The present invention relates generally to fire protection systems for storage. More specifically, the present invention involves fire protection systems to generate a controlled response to a fire in which a fixed volumetric flow of firefighting fluid is distributed to effectively quench a fire.
Industry accepted system installation standards and definitions for storage fire protection are provided in National Fire Protection Association publication, NFPA 13: Standard for the Installation of Sprinkler Systems (2013 ed.) (“NFPA 13”). With regard to the protection of stored plastics, such as for example Group A plastics, NFPA 13 limits the manner in which the commodity can be stored and protected. In particular, Group A plastics including expanded exposed and unexposed plastics is limited to palletized, solid-piled, bin box, shelf or back-to-back shelf storage up to a maximum height of twenty-five feet beneath a maximum thirty foot ceiling depending upon the particular plastic commodity. NFPA 13 does provide for rack storage of plastic commodities, but limits rack storage of Group A plastics to (i) cartoned, expanded or nonexpanded and (ii) exposed, nonexpanded plastics. Moreover, the rack storage of the applicable Group A plastics is limited to a maximum storage height of forty feet (40 ft.) beneath a maximum ceiling of forty-five feet (45 ft.). Under the installation standards, the protection of Group A plastics in racks requires particular accommodations such as for example, horizontal barriers and/or in-rack sprinklers. Accordingly, the current installation standards do not provide for fire protection of exposed, expanded plastics in a rack storage arrangement with or without particular accommodations, e.g., a “ceiling-only” fire protection system. Generally, the systems installed under the installation standards provide for fire “control” or “suppression.” The industry accepted definition of “fire suppression” for storage protection is sharply reducing the heat release rate of a fire and preventing its regrowth by means of direct and sufficient application of a flow of water through the fire plume to the burning fuel surface. The industry accepted definition of “fire control” is defined as limiting the size of a fire by distribution of a flow of water so as to decrease the heat release rate and pre-wet adjacent combustibles, while controlling ceiling gas temperatures to avoid structural damage. More generally, “control” according to NFPA 13, can be defined “as holding the fire in check through the extinguishing system or until the fire is extinguished by the extinguishing system or manual aid.”
Dry system ceiling-only fire protection systems for rack storage including Group A plastics is shown and described in U.S. Pat. No. 8,714,274. These described systems address a fire in a rack storage occupancy by delaying the discharge of firefighting fluid from actuated sprinklers to “surround and drown” the fire. Each of the systems under either NFPA or described in U.S. Pat. No. 8,714,274, employ “automatic sprinklers” which can be either a fire suppression or fire control device that operates automatically when its heat-activated element is heated to its thermal rating or above, allowing water to discharge over a specified area upon delivery of the firefighting fluid. Accordingly, theses known systems employs sprinklers that are actuated in a thermal response to the fire.
In contrast to systems that use a purely thermally automatic response, there are described systems that use a controller to operate one or more sprinkler devices. For example, in Russian Patent No. RU 95528 a system is described in which the system is controlled to open a fixed geographical area of sprinkler irrigators that is larger than the area of a detected fire. In another example, Russian Patent No. RU 2414966, a system is described which provides for controlled operation of sprinkler irrigators of a fixed zone closer to the center of the fire, but the operation of the zone is believed to rely in part upon visual detection by persons able to remotely operate the sprinkler irrigators. These described systems are not believed to improve upon known methods of addressing the fire nor is it believed that the described system provide fire protection of high challenge commodities and in particular plastic commodities.
Preferred systems and methods are provided which improve fire protection over systems and methods that address a fire with a control, suppression and/or surround and drown effect. Moreover, the preferred systems and methods described herein provide for protection of storage occupancies and commodities with “ceiling-only” fire protection. As used herein, “ceiling-only” fire protection is defined as fire protection in which the fire protection devices, i.e., fluid distribution devices and/or detectors, are located at the ceiling, above the stored items or materials such that there are no fire protection devices between the ceiling devices and the floors. The preferred systems and methods described includes means for quenching a fire for the protection of a storage commodity and/or occupancy. As used herein, “quench” or “quenching” of a fire is defined as providing a flow of firefighting liquid, preferably water, to substantially extinguish a fire to limit the impact of a fire on a storage commodity; and in a preferred manner, provide a reduced impact as compared to known suppression performance sprinkler systems. Additionally or alternatively to quenching the fire, the systems and methods described herein can also effectively address the fire with fire control, fire suppression and/or surround and drown performance or provide fire protection systems and methods for stored commodities that are unavailable under current installation designs, standards or other described methods. Generally, the preferred means for quenching includes a piping system, a plurality of fire detectors to detect a fire and a controller in communication with each of the detectors and fluid distribution devices to identify a select number of fluid distribution devices preferably defining an initial discharge array above and about the detected fire. The preferred means provides for controlled operation of the fluid distribution devices of the discharge array to distribute a preferably fixed and minimized flow of firefighting fluid to preferably quench the fire. In some embodiments, the preferred means controls the supply of firefighting fluid to the selected fluid distribution devices.
In particular preferred embodiments of the systems and methodologies described herein, the inventors have determined an application of a preferred embodiment of the quenching means to provide for protection of exposed expanded plastics in racks. In particular, the preferred means for quenching can provide for ceiling-only fire protection of rack storage of exposed expanded plastics without accommodations required under current installation standards, e.g., in-rack sprinklers, barriers, etc., and at heights not provided for under the standards. Moreover, it is believed that the preferred means for quenching can effectively address a high challenge fire in a test fire without the need for testing accommodations, such as for example, vertical barriers that limit the lateral progression of a fire in the test array. Preferred embodiments of the fire protection systems for storage protection described herein provide for a controlled response to a fire by providing a fixed volumetric flow of firefighting fluid at a threshold moment in the fire to limit and more preferably reduce impact of the fire on a storage commodity.
A preferred embodiment of a fire protection system is provided for protection of a storage occupancy having a ceiling defining a nominal ceiling height greater than thirty feet. The system preferably includes a plurality of fluid distribution devices disposed beneath the ceiling and above a storage commodity in the storage occupancy having a nominal storage height ranging from a nominal twenty feet (20 ft.) to a maximum nominal storage height of fifty-five feet (55 ft.) and means for quenching a fire in the storage commodity. The storage commodity being protected can include any one of Class I, II, III or IV, Group A, Group B, or Group C plastics, elastomers, or rubber commodities. In one particular embodiment of the fire protection system, the commodity includes exposed expanded plastic and in another embodiment exposed expanded plastic having a maximum nominal storage height of at least forty feet (40 ft.). The plurality of fluid distribution devices of the preferred system include a fluid distribution device with a frame body having an inlet, an outlet, a sealing assembly, and an electronically operated releasing mechanism supporting the sealing assembly in the outlet. As used herein, “releasing mechanism” means an assembly of moving parts performing a complete functional motion as part of the assembly to release a component of the fluid distribution device, such as for example, the sealing assembly. One particular embodiment of the fluid distribution devices includes an ESFR sprinkler frame body and deflector having a nominal K-factor of 25.2 GPM/PSI1/2.
Preferred means for quenching include a fluid distribution system include a network of pipes interconnecting the fluid distribution devices to a water supply; a plurality of detectors to monitor the occupancy for the fire; and a controller coupled to the plurality of detectors to detect and locate the fire, the controller being coupled to the plurality of distribution devices to identify and control operation of a select number of fluid distribution devices and more preferably four fluid distribution devices above and about the fire. One preferred embodiment of the controller includes an input component coupled to each of the plurality of detectors for receipt of an input signal from each of the detectors, a processing component for determining a threshold moment in growth of the fire; and an output component to generate an output signal for operation of each of the identified fluid distribution devices in response to the threshold moment. More particularly, preferred embodiments of the controller provide that the processing component analyzes the detection signals to locate the fire and select the proper fluid distribution devices to preferably define a discharge array above and about the fire for operation.
The preferred systems can be installed beneath a nominal ceiling height of 45 feet and above a nominal storage height of 40 feet. The preferred system can alternatively be installed beneath a nominal ceiling height of 30 feet and above a nominal storage height of 25 feet. The stored commodity can be arranged as any one of rack, multi-rack and double-row rack, on floor, rack without solid shelves, palletized, bin box, shelf, or single-row rack storage. Moreover, the stored commodity can include any one of Class I, II, III or IV, Group A, Group B, or Group C plastics, elastomers, or rubber commodities.
In a preferred embodiment, the electrically operated releasing mechanism of a fluid distribution device for use in the preferred systems and methods described herein can be any one of: a strut and lever assembly with a designed fracture region; a hook and strut assembly in a latched arrangement; a hook and strut assembly with a link operated by resistance heating; a reactive strut and link assembly; a hook and strut assembly with a defined electronic flow path; a hook and strut assembly with an electrically fusible wire link; a sealing assembly including a retracting linear actuator or a combination thereof.
In a preferred embodiment in which the electrically operated releasing mechanism is a strut and lever assembly with a designed fracture region, the assembly includes a hook member having a first end and a second end and a strut member having a first end and a second end. The first end of the strut member is in contact with the hook member between the first and second end of the hook member to define a fulcrum. A load member acts on the hook member on a first side of the fulcrum to define a first moment arm. A preferred link extends between the hook and strut. The preferred link has a fracture region to maintain the hook member in a static position with respect to the strut member to define the unactuated state of the assembly. The link is preferably engaged with the hook member on a second side of the fulcrum opposite the first side of the fulcrum with respect to the load member to define a second moment arm. An actuator is preferably coupled to one of the hook and strut members to apply a force between the hook and strut members that breaks the fracture region of the link such that the hook member pivots about the fulcrum to define the actuated state of the trigger assembly. In a preferred embodiment of the device, the frame body includes a pair of frame arms disposed about the body extending from the outlet to the second end of the frame body to converge toward an apex axially aligned along the longitudinal axis with the load member in a threaded engagement with the apex. The actuator is preferably coupled to the hook member; and where the frame arms define a first plane, the actuator applies its force in a second plane intersecting the first plane with the longitudinal axis being disposed along the intersection of the first and second planes. The preferred link has a first portion coupled with the strut member and a second portion coupled with the hook member. The hook member preferably has a recess through which the actuator is coupled with the hook member; and more preferably includes an internally threaded portion for mating with an externally threaded portion of the actuator. The link has a third portion that connects the first portion to the second portion and defining a tensile load of the link and more preferably a designed fracture region of the link. In one embodiment of the link, a thickness of the third portion is less than a thickness of at least one of the first and second portions. More preferably, a thickness of the third portion is less than half a thickness of at least one of the first and second portions. Additionally or alternatively, in one embodiment of the link, a width of the third portion is less than a width of at least one of the first and second portions of the link. In one preferred aspect, the third portion defines a notch in the connection between the first and second portions. In preferred embodiments of the assembly, the actuator can be a solenoid actuator and is more preferably a Metron actuator, in which the actuator is coupled to a control panel. In another preferred aspect of the strut and lever assembly with a designed fracture region, a thermally insensitive link statically maintains the assembly to support a sealing assembly. The thermally insensitive link preferably includes a fracture region having a maximum tensile load capacity ranging from 50 to 100 pounds.
Another embodiment of the releasing mechanism includes a hook and strut assembly in a latched arrangement. The assembly includes a preferred hook member having a first lever portion and a second lever portion in which the second lever portion has a catch portion. In a preferred embodiment, the catch portion is integrally formed with the second lever portion. A load member is in contact with the first lever portion at a first location aligned with the longitudinal axis to place a load on the first lever portion. A strut member has a first end in contact with the first lever portion at a second location spaced from the first location to support the first lever portion under the load from the load member and to define a fulcrum about which the hook member rotates upon operation of the assembly; the strut member having a second end in contact with the sealing body. A portion of the strut member is preferably in a frictional engagement with the catch portion to prevent the hook member from pivoting about the fulcrum and axially transfer the load to the button and support the sealing body in the outlet of the frame body. A linear actuator is preferably coupled to the strut member to displace the second lever portion in the extended configuration relative to the strut member such that the catch portion disengages from the strut member such that the hook member rotates about the fulcrum. The hook member preferably includes a connecting portion between the first lever portion and the second portion, and the strut member includes an intermediate portion between the first end and the second end that preferably defines a window for the second lever portion to extend through. In a preferred embodiment of the latched arrangement the strut member and hook member define a direct interlocked engagement with each other and the linear actuator acts on one of the strut member and hook member to release the direct interlocked engagement in operation of the mechanism. The strut member preferably includes an internal edge defining a slot of the strut member; and the hook member has a portion forming a catch to interlock with the internal edge of the strut member in the first configuration. The hook member is preferably substantially U-shaped.
In a preferred embodiment of the electrically operated releasing mechanism, a hook and strut assembly with a link is operated by resistance heating. The link preferably includes a solder link having two metal members with a thermally responsive solder disposed therebetween to couple the two metal members together to maintain the sealing support in a first configuration; and at least one electrical contact to heat the solder link to melt the solder so as to permit the two metal members to separate and place the sealing support in a second configuration. The electrical contact preferably defines a continuous electrical flow path over the solder link; and in one embodiment, the electrical contact is an insulated wire repetitively extending over one of the metal members to define the continuous electrical path. One of the metal members is preferably disposed between the electrical contact and the solder. Moreover, one of the metal members preferably includes a layer of conductive material and an insulator material is preferably deposited between the resistive material and the one metal member. In a preferred aspect, the defined resistivity of the conductive material is such that the solder can be melted by a 24 volt supply.
Another embodiment of the electrically operated releasing mechanism is a reactive strut and link assembly that includes a solder link having two metal members with a thermally responsive solder disposed therebetween to couple the two metal members together and a reactive layer disposed between one of the metal members and the solder material. The reactive layer preferably includes a first insulation layer, and a second insulation layer coupled to a thermite structure disposed between the first and second insulation layers. At least one electrical contact ignites the thermite structure and defines a preferably continuous electrical path through the reactive layer. In a preferred embodiment, the electrical contact is a single contact to define an ignition point in the thermite structure. The thermite structure can be a nano thermite multilayer structure; and more particularly include alternating oxidizers and reducers. In a preferred aspect, the electrical contact is a nichrome wire.
Preferred embodiments of the fluid distribution device and releasing mechanism to define an electrical actuation flow path. In one embodiment, the frame body is conductive to carry an electrical signal and define a first electrical pole, a hook and strut assembly with a link; and a conductive member suitable to define a second electrical pole, the conductive member being insulated from the frame body so as to define the electrical actuation flow path. In one preferred aspect, the link is thermally responsive and more preferably a thermally responsive soldered link. Alternatively, the link is an electronically fusible link includes a nickel chromium alloy wire. In one preferred embodiment, the hook and strut assembly includes a hook member having a first portion in electrical contact with the frame body and a strut member having a first end and a second end. The first end of the strut member defines a fulcrum to support the first portion of the hook member with the second end of the strut member engaged with the sealing body. The link extends between a second portion of the hook member and a portion of the strut member between the first and second ends. The first portion of the hook preferably includes an insulated region in contact with the first end of the strut member, the frame including a pair of frame arms disposed about the frame body such that the electrical actuation flow path is defined through the frame arms, the hook member and across the link. The insulated region of the hook member preferably includes a recess formed in the first portion of the hook member, a strut engagement plate received in the recess having a notch formation for receiving the first end of the strut member; and an insulator disposed between the recess and the strut engagement plate. The conductive member of the fluid distribution device preferably includes an ejection spring engaged with the sealing body. The ejection spring preferably includes an insulated coating. In preferred embodiments, a portion of the frame contacted by the ejection spring has an insulated coating and more particularly includes an insulated coated portion of the frame arms depending from the frame body.
In yet another embodiment of the electrically operated releasing mechanism including a retracting linear actuator having an extended configuration for maintaining the sealing body in the outlet and a retracted configuration to space the sealing body from the outlet. In a preferred embodiment of the fluid distribution device, the sealing body is hinged with respect to the frame body by a hinged connection to pivot the sealing body from the unactuated state to the actuated state of the device. In a preferred embodiment, the sealing body has a first surface and a second surface opposite the first surface, the linear actuator being disposed in the sealing body between the first and second surface. The linear actuator engages a recess preferably formed along an inner surface of the frame body proximate the outlet in the unactuated state of the device. Upon actuation, the linear actuator retracts to permit the sealing body to pivot away from the outlet. In one preferred embodiment of the fluid distribution device, the frame body is one of a spray nozzle frame body or a sprinkler frame body. The frame body preferably includes an internal pin connection for forming a hinged connection with the sealing body. Alternatively, the hinged connection can be external of the frame body. The hinge connection can be spring biased to the actuated state of the device.
In another embodiment of the releasing mechanism includes a ball-detent mechanism having at least one ball, a corresponding detent, and linear actuator pressuring the at least one ball into contact with the corresponding detent in the extended configuration of the linear actuator such that the ball-detent mechanism supports the sealing body proximate the outlet in the unactuated state of the device. In its retracted configuration, the linear actuator releases pressure from the at least one ball and out of contact with the corresponding detent in the retracted configuration of the linear actuator to space the sealing body from the outlet in the actuated state of the device. In one embodiment of the mechanism, the sealing body defines an internal passageway for the at least one ball and the frame body includes an internal surface proximate the outlet in which the corresponding detent is formed. The linear actuator is preferably coupled to the sealing body to pressure the at least one ball into contact with the corresponding detent. In one embodiment, the at least one ball translates in a direction orthogonal to the direction of operation of the linear actuator. More preferably, the linear actuator operates parallel to the longitudinal axis, and the at least one ball translates radially with respect to the longitudinal axis. The linear actuator can be embodied as a Metron actuator or alternatively as a solenoid actuator. For a preferred system installation, the actuator is coupled to a control panel.
In another preferred aspect, a method of fire protection of a storage occupancy is provided. The preferred method includes detecting a fire in a storage commodity in the storage occupancy and quenching the fire in the storage commodity. In a preferred method of ceiling-only fire protection of a storage occupancy having a ceiling of a nominal ceiling height of thirty feet or greater, the method includes detecting a fire in a high-piled storage commodity in the storage occupancy having a nominal storage height ranging from a nominal 20 ft. to a maximum nominal storage height of 55 ft. with the commodity including exposed expanded plastics. The preferred method further includes electrically operating a releasing mechanism in a plurality of fluid distribution devices to quench the fire in the storage commodity.
The preferred method includes determining a select plurality of fluid distribution devices to define a discharge array above and about the fire. The fluid distribution devices can be determined dynamically or may be a fixed determination. The determination preferably includes identifying preferably any one of four, eight or nine adjacent fluid distribution devices above and about the fire. The preferred method further includes identifying a threshold moment in the fire to operate the identified fluid distribution devices substantially simultaneously.
A preferred method of detecting the fire includes continuously monitoring the storage occupancy and defining a profile of the fire and/or locating the origin of the fire. Preferred embodiments of locating the fire includes defining an area of fire growth based upon data readings from a plurality of detectors that are monitoring the occupancy; determining a number of detectors in the area of fire growth; and determining the detector with the highest reading. Preferred methods of quenching includes determining a number of discharge devices proximate the detector with the highest reading, and more preferably determining the four discharge devices about the detector with the highest reading. A preferred embodiment of the method includes determining a threshold moment in the fire growth to determine when to operate the discharge devices; and quenching includes operating the preferred discharge array with a controlled signal.
Although the Disclosure of the Invention and the preferred systems and methods address fire protection of exposed expanded plastic stored commodities without accommodations required under current installation standards and at heights not provided for under the standards, it is to be understood that the preferred systems and method and features thereof are applicable to fire protection of other storage occupancies and commodities and their various arrangements. The Disclosure of the Invention is provided as a general introduction to some embodiments of the invention, and is not intended to be limiting to any particular configuration or system. It is to be understood that various features and configurations of features described in the Disclosure of the Invention can be combined in any suitable way to form any number of embodiments of the invention. Some additional example embodiments including variations and alternative configurations are provided herein.
The accompanying drawings, which are incorporated herein and constitute part of this specification, illustrate exemplary embodiments of the invention, and together, with the general description given above and the detailed description given below, serve to explain the features of the invention. It should be understood that the preferred embodiments are some examples of the invention as provided by the appended claims.
Shown in
The preferred system shown and described herein includes means for quenching a fire having a fluid distribution sub-system 100a, a control sub-system 100b and a detection sub-system 100c. With reference to
The detectors 130 of the detector sub-system 100c monitor the occupancy to detect changes for any one of temperature, thermal energy, spectral energy, smoke or any other parameter to indicate the presence of a fire in the occupancy. The detectors 130 can be any one or combination of thermocouples, thermistors, infrared detectors, smoke detectors and equivalents thereof. Known detectors for use in the system include TrueAlarm® Analog Sensing analog sensors from SIMPLEX, TYCO FIRE PROTECTION PRODUCTS. In the preferred embodiments of the ceiling-only system 100, as seen for example in
The preferred centralized controller 120 is shown schematically in
Accordingly, the preferred processing component 120c processes the input and parameters from the input and programming components 120a, 120b to detect and locate a fire, and select, prioritize and/or identify the fluid distribution devices for controlled operation in a preferred manner. For example, the preferred processing component 120c generally determines when a threshold moment is achieved; and with the output component 120d of the controller 120 generates appropriate signals to control operation of the identified and preferably addressable distribution devices 110 preferably in accordance with one or more methodologies described herein. A known exemplary controller for use in the system 100 is the Simplex® 4100 Fire Control Panel from TYCO FIRE PROTECTION PRODUCTS. The programming may be hard wired or logically programmed and the signals between system components can be one or more of analog, digital, or fiber optic data. Moreover communication between components of the system 100 can be any one or more of wired or wireless communication.
Shown in
The discharge array is preferably initially defined by a select and prioritized number of fluid distribution devices 110 and a geometry that is preferably centered above the detected fire. As described herein, the number of discharge devices 110 in the discharge array can be pre-programmed or user-defined and is more preferably limited up to a pre-programmed or user-defined maximum number of devices forming the array. Moreover, the select or user-defined number of discharge devices can be based upon on one or more factors of the system 100 and/or the commodity being protected, such as for example, the type of distribution device 110 of the system 100, their installation configuration including spacing and hydraulic requirements, the type and/or sensitivity of the detectors 130, the type or category of hazard of the commodity being protected, storage arrangement, storage height and/or the maximum height of the ceiling of the storage occupancy. For example, for more hazardous commodities such as Group A exposed expanded plastics stored beneath a rectilinear grid of distribution devices, a preferred number of fluid distribution devices forming the discharge array can preferably be eight (a 3×3 square perimeter of eight devices) or more preferably can be nine (a 3×3 grid array of devices). In another example, for Group A cartoned unexpanded plastics, a preferred number of discharge devices can be four (a 2×2 grid array of devices) as schematically shown in
The identification of the fluid distribution devices 110 for the discharge array and/or the shape of the array can be determined dynamically or alternatively may be of a fixed determination. As used herein, the “dynamic determination” means that the selection and identification of the particular distribution devices 110 to form the discharge array is determined preferably over a period of time as a function of the detector readings from the moment of a defined first detection of a fire up to a defined threshold moment in the fire. In contrast, in a “fixed” determination, the number of distribution devices of the discharge array and its geometry is predetermined; and the center or location of the array is preferably determined after a particular level of detection or other threshold moment. The following preferred controller operations for identification and operation of the discharge array are illustrative of the dynamic and fixed determinations.
Shown in
The controller 120 further preferably identifies the fluid distribution devices 110 above, about and more preferably closest to the fire to define the preferred discharge array. For example, the controller 120 preferably dynamically and iteratively identifies in step 1200f the closest four discharge devices 110 about the detection device with the highest measured value or other selection criteria. Alternatively, the controller 120 can select and identify distribution devices 110 any other preferably user-defined number of devices such as, for example, eight or nine distribution devices based on the selection criteria. The closest four distribution devices 110 about and above the fire are then identified for operation in step 1200g. In step 1200h, the controller 120 preferably determines a threshold moment at which to operate the four distribution devices 110 above and about the fire. The controller 120 can be preferably programmed with a user-defined threshold value, moment or criteria in terms of temperature, heat release rate, rate of rise in temperature or other detected parameter. The threshold moment can be determined from any one or combination of system parameters, for example, the number of detectors having data readings above a user-defined threshold value, the number of fluid distribution devices in the “hot zone” reaching a user-define amount, the temperature profile reaching a threshold level, the temperature profile reaching a user-specified slope over time, the spectral energy reaching a user-defined threshold level; and/or the smoke detectors reaching a user-defined particulate level. Once the threshold moment is reached, the controller 120 signals the four distribution devices 110 for operation in step 1200i. More preferably, the controller 120 operates the select four distribution devices 110 of the discharge array substantially simultaneously to address and more preferably quench the fire.
Shown in
Shown in
With reference again to
Alternatively or additionally, where user defined parameters specify a smaller number of distribution devices 110 in the preferred discharge array, such as for example, four distribution devices, the identification of a second detector 130 can be used to determine how the preferred discharge array is to be located or centered. Again with reference to
Shown in
In the embodiment of the system and methods, the controller 120 is programmed to define a preferred pre-alarm threshold and a preferred higher alarm threshold. The thresholds can be one or more combination of rate of rise, temperature or any other detected parameter of the detectors 130. The controller 120 is further preferably programmed with a minimum number of distribution devices to be identified in the preferred discharge array. A device queue is preferably defined as being composed of those distribution devices associated with a detector that has met or exceeded the pre-alarm threshold. The programmed minimum number of devices 110 defines the minimum number of devices required to be in the queue before the array is actuated or operated by the controller 120 at the programmed alarm threshold. The controller 120 is further preferably programmed with a maximum number of distribution devices 110 in the device queue to limit the number of devices to be operated by the controller 120.
In an exemplary embodiment of the programmed controller 120 for the protection of double-row rack exposed expanded plastics up to forty feet (40 ft.) beneath a forty-five foot (45 ft.) ceiling, the pre-alarm threshold can be set to 20° F. per minute rate of rise with an alarm threshold at 135° F. and the minimum and maximum number of devices being four and six (4/6) respectively. In the exemplary embodiment of the methodology 1400 shown in
With reference to
The controller 120 can be additionally or optionally programmed with a backup threshold, which is a detected or derived parameter which can be the same as or different from the pre-alarm and alarm threshold to define a condition or moment at which additional devices for controlled operation after the device queue has been actuated. An exemplary backup threshold for the previously described protection system can be 175° F. Additionally, the controller can be programmed with a preferred maximum number of additional distribution devices 110, such as for example three (3) devices to be operated following operation of the initial device queue for a total of nine devices. Optionally shown in
Shown in
In preferred first step 1501, a first detector 130 is preferably identified by the controller 120 in response to detection reading equal to or exceeding a programmed alarm threshold condition, such as for example, a threshold temperature, rate of rise or other detected parameter. In step 1502, one or more fluid distribution devices 110 is operated preferably based upon a programmed association or programmed proximity to the identified first detector 130. A detector 130 can be associated with a fluid distribution device on a one-to-one basis or alternatively can be associated with more than one fluid distribution device, such as for example, a group of four distribution devices 110 surrounding and centered about a single detector 130. With reference to
Following the first discharge pattern period, a determination is made at step 1504 whether or not the fire has been suppressed, controlled or otherwise effectively addressed. The detectors 130 and controller 120 of the system continue to monitor the occupancy to make the determination. If it is determined that the fire has been effectively addressed and more preferably quenched, then all of the fluid distribution devices 110 can be deactivated and the method 1500 is terminated. However, if it is determined that the fire has not been effectively addressed, then the fluid distribution devices 110 are again activated in the same first discharge pattern or more preferably a different second discharge pattern at step 1506 to continue to target the fire with firefighting fluid. The fluid distribution devices 110 defining the second pattern are maintained open by the controller 120 for a programmed period or duration of, for example, thirty seconds (30 sec.). The total amount of water that is used to address the fire is preferably minimized. Accordingly, in one preferred embodiment, the second discharge pattern is preferably defined by four secondary 110c, 110f, 110h, 110k centered about the primary distribution device 110g. Additionally or alternatively, the second discharge pattern can vary from the first discharge pattern by altering the flow of firefighting fluid from one or more distribution devices 110 or the period of discharge to provide for the preferred minimized fluid flow.
In a preferred step 1508, the controller again preferably alters the secondary distribution devices 110 about the primary distribution device to define a third discharge pattern. For example, secondary distribution devices 110b, 110d, 110j, 110l are operated to define the third discharge pattern. The third pattern is discharge for a thirty seconds (30 sec.) or other programmed period or duration of discharge. The preferred sequential activation of second and third discharge patterns facilitate formation and maintenance of a perimeter of fluid distribution devices 110 preferably above and about the fire, while minimizing water usage and thus, minimizing potential water damage on the other. Following steps 1506 and 1508, it is again determined if the fire is effectively addressed in step 1510. If the fire is effectively addressed and more preferably quenched, then all of the discharge devices are deactivated in step 1505. However, if it is determined that the fire is not effectively addressed the controller repeats steps 1506 through 1508 to continue to discharge firefighting fluid in the sequential second and third patterns previously described.
For the preferred ceiling-only fire protection systems, the ability to effectively address and more particularly quench a fire can depend upon the storage occupancy and the configuration of the stored commodity being protected. Parameters of the occupancy and storage commodity impacting the system installation and performance can include, ceiling height H1 of the storage occupancy 10, height of the commodity 12, classification of the commodity 12 and the storage arrangement and height of the commodity 12 to be protected. Accordingly, the preferred means for quenching in a ceiling-only system can detect and locate a fire for operation of the preferred number and pattern of fluid distribution devices defining a preferred discharge array to address and more preferably quench a fire at a maximum ceiling and storage height of a commodity of a maximum hazard commodity classification including up to exposed expanded Group A plastics.
Referring to
The stored commodity array 12 preferably defines a high-piled storage (in excess of twelve feet (12 ft.)) rack arrangement, such as for example, a single-row rack arrangement, preferably a multi-row rack storage arrangement; and even more preferably a double-row rack storage arrangement. Other high-piled storage configurations can be protected by the system 100, including non-rack storage arrangements including for example: palletized, solid-piled (stacked commodities), bin box (storage in five sided boxes with little to no space between boxes), shelf (storage on structures up to and including thirty inches deep and separated by aisles of at least thirty inches wide) or back-to-back shelf storage (two shelves separated by a vertical barrier with no longitudinal flue space and maximum storage height of fifteen feet). The storage area can also include additional storage of the same or different commodity spaced at an aisle width W in the same or different configuration. More preferably, the array 12 can includes a main array 12a, and one or more target arrays 12b, 12c each defining an aisle width W1, W2 to the main array, as seen in
The stored commodity 12 can include any one of NFPA-13 defined Class I, II, III or IV commodities, alternatively Group A, Group B, or Group C plastics, elastomers, and rubbers, or further in the alternative any type of commodity capable of having its combustion behavior characterized. With regard to the protection of Group A plastics, the preferred embodiments of the systems and methods can be configured for the protection of expanded and exposed plastics. According to NFPA 13, Sec. 3.9.1.13, “Expanded (Foamed or Cellular) Plastics” is defined as “[t]hose plastics, the density of which is reduced by the presence of numerous small cavities (cells), interconnecting or not, disposed throughout the mass.” Section 3.9.1.14 of NFPA 13 defines “Exposed Group A Plastic Commodities” as “[t]hose plastics not in packaging or coverings that absorb water or otherwise appreciably retard the burning hazard.”
By responding and more particularly quenching a fire in storage commodity in a manner as described herein, the preferred systems 100 provide for a level of fire protection performance that significantly limits and more preferably reduces the impact of the fire on the storage commodity. This is believed to provide less damage to the stored commodity as compared to previously known fire protection performances, such as for example, suppression or fire control. Moreover, in the protection of exposed expanded plastic commodities the preferred systems and methods provide for ceiling only-protection at heights and arrangements not available under the current installation standards. Additionally or alternatively, the preferred systems and methods provide for ceiling only-protection of a exposed expanded plastic commodities without accommodations such as for example, a vertical or horizontal barriers. As described herein, actual fire testing can be conducted to demonstrate the preferred quenching performance of the preferred systems and methods described herein.
In the preferred ceiling-only arrangement of the preferred system 100, the fluid distribution devices 110 are installed between the ceiling C and a plane defined by the storage commodity as schematically shown in
The network of pipes 150 connect the fluid distribution devices 110 to a supply of firefighting liquid such as, for example, a water main 150e or water tank. The fluid distribution sub-system can further include additional devices (not shown) such as, for example, fire pumps, or backflow preventers to deliver the water to the distribution devices 110 at a desired flow rate and/or pressure. The fluid distribution sub-system further preferably includes a riser pipe 150f which preferably extends from the fluid supply 150e to the pipe mains 150a. The riser 150f can include additional components or assemblies to direct, detect, measure, or control fluid flow through the water distribution sub-system 110a. For example, the system can include a check valve to prevent fluid flow from the sprinklers back toward the fluid source. The system can also include a flow meter for measuring the flow through the riser 150f and the system 100. Moreover, the fluid distribution sub-system and the riser 150f can include a fluid control valve, such as for example, a differential fluid-type fluid control valve. The fluid distribution subsystem 100a of system 100 is preferably configured as a wet pipe system (fluid discharges immediately upon device operation) or a variation thereof including, i.e., non-interlocked, single or double-interlock preaction systems (the system piping is initially filled with gas and then filled with the firefighting fluid in response to signaling from the detection subsystem such that fluid discharges from the distribution devices at its working pressure upon device operation).
A preferred embodiment of the fluid distribution device 110 includes a fluid deflecting member coupled to a frame body as schematically shown in
Accordingly, the fluid distribution device 110 can be structurally embodied with a frame body and deflector member of a “fire protection sprinkler” as understood in the art and appropriately configured or modified for controlled actuation as described herein. This configuration can include the frame and deflector of known fire protection sprinklers with modifications described herein. The sprinkler frame and deflectors components for use in the preferred systems and methods can include the components of known sprinklers that have been tested and found by industry accepted organizations to be acceptable for a specified sprinkler performance, such as for example, standard spray, suppression, or extended coverage and equivalents thereof. For example, a preferred fluid distribution device 110 for installation in the system 100 includes the frame body and deflector member shown and described in technical data sheet “TFP312: Model ESFR-25 Early Suppression, Fast Response Pendent Sprinklers 25.2 K-factor” (November 2012) from TYCO FIRE PRODUCTS, LP having a nominal 25.2 K-factor and configured for electrically controlled operation.
As used herein, the K-factor is defined as a constant representing the sprinkler discharge coefficient, that is quantified by the flow of fluid in gallons per minute (GPM) from the sprinkler outlet divided by the square root of the pressure of the flow of fluid fed into the inlet of the sprinkler passageway in pounds per square inch (PSI). The K-factor is expressed as GPM/(PSI)1/2. NFPA 13 provides for a rated or nominal K-factor or rated discharge coefficient of a sprinkler as a mean value over a K-factor range. For example, for a K-factor 14 or greater, NFPA 13 provides the following nominal K-factors (with the K-factor range shown in parenthesis): (i) 14.0 (13.5-14.5) GPM/(PSI)1/2; (ii) 16.8 (16.0-17.6) GPM/(PSI)1/2; (iii) 19.6 (18.6-20.6) GPM/(PSI)1/2; (iv) 22.4 (21.3-23.5) GPM/(PSI)1/2; (v) 25.2 (23.9-26.5) GPM/(PSI)1/2; and (vi) 28.0 (26.6-29.4) GPM/(PSI)1/2; or a nominal K-factor of 33.6 GPM/(PSI)1/2 which ranges from about (31.8-34.8 GPM/(PSI)1/2). Alternate embodiments of the fluid distribution device 110 can include sprinklers having the aforementioned nominal K-factors or greater.
U.S. Pat. No. 8,176,988 shows another exemplary fire protection sprinkler structure for use in the systems described herein. Specifically shown and described in U.S. Pat. No. 8,176,988 is an early suppression fast response sprinkler (ESFR) frame body and embodiments of deflecting member or deflector for use in the preferred systems and methods described herein. The sprinklers shown in U.S. Pat. No. 8,176,988 and technical data sheet TFP312 are a pendent-type sprinklers; however upright-type sprinklers can be configured or modified for use in the systems described herein. Alternate embodiments of the fluid distributing devices 110 for use in the system 100 can include nozzles, misting devices or any other devices configured for controlled operation to distribute a volumetric flow of firefighting fluid in a manner described herein.
The preferred distribution devices 110 of the system 100 can include a sealing assembly, as seen for example, in the sprinkler of U.S. Pat. No. 8,176,988 or other internal valve structure disposed and supported within the outlet to control the discharge from the distribution device 110. However, the operation of the fluid distribution device 110 or sprinkler for discharge is not directly or primarily triggered or operated by a thermal or heat-activated response to a fire in the storage occupancy. Instead, the operation of the fluid distribution devices 110 is controlled by the preferred controller 120 of the system in a manner as described herein. More specifically, the fluid distribution devices 110 are coupled directly or indirectly with the controller 120 to control fluid discharge and distribution from the device 110. Shown in
Alternate or equivalent distribution device electro-mechanical arrangements for use in the system are shown in U.S. Pat. Nos. 3,811,511; 3,834,463 or 4,217,959. Shown and described in FIG. 2 of U.S. Pat. No. 3,811,511 is a sprinkler and electrically responsive explosive actuator arrangement in which a detonator is electrically operated to displace a slidable plunger to rupture a bulb supporting a valve closure in the sprinkler head. Shown and described in FIG. 1 of U.S. Pat. No. 3,834,463 is a sensitive sprinkler having an outlet orifice with a rupture disc valve upstream of the orifice. An electrically responsive explosive squib is provided with electrically conductive wires that can be coupled to the controller 120. Upon receipt of an appropriate signal, the squib explodes to generate an expanding gas to rupture disc to open the sprinkler. Shown and described in FIG. 2 of U.S. Pat. No. 4,217,959 is an electrically controlled fluid dispenser for a fire extinguishing system in which the dispenser includes a valve disc supported by a frangible safety device to close the outlet orifice of the dispenser. A striking mechanism having an electrical lead is supported against the frangible safety device. The patent describes that an electrical pulse can be sent through the lead to release the striking mechanism and fracture the safety device thereby removing support for the valve disc to permit extinguishment to flow from the dispenser.
Shown in
A preferred system 100 as previously described was installed and subject to actual fire testing. A plurality of preferred fluid distribution devices 110 and detectors 130 were installed above rack storage of cartoned unexpanded Group A plastic stored to a nominal storage height of forty feet (40 ft.) under a forty-five foot (45 ft.) horizontal ceiling to define a nominal clearance of five feet (5 ft.). More specifically, sixteen open sprinkler frame bodies and deflector members of an ESFR type sprinkler, each having a nominal K-factor of 25.2 GPM/PSI.1/2, were arranged with a solenoid valve in a fluid distribution assembly, as shown for example in
The sprinkler assemblies were installed above Group A Plastic commodity that included single wall corrugated cardboard cartons measuring 21 in.×21 in. containing 125 crystalline polystyrene empty 16 ox. cups in separated compartments within the carton. Each pallet of commodity was supported by a two-way 42 in.×42 in.×5 in. slatted deck hardwood pallet. The commodity was stored in a rack arrangement having a central double-row rack with two single-row target arrays disposed about the central rack to define four foot (4 ft.) wide aisles widths W1, W2, as seen in
The geometric center of the central rack was centered below four fluid distribution assemblies 110. Two half-standard cellulose cotton igniters were constructed from 3 in.×3 in. long cellulosic bundle soaked with four ounces (4 oz.) gasoline and wrapped in a polyethylene bag. The igniters were positioned at the floor and offset 21 inches from the center of the central double row rack main array. The igniters were ignited to provide a single fire F test of the system 100. The system 100 and a preferred methodology located the test fire and identified the fluid distribution devices 110 for addressing the fire in a manner as previously described. The system 100 continued to address the test fire for a period of thirty-two minutes; and at the conclusion of the test, the commodity was evaluated.
The test fire illustrates the ability of a preferred system configured for quenching to substantially reduce the impact of the fire on the stored commodity. A total of nine distribution devices were identified for operation and operated within two minutes of ignition. Included among the nine identified devices are the four distribution devices 110q, 110r, 110s, 110t immediately above and about the fire F. The four operated devices 110q, 110r, 110s, 110t defined a discharge array that effectively quenched the ignition by limiting propagation of the fire in the vertical direction toward the ceiling, in the fore and aft directions toward the ends of the central array 12a, and in the lateral direction toward the target arrays 12b, 12c. Thus, the fire was confined or surrounded by the four most immediate or closest fluid distribution devices 110q, 110r, 110s, 110t above and about the fire.
The damage to the main array is graphically shown in
Quenching performance can be observed by the satisfaction of one or more parameters or a combination thereof. For example, vertical damage can be limited to six or fewer tiers of commodity. Alternatively or additionally, vertical damage can be limited to 75% or less than the total number of tiers of the test commodity. Lateral damage can also be quantified to characterize quenching performance. For example, lateral damage subject to quenching performance can be limited to no more than two pallets and is more preferably no more than one pallet in the direction toward the ends of the array.
Additional fire testing has shown that the preferred systems and methods described herein can be used in the ceiling-only protection of exposed expanded plastic commodities at heights and arrangements not available under the current installation standards. For example in one preferred system installation, a plurality of preferred fluid distribution devices 110 and detectors 130 can be installed above rack storage of exposed expanded Group A plastic stored to a nominal storage height ranging from twenty-five (25 ft.) to forty feet (40 ft.) under a forty-five foot (45 ft.) horizontal ceiling to define a nominal clearance ranging from five feet (5 ft.) to twenty feet (20 ft.). Provided the ceiling is of a sufficient height, preferred embodiments of the systems and methodologies herein can protect up to a maximum fifty to fifty-five feet (50-55 ft.). In one preferred storage arrangement, wherein the ceiling height is forty-eight (48 ft.) and the nominal storage height is forty-three feet (43 ft.)
In one particular embodiment of the preferred system, a group of an ESFR type sprinkler frame bodies with internal sealing assembly and deflector member, each having a nominal K-factor of 25.2 GPM/PSI.1/2, are preferably arranged with an electrically operated actuator in a fluid distribution assembly, as shown for example in
As previously described, a preferred embodiment of the fluid distribution device 110 can be structurally embodied as a fire protection sprinkler, nozzle, misting devices or any other devices configured for electrically controlled operation to distribute a volumetric flow of firefighting fluid in a manner described herein. The following describes preferred and/or alternate embodiments of the fluid distributing device for use in the system 100. Unlike the prior art sprinklers or fluid dispensers previously described in which a sealing valve disc or closure is ruptured or its supporting bulb or frangible safety device is fractured to open the sprinkler, the preferred fluid distribution devices described below incorporate innovative preferred embodiments of electronically operated releasing mechanisms which are collapsed or contracted to remove its support of a sealing assembly within a sprinkler or nozzle frame to open the preferred fluid distribution device.
Shown in
Generally the preferred releasing mechanism 328 provides for a unique hook and strut assembly with a designed fracture region. A preferred link couples the hook and strut with a preferably electrically operated linear actuator that breaks the link to uncouple the hook and strut. In a preferred embodiment, the releasing mechanism 328 includes a strut member 342, a lever member preferably embodied as a hook member 344, a tension link 346, a screw or other threaded member 353, and an actuator 314. The preferred tension link 346 includes a designed fracture region to provide for a controlled break at which at which the releasing mechanism 328 operates. The screw 353 forms a threaded engagement with the frame 345 and applies a load axially aligned with the longitudinal axis A-A. The hook and strut arrangement 342, 344 transfer the axial load of the screw 353 to the sealing assembly 324 to keep the assembly seated against the internally formed sealing seat. More specifically, in the unactuated configuration of the releasing mechanism 328, a first end 352 of the strut 342 is in contact with the hook member 344 at a notch 358 to define a fulcrum, and the second strut end 354 is engaged with a groove 356 formed on the button 323 of the sealing assembly 324 and preferably located along the longitudinal axis A-A. The axially acting screw 353 applies its load on the hook member 344 at a second notch 360 to a first side of the fulcrum to define a first moment arm relative to the fulcrum defined by the first end 352 of the strut member 342. Accordingly, the first end 352 of the strut 342 is preferably disposed slightly offset from the longitudinal axis A-A. Countering the moment generated by the load screw 353 is the link 346 which couples the hook member 344 to the strut member 342 to statically maintain the hook and strut arrangement for supporting the sealing assembly 324 against the bias of the sealing spring or fluid pressure delivered to the sprinkler. More specifically, the link 346 engages the hook member 344 at a location between the first end 371 and the second end 373 of the hook member 344 relative to the first end 352 of the strut 342 to define a second moment arm which is sufficient to maintain the hook member 344 in a static position with respect to the strut 342 in the unactuated state of the releasing mechanism 328.
As shown in
Upon electronic actuation of the actuator 314, the piston 381 is caused to extend to an extended position and the actuator 314 applies a force on the strut 342. As the applied force exceeds the maximum tensile load of the tension link 346, the tension link 346 fails (or parts into two or more pieces) permitting the hook member 344 to pivot about the first end 352 of the strut member 342 in a pivoted engagement; and the releasing mechanism 328 collapses allowing the sealing assembly 324 to be released from the outlet 332. That is, the releasing mechanism 328 transitions from the first configuration (or unactuated state) to the second configuration (or actuated state). Subsequently, water contained in the frame body is allowed to be discharged to address a fire in a preferred manner as described herein. The actuator 314 can be one of various types of actuators such as, for example, a pyrotechnic actuator or a solenoid actuator. Preferably, the actuator 314 is a pyrotechnic actuator such as Metron Protractor™ made by Chemring Energetics UK Ltd, e.g., DR2005/C1 Metron Protractor™. The Metron™ actuator (or Metron™ protractor) is a pyrotechnic actuator that utilizes a small explosive charge to drive a piston. This device is designed to create mechanical work through fast movement when the piston is driven by the combustion of a small quantity of explosive material.
The third portion (or intermediate portion) 376 is designed to collapse (or fail) when the force applied to the strut 342 by the actuator 314 exceeds a threshold value. Thus, the third portion 376 is designed to be a fracture point or region when the tensile load on the tension link 346 caused by the actuator 314 exceeds a predetermined design value or capacity of the fracture region. For this reason, the maximum tensile load or capacity that the third portion 376 can withstand before failure is preferably less than the maximum tensile load that either the first or second portion 372, 374 can withstand before failure. Stated differently, the maximum tensile strength or capacity of the third portion 376 is less than the maximum tensile strength of either the first or second portion 372, 374. Such a design can be achieved in various ways. For example, the third portion 376 may have a thickness less than that of the first and/or second portions, a width less than that of the first and/or second portions, one or more perforated portions, cut-out portions, notches, grooves, or any combination thereof, etc. In some cases, a brittle material such as ceramics or gray cast iron may be used for the tension link 346 to facilitate failure caused by impact or explosive force from, e.g., a Metron™ actuator. As long as the maximum tensile strength of the third portion 376 is less than the maximum tensile strength of either the first or second portion 372, 374, any design of the tension link may be employed.
As shown in
The design of the tension link 346 is, for example, based on i) determination of desired failure load applied by the strut 342 and the hook member 344 to the tension link 346 when the actuator 314 is actuated and ii) the tensile strength of the chosen material for the tension link 346. Subsequently, the cross-sectional area of each portion of the tension link 346 can be calculated and appropriate dimensions can be derived to achieve the failure at the intermediate portion 376. The tensile link 346 may be made of a single component or material such as steel, plastic, metal alloy, ceramics etc. Alternatively, the tensile link 346 may be composed of two or more materials. For example, the intermediate portion 376 may be made of a material whose tensile strength is less than that of the first and second portions 372, 374. The tensile link 346 can be formed by a suitable technique, such as, for example, stamping, casting, deep drawing or a combination of stamping, casting, deep drawing or machining.
The operation of the preferred fluid distribution device or sprinkler 310 is not triggered or operated by a thermal or heat-activated response. Instead, the operation of the sprinkler 310 can be electrically controlled, for example, by the preferred controller 120 of the system previously described.
Accordingly, the preferred sprinkler 310 and its releasing mechanism do not operate passively by exposure to an increasing temperature from a fire. Unlike known strut and link style sprinklers that include a thermally sensitive element, e.g., a metal laminate joined by a solder with a low melting point, a preferred embodiment of the releasing mechanism 328 of the sprinkler 310 does not include a thermally sensitive link nor include a thermally sensitive element for its operation. That is, the tension link 346 is preferably a thermally insensitive link. Elimination of the heat sensitive link from the releasing mechanism 328 can enhance controllability of operation via the controller 120 and prevents inadvertent operation.
Moreover, unlike known actuator driven sprinklers that have at least a portion of the actuator disposed inside the sprinkler frame, the preferred actuator 314 of the device 310 is disposed external to the sprinkler frame 345, i.e. external to the frame body 322 and frame arms 336. The actuator 314 is mounted on the hook member 344, thus requiring no separate mounting in the sprinkler frame 345 for installation of the actuator 314. When the actuator 314 is actuated, the actuator 314 and the releasing mechanism 328 are ejected away from the sprinkler frame 345. Thus, there is no obstruction (or disruption) in the waterway due to the actuator 314 and/or the releasing mechanism 328. Moreover, the actuator 314 can be easily mounted on the conventional strut and link style sprinkler without the need for significant structural modifications. Upon actuation of the releasing mechanism 328 and sprinkler 310, water is discharged to impact a deflector assembly 326 and redistributed in a manner described herein. The deflector assembly 326 preferably includes a deflector that is preferably disposed at a fixed distance from the outlet in the longitudinal direction. The frame 345 preferably includes a pair of frame arms 336 disposed about the frame body 322 and the outlet 32 in the first plane P1. The pair of frame arms 336 converge toward an apex 351, which includes an internally threaded portion through which the screw or load member 353 is in a threaded engagement.
Shown in
The sprinkler 410 preferably includes a frame 432 including a frame body 412 having an inlet 420, an outlet 422, and an internal surface 424 defining a passageway 426 extending between the inlet 420 and the outlet 422. The inlet 420 can be connected to the piping network as previously described. The frame 432 preferably includes at least one frame arm and more preferably includes two frame arms 413a, 413b disposed about the body 412 that converge toward an apex 438 that is preferably integrally formed with the frame arms axially aligned along the sprinkler longitudinal axis A-A. Shown in an unactuated state of the sprinkler 410, the outlet 422 is occluded or sealed by a sealing assembly to prevent the discharge of a firefighting fluid from the outlet 422. The sealing assembly 414 generally includes a sealing body, plug or button disposed in the outlet 422 coupled to or engaged with a biasing member (not shown) such as, for example, a Bellville spring or other resilient ring which is to assist ejecting the sealing body out of the outlet 422.
Supporting the sealing assembly within the outlet 422 is a preferred releasing mechanism 416. The releasing mechanism 416 defines a first unactuated configuration or arrangement to maintain the sealing assembly 414 within the outlet 422 and properly engaged with a sealing seat (not shown) formed about the outlet 422. The releasing mechanism 416 also defines a second actuated configuration or state in which the releasing mechanism 416 disengages the sealing assembly 414 to permit ejection of the sealing assembly 414 from the outlet 422 and the discharge of fluid. In a preferred embodiment, the releasing mechanism 416 includes a strut member 442, a lever member preferably embodied as a hook member 444, a screw 440, and a linear actuator 446. The strut member 442 has a first strut end 448 and a second strut end 450. The screw 440 forms a threaded engagement with the frame 432 and applies a load axially preferably aligned with the longitudinal axis A-A. The preferred hook and strut arrangement 442, 444 transfer the axial load of the screw 440 to the sealing assembly to keep the assembly seated.
In the unactuated configuration of the releasing mechanism 416, the first end 448 of the strut member 442 is in contact with the hook member 444 at a first notch 458 to define a fulcrum, and the second strut end 450 of the strut member 442 is engaged with a groove formed on the button of the sealing assembly 414. The strut member 442 is preferably disposed parallel and offset to the longitudinal sprinkler axis A-A. The axially acting screw 440 applies its load on the hook member 444 at the second notch 460 to a first side of the fulcrum to define a first moment arm relative to the fulcrum defined by the first end 452 of the strut member 442. The amount of load placed on the first lever portion 454 by the screw 440 can be controlled by adjusting the torque of the screw 440 through the internally threaded portion of the apex 438. In this way, the screw (or compression screw member) 440 places a sealing force on the sealing body in the outlet 422 in the unactuated state.
As shown, the hook member 444 is preferably U-shaped. The hook member 444 has a first lever portion 454, a second lever portion 456, and a connecting portion 455 between and connecting the first and second lever portion 454, 456. The connecting portion 455 preferably extends parallel to the longitudinal axis A-A. The first and second lever portions 454, 456 extend preferably parallel to each other and perpendicular to the longitudinal axis A-A in the unactuated state. The screw 440 acts on the first lever portion 454 at a first side of the fulcrum defined by the first end 448 of the strut member 442. In the unactuated state of the releasing mechanism 416, the second lever portion 456 is in a frictional engagement with the strut member 442. Preferably, the second lever portion 456 includes a catch portion 466. The catch portion 466 is in a frictional engagement with a portion of the strut member 442 such that the hook 444 is prevented from pivoting about the fulcrum to statically maintain the releasing mechanism in the unactuated state under the load of the screw 440. Accordingly, in a preferred aspect, the strut member 442 and hook member 444 are in a direct interlocked engagement with each other in the first configuration of the releasing mechanism. The preferred trigger assembly further includes a linear actuator to act on one of the strut member and hook member to release the direct interlocked engagement in the second configuration of the trigger assembly. In this way, the load (or sealing force) from the screw 440 is transferred to the sealing assembly 414, thereby supporting the sealing assembly in the outlet 422. The catch portion 466 may be integrally formed with the second lever portion 456. Alternatively, the catch portion 466 may be made separately from the hook 44 and attached to the hook 44.
The preferred releasing mechanism 416 includes a linear actuator 446 to operate the releasing mechanism and actuate the sprinkler 410. The linear actuator 446 defines a retracted configuration in the unactuated state of the sprinkler 410 and an extended configuration in the actuated state of the sprinkler 410. The actuator 446 is preferably mounted or coupled to the strut member 442. In a preferred embodiment, the strut member includes a mount or platform 468 for mounting the linear actuator 446. More preferably, the mount 468 is formed from the intermediate portion 480 between the first and second ends 448, 450 of the strut member 444. The linear actuator 446 is attached or coupled to the mount 468 by any appropriate means to permit the movable member 472 of the linear actuator 446 to linearly translate in a manner as described herein. As shown in
Preferably, the sprinkler 410 does not operate passively by exposure to an increasing temperature from a fire, for example, as do automatic sprinklers having a thermally responsive trigger, link or bulb. Instead, the sprinkler 410 is actively operated to enable controlled actuation and discharge from the fire sprinkler 410. Shown in
Upon receipt of the appropriate operating signal, the preferred actuator 446 operates to unlatch the hook member 444 from the strut member 442 so as to alter the releasing mechanism 416 from its first unactuated configuration to its second actuated configuration. More specifically, the preferred piston 472 of the actuator 446 is extended to contact and push down the second lever portion 456 so as to displace or bend the second lever portion 456 of the hook member such that the catch portion 466 disengages or unlatches from the strut member 442, as shown in phantom in
In the actuated configuration, the releasing mechanism 416 collapses to remove its support of the sealing assembly thereby allowing the sealing assembly 414 to be released from the outlet 422 and fluid to be discharged to address a fire in manner described herein. Firefighting fluid is discharged to impact a deflector assembly 436 coupled to the sprinkler frame 432 and is redistributed in a desired manner to address a fire. The deflector assembly 436 preferably includes a deflector member (shown generically) that is preferably disposed at a fixed distance from the outlet 422 in the longitudinal direction. The frame arms disposed about the body 412 extend and converge toward the apex 438 that is axially aligned along the longitudinal axis A-A. The deflector member is preferably supported at the fixed distance from the outlet 422 by the arms and apex of the sprinkler frame.
For the preferred releasing mechanism 416, the actuator 446 is preferably mounted on the strut member 442 thus requiring no separate mounting in the sprinkler frame 432 for installation of the actuator 446. Moreover, when the sprinkler is actuated, the actuator 446 and the releasing mechanism 416 are ejected away from the sprinkler frame 432. Thus, there is no obstruction (or disruption) in the waterway between the outlet 422 to the deflector assembly 436 by the actuator 446 and/or the releasing mechanism 416. Furthermore, the preferred releasing mechanism 416 of the present disclosure does not include a separate link that connects a hook to a strut. Instead, the hook and its preferred catch portion also function as a link between the hook member and the strut member, thereby removing the need for a separately provided link and simplifying the design of the releasing mechanism.
Shown in
Specifically shown is a preferred releasing mechanism 524 having a strut 524a, and a hook or lever 524b. In the first unactuated configuration or arrangement, the strut 524a at one end acts against the sealing assembly 520 and at the opposite end is supported and loaded by a load screw threaded into a boss or apex formed and spaced from the outlet 518 in a manner as previously described with other embodiments of strut and lever actuator assemblies. The strut 524a and lever 524b can be arranged with the frame 512 and sealing assembly 520 as the strut and lever shown and described in U.S. Pat. Nos. 7,819,201 and 7,165,624. Shown in phantom is the support assembly 524 in its second actuated state disengaged from the sealing assembly 520 to permit ejection of the sealing assembly 520 from the outlet 518 and the discharge of fluid from the outlet 518.
The releasing mechanism 524 is shown in
The preferred actuator 524 has two modes of actuation: a passive mode in which the solder is melted in response to a fire or other sufficient heat source to permit the metal members to separate; and an active mode in which a controlled electrical signal is delivered to the link 560 to heat the actuator so as to melt the solder and permit separation of the metal members. Accordingly, the active mode provides for controlled actuation of the sprinkler 510 in which the electrical signal can be delivered to the sprinkler 510 and the link 560 by, for example, the controller 120. Alternatively, the link 560 and the releasing mechanism 524 can be configured only for active actuation by an appropriate electrical control signal. Referring again to
Shown in
In one preferred embodiment of the link 560, a layer of conductive material 566 formed or deposited on one of the metal members 562a of the link 562. The layer of conductive material 566 is of a defined resistivity preferably defined by the thickness, width and length of the conductive material based on the following relation:
wherein in the preferred embodiment, the width (W) defines the preferred direction of the electrical flow path which preferably extends perpendicular to the actuator length (L) direction from the first end 560a to the second end 560b. The conductive material 566 is of a preferred resistivity (ρ) such that the solder can be melted by a preferred 24 volt supply applied across the electrical contacts 564. In one preferred embodiment, the electrical contacts 564 are disposed across the width of the link 560. Accordingly, where the first end and second end 560a, 560b and conductive layer 566 preferably define a plane, the continuous electrical flow path is preferably directed parallel to the plane. The link 560 further preferably includes an insulator layer 568 disposed between the conductive material 566 and the one metal member 562a over which the conductive material 566 is deposited. The insulator material 568 is preferably configured to prevent the electrical signal from flowing directly through the link 560. In a preferred actuation, a preferred voltage of 24 volts or smaller can be applied across the electrical contacts 564 so as to heat the preferred link 560 to melt the solder 562c and permit separation of the metal members 562a, 562b.
Another preferred embodiment of the link 570 for use in the releasing mechanism 524 is shown in
Another preferred embodiment of a link 580 for use in the releasing mechanism 524 is shown in
In another alternate embodiment of the releasing mechanism 524, the strut and lever assembly is a reactive strut and link assembly operated or collapsed by a preferably reactive link. Shown in
In a preferred operation of the releasing mechanism 524 and link 600, an electrical signal and preferably an electrical current is applied to the electrical contact or wire 504 to heat the contact. The heat in the contact ignites the thermite structure 606c. The resulting combustion generates a heat release which is sufficient to melt the solder 602c, permitting the metal members 602a, 602b to separate to release the seal assembly 520 and permit discharge from the sprinkler 510 in a manner as previously described. The preferred first and second insulators 606a, 606b are made from SiO2 and minimize or prevent the flow of the actuating current through the link 102 such that the electrical current alone does not heat and melt the solder 602c to prematurely separate the metal members 602a, 602b and operation of the sprinkler. A preferred electrical contact or wire 604 for ignition of the thermite layer includes a nichrome wire.
The previously described embodiments of the actuator assembly provide for an electrical control or operating signal being is directed through the link of the releasing mechanism. An alternate preferred embodiment of a fluid distribution device and releasing mechanism provide for a preferred defined electronic flow path through which an electronic signal can flow to actuate the sprinkler. Shown in
To define the preferred electrical actuation path and prevent a short circuit between the first and second electrical poles, the electrical poles are electrically insulated from one another. In a preferred embodiment, the ejection spring 740b is electrically insulated from the sprinkler frame 712. For example, the ejection spring 740b can have an insulated coating to insulate the spring 740b from the sprinkler frame 712. Alternatively and more preferably, the sprinkler frame 712 has an insulated coating about the portion that is engaged by the ends of the ejection spring. With reference
The preferred releasing mechanism 750 includes a strut member 754, a hook member 756, a screw or other threaded member 758, and a thermally responsive soldered link 752. The screw 758 forms a threaded engagement with the frame 718 and applies a load axially aligned with the longitudinal axis A-A. More specifically, the screw 758 is in threaded engagement with the an apex 715 preferably formed integrally with the frame arms 713a, 713b. Similar to the previously described embodiments, the hook and strut arrangement 754, 756 transfer the axial load of the screw 758 to the seal assembly 730 to keep the seal assembly 730 in the unactuated configuration of the releasing mechanism 750. The preferred solder link 752 couples the hook member 756 to the strut member 754 to statically maintain the hook and strut arrangement for supporting the seal assembly 730 against the bias of the sealing spring or water pressure delivered to the sprinkler.
The preferred embodiment of the releasing mechanism 750 defines the direction of the electrical actuation path (indicated in part by arrows) to be directed along the length of the preferred thermally responsive link 752. Accordingly, to eliminate an undesired short circuit of the electrical actuation path from the apex to the ejection spring 740b by way of the strut member 754, the preferred releasing mechanism 750 preferably includes an insulated contact between the hook member 756 and the first end 754a of the strut member 754. In one preferred embodiment, the first portion 756a of the hook member 756 includes an insulated region 760 in contact with the first end 754a of the strut member 754 in the unactuated state of the releasing mechanism 750 such that the electrical path is defined through the frame arms 713a, the hook member 756 and across the thermally responsive link 752. With reference to the exploded view of the hook member 756 in
Referring again to
In an appropriate response to the detection or manual signal, the controller 120 of the system 100 delivers a controlled electrical actuating signal to the sprinkler 710. The electrical signal travels the preferred electrical actuation path, as illustrated in
Shown in
The preferred releasing mechanism 750 is embodied as another unique hook and strut arrangement that includes a strut member 754, a hook member 756, a screw or other threaded member 758, and an electric fusible link 752′. The screw 758 forms a threaded engagement with the frame 718 at the apex 715 and applies a load axially aligned with the longitudinal axis A-A. In the unactuated configuration of the releasing mechanism 750, the first end 754a of the strut member 754 is in contact with a first portion 756a of the hook member 756 and defines a fulcrum preferably offset from the longitudinal axis A-A; and the second strut end 454b is engaged with the sealing assembly 730 and preferably located along the longitudinal axis A-A. Countering the moment generated by the load screw 758 is the preferred electric fusible link 752′ which couples the hook member 756 to the strut member 754 to statically maintain the hook and strut arrangement in its unactuated state for supporting the seal assembly 730 against the bias of the sealing spring or water pressure delivered to the sprinkler. The link 752′ engages a second portion 756b of the hook member 756 relative to the first end 754a of the strut member 154 to define a second moment arm which is sufficient to maintain the hook member 756 in a static position with respect to the strut member 754 in the unactuated state of the releasing mechanism 750.
The electric fusible link 752′ is preferably a resistive metal wire, preferably of a nickel chromium (NiChrome) alloy held in tension to statically maintain the releasing mechanism 750 in its unactuated state for supporting the sealing assembly in the outlet 722. Upon receipt of the electrical actuating signal of an appropriate power, the wire link 752′ breaks to permit the hook member 756 to pivot about the fulcrum and collapse the releasing mechanism 750. To attach the link 752′ to each of the hook member 756 and strut member 754, the wire 752′ can be threaded through respective openings or penetrations formed in each of the hook and strut members 754, 756, and held in place under tension by appropriate fastening members 760a, 760b such as for example, a crimp, buckle or other device. Alternate forms of fastening the wire link 752′ to each of the strut and hook members 754, 756 are possible, such as for example soldering, so long as the wire link is held under appropriate tension to maintain the trigger assembly in its unactuated configuration.
Once installed, preferably in a manner as previously described, an electrical actuating signal can be delivered to the sprinkler 710 and its first electrical pole to actuate the releasing mechanism 750. The preferred embodiment of the releasing mechanism 750 preferably defines or controls the direction of the electrical actuation path to be directed along the length of the preferred electric fusible link 752′. To eliminate an undesired short circuit of the electrical actuation path, the preferred releasing mechanism 750 includes an insulated contact between the hook member 756 and the first end 754a of the strut member 754 in a manner as previously described such that the electrical actuation path is defined through the frame 712, for example, through the frame arms 713a, 713b, through the hook member 756 and across the electronic fusible link 752′. Accordingly, the first portion 756a of the hook member 756 preferably includes an insulated region configured as shown and described in the insulation region 760 in the hook member of
Again, when actuation is desired an electric current of sufficient power can be sent through the preferred electric fusible link 752′ in a sufficient way as to cause rapid heating of the link to the point at which it loses its tensile properties causing it to break and allow the actuator assembly to collapse and release its support of the sealing assembly. Upon operation of the releasing mechanism 750 water is discharged from the outlet 722 to impact a deflector assembly 723 and redistributed in a desired manner to address a fire. Preferably, the deflector assembly 723 is coupled to the frame 712 and preferably includes a deflector member that is shown generically and preferably disposed at a fixed distance from the outlet 722 in the longitudinal direction by the pair of frame arms 713a, 713b. Moreover, each of the embodiments of the sprinkler 710 is shown with the releasing mechanism 750 and deflector assembly 723 disposed below or axially spaced from the frame body 718 and the ejection spring 740b. Accordingly, the wires connected to the preferred first and second electrical poles can be routed or located outside the operational area of the sprinkler 710 about the longitudinal axis so as not to interfere with the operational components of the sprinkler including not interfering with the collapse of the releasing mechanism 750, the ejection of the sealing assembly 730 or the fluid path impacting the deflector assembly 723.
Alternate embodiments of a fluid distribution device for use in the system 100 are shown in
Shown preferably disposed within the frame body 812 is one preferred embodiment of a preferred sealing assembly having a sealing body 830 proximate the outlet 816 that defines the unactuated state of the fire protection device in which sealing body 830 occludes the passageway to prevent the flow of fluid along a discharge path from the inlet 814 through the passageway 818 and out the outlet 816. The discharge path includes any portion of the resulting spray pattern formed from the fluid discharged from the outlet under the working or design pressure of the device 810. In one preferred aspect of the device 810, a shoulder is preferably formed along the internal surface 813 to define a sealing surface 820 and the outlet 816. The sealing body 830 includes a first surface 830a and an opposite surface 830b spaced along the longitudinal axis A-A to define the thickness or height of the preferred body 830. In the unactuated state of the device 810, the first surface 100a is configured to form a fluid tight seal with the sealing surface 820. More preferably, the body 830 includes a sealing member 832 centered on the first surface 830a of the sealing body 830 to form the fluid tight seal with the sealing surface 820 in the unactuated state of the device 810. An exemplary sealing member 832, can be a Belleville Spring Seal that is disposed or secured about a central post, projection or other formation on the first surface 830a.
Also shown in
In the preferred embodiment of the fire protection device 810 of
In its extended configuration, the piston 842 extends preferably radially beyond the sealing body 830 to engage a groove, recess or detent 824 formed along the inner surface 813 of the frame body 812 proximate the outlet 816 and preferred sealing surface 820. The engagement of the piston 842 in the recess 824 supports the sealing body in its unactuated position and more preferably loads or locks the sealing body 830 against the sealing surface 820 to compress the sealing member 832 and resist fluid pressure delivered to the device 810 upon installation. To actuate the device 810, an actuating signal is delivered to the electrical contact or solenoid; and in response the piston 842 is retracted out of engagement with the recess 824 and released such that the sealing body 830 pivots out of the discharge path of the device to its actuated position under the force of fluid delivered to the device 810. Additionally or alternatively, the hinge connection 825 can include a biasing element, such as for example a torsion spring to bias the sealing body 830 to its fully pivoted position outside the discharge path.
The hinged connection 825 is shown schematically in
For example, shown in
As shown, the sealing body 930 includes a first surface 930a for engaging the internal sealing surface 820 of the frame body and an opposite second surface 930b. As previously described, the sealing body 930 can include a sealing member 932 such as, for example, a Belleville spring centered about a central post or formation of the first surface 930a. Formed between the first and second surfaces 930a, 930b of the sealing body 930 are one or more radially extending internal passageway(s) 930c for housing one or more spherical balls 952 and corresponding biasing members 954 of the ball-detent mechanism 950. The radial passageways form openings along the periphery or radial surface of the sealing body 930. The biasing members 954 transmit a pressure to the balls 952 such that the balls extend out of the internal passageway 930c and the perimeter of the sealing body 930. The biasing member 954 can be a spring element such as for example a coil spring or leaf spring. Preferably formed along the inner surface 813 of the frame body 812 is a corresponding detent, recess or groove 824 of the ball-dent mechanism 950 for receiving the portion of the ball 952 extending from the radial opening of the passageway 930c under the transferred pressure. With the balls of the releasing mechanism 950 engaged within the detent 924, the sealing body is supported in place proximate the outlet 816 in the unactuated state of the device 810a.
The pressure transferred and applied to the ball-detent mechanism 950 is provided by the preferably extended configuration of the linear actuator 940. Retraction of the linear actuator 940 relieves the pressure and release of the sealing body 930. The sealing body 930 preferably includes an axially extending passageway 930d for housing or coupling the linear actuator 940. More preferably, the axial passageway 930d and the displacement of the linear actuator 940 are parallel and axially aligned with the longitudinal axis A-A. As with the previously described embodiments, the linear actuator 940 preferably includes an axial rod, member or piston 942 and associated electrical contact or solenoid 944. As schematically shown, the piston 942 is preferably coupled, connected or mechanically associated with the biasing member(s) 954 of the ball-detent mechanism 950 such that in the extended configuration of the linear actuator a pressure is applied to the biasing member(s) 954 and transferred to the spherical ball(s) 952. Upon retraction of the piston 942, the pressure against the ball(s) 952 is relieved and the balls recoil or contract into the internal passageway 930c. Accordingly, in the preferred arrangement, the ball(s) 952 translate in a direction orthogonal to the direction of operation of the linear actuator 910 and its piston 942 and radially with respect to the longitudinal axis A-A.
Upon release of the pressure of the pressure against the ball-detent mechanism 950, the sealing body 930 can be ejected from the outlet 816, as seen in
The preferred sealing assemblies 830, 930 with releasing mechanisms described herein can be into other type of fluid distribution devices of the system, such as for example a fire protection sprinkler having a frame and outlet provided the sealing assembly and actuator do not interfere with the spray or discharge performance of the device. For example, the preferred sealing assemblies and releasing mechanisms described herein can be incorporated into a sprinkler device 1010 having a frame body 1012 as shown for example in
While the present invention has been disclosed with reference to certain embodiments, numerous modifications, alterations, and changes to the described embodiments are possible without departing from the sphere and scope of the present invention, as defined in the appended claims. Accordingly, it is intended that the present invention not be limited to the described embodiments, but that it has the full scope defined by the language of the following claims, and equivalents thereof.
This application is a 371 National Stage application claiming the benefit of priority to International Application No, PCT/US2015/034951, filed Jun. 9, 2015, U.S. Provisional Application No. 62/009,778, filed Jun. 9, 2014; U.S. Provisional Application No. 62/013,731, filed Jun. 18, 2014; U.S. Provisional Application No. 62/016,501, filed Jun. 24, 2014; International Application No. PCT/US2014/072246, filed Dec. 23, 2014; U.S. Provisional Application No. 62/145,840, filed Apr. 10, 2015; and U.S. Provisional Application Nos. 62/172,281, 62/172,287, and 62/172,291, filed Jun. 8, 2015, each of which is incorporated by reference in its entirety.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2015/034951 | 6/9/2015 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2015/191619 | 12/17/2015 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3834463 | Allard et al. | Sep 1974 | A |
3863720 | Young | Feb 1975 | A |
4281718 | Claussen et al. | Aug 1981 | A |
6039124 | Bowman | Mar 2000 | A |
6685104 | Float | Feb 2004 | B1 |
20020036090 | Gil | Mar 2002 | A1 |
20060289174 | Yu | Dec 2006 | A1 |
20110036598 | Pahila | Feb 2011 | A1 |
20110168416 | Frasure et al. | Jul 2011 | A1 |
20120118591 | Yen | May 2012 | A1 |
20150027739 | Multer | Jan 2015 | A1 |
Number | Date | Country |
---|---|---|
1347330 | May 2002 | CN |
1134276 | Jan 2004 | CN |
1987943 | Jun 2007 | CN |
19945856 | Apr 2001 | DE |
1 171 206 | Mar 2005 | EP |
2 343 105 | Jul 2011 | EP |
2 371 425 | Oct 2011 | EP |
WO-2014076348 | May 2014 | WO |
Entry |
---|
English translation of CN1134276C (Year: 2004). |
International Search Report and Written Opinion for International Application No. PCT/US2014/072246, dated Apr. 30, 2015, 8 pages. |
International Search Report and Written Opinion for International Application No. PCT/US2015/034951, dated Nov. 6, 2015, 17 pages. |
Number | Date | Country | |
---|---|---|---|
20170120090 A1 | May 2017 | US |
Number | Date | Country | |
---|---|---|---|
62172291 | Jun 2015 | US | |
62172287 | Jun 2015 | US | |
62172281 | Jun 2015 | US | |
62145840 | Apr 2015 | US | |
62016501 | Jun 2014 | US | |
62013731 | Jun 2014 | US | |
62009778 | Jun 2014 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/US2014/707224 | Dec 2014 | US |
Child | 15317524 | US |