The invention relates generally to semiconductor memory integrated circuits (“ICs”), such as dynamic random access memories (“DRAMs”), and, more particularly, to a controlled substrate voltage for such ICs.
Dynamic random access memories (“DRAMs”) are the most commonly manufactured product of all semiconductor integrated circuits (“ICs”). DRAMs are data storage devices that store data as a charge on a storage capacitor. A DRAM typically includes an array of memory cells. Each memory cell includes a storage capacitor and a transistor for transferring charges to and from the storage capacitor. Each memory cell is addressed by a word line (“WL”) and accessed by a bit line (“BL”) pair. The WL controls the transistor such that the transistor couples the storage capacitor to and decouples the storage capacitor from the BL pair for writing data to and reading data from the memory cell. Multiple word lines correspond to multiple rows of memory cells, while multiple bit line pairs correspond to multiple columns of memory cells.
DRAM array devices should be designed with minimum leakage currents so as to be capable of supporting as high as possible retention times. Therefore, the substrate voltage is conventionally connected to negative voltage levels, such as −0.5 V, to reduce leakage currents. However, this can result in increased source to substrate voltages, thereby increasing the threshold voltage and reducing device performance (e.g., reduced write back current). Additionally, DRAM devices may not share a common substrate, but may have individual substrate wells. Examples of such DRAM devices include silicon on insulator (“SOI”) DRAMs and vertical (e.g., trench technology) DRAM devices with complete body pinch off due to the buried strap (“BS”) beyond the cell dimensions. The BS provides the outdiffusion from the trench to the drain of the array device, thereby providing connection. Since the BS diffuses horizontally, it can eventually connect to the next trench, isolating the well.
It is therefore desirable to provide a solution that can reduce the increase in the array device threshold voltage. Exemplary embodiments of the invention actively adjust the substrate well voltage during operation of the memory device. This can reduce the body effect (i.e., variation of the threshold voltage due to a variation of the substrate or bulk voltage) and can therefore provide improved array device performance (e.g., reduced data corruption) while the word line (“WL”) is activated.
The above and further advantages of the invention may be better understood by referring to the following description in conjunction with the accompanying drawings in which corresponding numerals in the different figures refer to the corresponding parts, in which:
While the making and using of various embodiments of the present invention are discussed herein in terms of specific sensing schemes and voltage conditions, it should be appreciated that the present invention provides many inventive concepts that can be embodied in a wide variety of contexts. The specific embodiments discussed herein are merely illustrative of specific ways to make and use the invention, and are not meant to limit the scope of the invention.
The present invention provides a solution that can reduce the increase in the threshold voltage of dynamic random access memory (“DRAM”) devices, thereby improving device performance during operation. The use of body contacts as described herein can provide variable substrate voltages during DRAM operation. The body contacts can change the body bias of activated memory cells, while maintaining the body bias of inactive memory cells. This can reduce the body effect (i.e., variation of the threshold voltage due to a variation of the substrate or bulk voltage) and can therefore provide improved array device performance (e.g., reduced data corruption) while the word line (“WL”) is activated.
Exemplary embodiments of the present invention can modify circuit implementation 100 to include transistor 210, body contact 220, and resistor 230, as illustrated by the circuit implementation 200 shown in
Exemplary embodiments of the present invention can provide body contact rows 410, as illustrated by the exemplary vertical cell layout 400 of
Although exemplary embodiments of the present invention have been described in detail, it will be understood by workers in the art that various modifications can be made therein without departing from the spirit and scope of the invention as set forth in the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
4799193 | Horiguchi et al. | Jan 1989 | A |
5321647 | Bronner et al. | Jun 1994 | A |
5604707 | Kuge et al. | Feb 1997 | A |
6232793 | Arimoto et al. | May 2001 | B1 |
6563746 | Fujioka et al. | May 2003 | B2 |
Number | Date | Country |
---|---|---|
0 568 818 | Nov 1993 | EP |
Number | Date | Country | |
---|---|---|---|
20050050262 A1 | Mar 2005 | US |