle plate while the mold is moving upwardly through the first opening.
- 16. A method as set forth in claim 14 further including the step of inserting a material into the molten metal in the mold cavity at a rate which is a function of the rate at which the mold is withdrawn from the body of molten metal during performance of said step of withdrawing the mold from the body of molten metal to thereby promote an even distribution of the inserted material in at least a portion of the molten metal solidified in the mold cavity, said step of inserting material into the molten metal in the mold cavity includes the step of introducing the material directly into the molten metal at a location which is disposed in the mold at a predetermined distance below the upper surface of the body of molten metal.
- 17. A method as set forth in claim 14 further including the step of positioning the mold and a hollow tubular member with an end portion of the hollow tubular member disposed in the mold cavity at a location beneath the upper surface of the body of molten metal and forcing material out of the end portion of the hollow tubular member into the molten metal in the mold cavity as the mold is withdrawn from the body of molten metal while maintaining the end portion of the tubular member beneath the surface of the molten metal in the mold cavity.
- 18. A method of casting an article, said method comprising the steps of providing a mold having an open ended cavity with a configuration corresponding to the configuration of the article to be cast, providing a body of molten metal, lowering the mold into the body of molten metal with the open end of the mold cavity facing downwardly to fill the mold cavity with molten metal, withdrawing the mold from the body of molten metal, maintaining the level of an upper surface of the body of molten metal substantially constant as the mold is withdrawn from the body of molten metal, inserting an additive material into the molten metal in the mold cavity during performance of said step of withdrawing the mold from the body of molten metal to thereby promote an even distribution of the additive material in at least a portion of the molten metal in the mold cavity, said step of inserting an additive material into the molten metal in the mold cavity includes the step of introducing the additive material directly into the molten metal at a location which is disposed in the mold at a predetermined distance below the upper surface of the body of molten metal, and solidifying the molten metal in the mold cavity with the open end of the mold cavity facing downwardly and while performing said step of withdrawing the mold from the body of molten metal.
- 19. A method as set forth in claim 18 wherein said step of inserting an additive material into the molten metal in the mold cavity includes forcing additive material out of an end portion of a hollow tubular member directly into the molten metal in the mold cavity as the mold is withdrawn from the body of molten metal and while the end portion of tubular member is at least partially surrounded by the molten metal in the mold cavity.
- 20. A method of casting an article, said method comprising the steps of providing a mold having a mold cavity with a configuration corresponding to the configuration of the article to be cast and with a first end and an open second end, filling the mold cavity with molten metal through the open second end of the mold cavity, inserting a hollow rod through the open second end of the mold cavity to a position in which an end of the rod is at least partially immersed in the molten metal in the mold cavity and is adjacent to the first end of the mold cavity, solidifying the molten metal in the mold cavity at an interface which moves from the first end of the mold cavity toward the second end of the mold cavity, maintaining the immersed end of the rod adjacent to the interface as the molten metal solidifies by decreasing the extent to which the rod extends into the mold cavity as the interface moves from the first end of the mold cavity to the second end of the mold cavity, and forcing an additive material from the immersed end of the rod directly into the molten metal in the mold cavity at a location adjacent to the interface as the extent to which the rod extends into the mold cavity is decreased and the interface moves from the first end of the mold cavity to the second end of the mold cavity to disperse the additive material into the molten metal immediately before it solidifies.
- 21. A method as set forth in claim 20 wherein said step of filling the mold cavity with molten metal includes the step of lowering the mold into a body of molten metal with the open second end of the mold facing downwardly.
- 22. A method as set forth in claim 21 wherein said step of decreasing the extent to which the rod extends into the mold cavity includes withdrawing the mold from the body of molten metal.
Parent Case Info
This is a continuation of copending application Ser. No. 610,890 filed on May 16, 1984 now abandoned.
US Referenced Citations (12)
Foreign Referenced Citations (2)
Number |
Date |
Country |
4642308 |
Dec 1971 |
JPX |
931289 |
May 1982 |
SUX |
Continuations (1)
|
Number |
Date |
Country |
Parent |
610890 |
May 1984 |
|