The present invention relates to a urinary incontinence treatment apparatus, comprising a restriction device implantable in a patient suffering from urinary incontinence for engaging the urethra or urine bladder to form a restricted urine passageway in the urethra or urine bladder, wherein the restriction device is operable to change the restriction of the urine passageway.
Urine incontinence is a widespread problem. Many people are helped through training of the muscles in the pelvic floor but too many have severe problems with urine leakage. Many different solutions to this problem have been tried. For example, there is a prior manually operated urine incontinence treatment apparatus having an artificial hydraulic sphincter device engaging the urethra and connected to an elastic reservoir implanted in the scrotum or in the region of the labia majora. A disadvantage of this prior apparatus is that over time hard fibrosis is developed around the reservoir which may cause malfunction of pumping components. Furthermore, it is a rather complicated task to manually squeeze the elastic implanted reservoir to pump hydraulic fluid to open the sphincter device when the patient needs to urinate. In particular women can get their fingers wet. The created fibrosis will sooner or later become a hard fibrotic layer, which may make it even more difficult to pump the reservoir. Yet a further disadvantage is that the use of hydraulic fluid always entails a risk of fluid leaking from implanted hydraulic components.
A prior hydraulic apparatus designed to compress the urethra is disclosed in U.S. Pat. No. 5,520,606. Prosthetic sphincters with an inflatable cuff, which surrounds the urethra or encloses it on two sides is disclosed in for example U.S. Pat. Nos. 4,571,749 and 4,222,377. U.S. Pat. No. 4,969,474 discloses a hydraulic method for treating both men and women with urinary incontinence problems in the same way. The apparatus of U.S. Pat. No. 4,969,474 includes a reservoir containing fluid and an inflatable compression means designed to compress urethra without risking tissue loss or necrosis to occur. An artificial hydraulically operated urethral sphincter employing an external magnet to achieve closure of the urethral cuff is disclosed in U.S. Pat. No. 5,562,598.
A prior mechanical prosthetic sphincter, disclosed in U.S. Pat. No. 4,619,245, comprises a manually controllable actuating component for implanting at a convenient location in the patients body.
The object of the present invention is to provide a new convenient urinary incontinence treatment apparatus, the performance of which may be affected by the patient at any time after operation, in particular when various needs arise over the course of a day, so that the patient substantially always is satisfied or comfortable.
This object is achieved by a urinary incontinence treatment apparatus of the kind stated initially, which is characterised in that a source of energy is provided, and a control device operable from outside the patient's body is provided for controlling the source of energy to release energy for use in connection with the operation of the restriction device, when the restriction device is implanted.
As a result, the advantage is achieved that the restriction device can be non-invasively operated, when the restriction device has to be adjusted. Furthermore, the apparatus of the invention provides a simple and effective control of the energy supplied to implanted components of the apparatus which ensures an extended and reliable functionality of the apparatus, possibly for the rest of the patient's life and at least many years.
The control device may also control the restriction device. The control device may comprise an internal control unit, preferably including a microprocessor, implantable in the patient for controlling the restriction device. The control device may further comprise an external control unit outside the patient's body, wherein the internal control unit is programmable by the external control unit, for example for controlling the restriction device over time. Alternatively, the internal control unit may control the restriction device over time in accordance with an activity schedule program, which may be adapted to the patient's needs.
A great advantage is that the patient is enabled to adjust the restriction of the urine passageway by using the control device whenever he likes during the day.
Conveniently, the external control unit may load the internal control unit with data in accordance with a loading mode only authorized for a doctor. For specialized controls of the restriction device, the external control unit may control the internal control unit in accordance with a doctor mode only authorized for the doctor. For simple controls of the restriction device, the external control unit may control the internal control unit in accordance with a patient mode permitted for the patient. Thus, by using the external control unit in accordance with different modes it is possible to have certain functions of the restriction device controlled by the patient and other more advanced functions controlled by the doctor, which enables a flexible post-operation treatment of the patient.
The control device may be adapted to control the source of energy to release energy, for instance to intermittently release energy in the form of a train of energy pulses, for direct use in connection with the operation of the restriction device. In accordance with a suitable embodiment the control device controls the source of energy to release electric energy, and the apparatus further comprises an implantable capacitor for producing the train of energy pulses from the released energy. In this case the term “direct” is used to mean, on one hand, that the released energy is used while it is being released by the control device, on the other hand, that the released energy may be somewhat delayed, in the order of seconds, by for instance an energy stabilizer before being used in connection with the operation of the restriction device. The restriction device may be operable in non-manual, a non-magnetic or non-mechanical manner by use of the released energy.
In accordance with a preferred embodiment of the invention, the apparatus comprises implantable electrical components including at least one, or only one single voltage level guard and a capacitor or accumulator, wherein the charge and discharge of the capacitor or accumulator is controlled by use of the voltage level guard. As a result, there is no need for any implanted current detector and/or charge level detector for the control of the capacitor, which makes the apparatus simple and reliable.
Generally, the apparatus further comprises an operation device implantable in the patient for operating the restriction device, wherein the control device controls the operation device to operate the restriction device. The control device may directly power the operation device with energy released from the source of energy and/or power other implantable energy consuming components of the apparatus. In this case the term “directly” is used to mean, on one hand, that the operation device is powered by released energy while the latter is being released by the control device, on the other hand, that the released energy may be somewhat delayed, in the order of seconds, by for instance an energy stabilizer before powering the operation device. The advantage of directly using energy as it is released is that the apparatus can be of a very simple design and the few components involved makes the apparatus reliable.
The control device may release magnetic, electromagnetic, kinetic, sonic or thermal energy, or non-magnetic, non-sonic, non-thermal, non-electromagnetic or non-kinetic energy.
However, preferably the operation device comprises an electrical operation device.
Typically the apparatus of the invention comprises an adjustment device for adjusting the restriction device to change the restriction of the urine passageway. The adjustment device may be adapted to mechanically adjust the restriction device. Alternatively, the adjustment device may be adapted to hydraulically adjust the restriction device by using hydraulic means which is devoid of hydraulic fluid of the kind having a viscosity that substantially increases when exposed to heat or a magnetic field, i.e. the hydraulic fluid would not become more viscous when exposed to heat or influenced by magnetic forces.
The restriction device may be non-inflatable, i.e. with no hydraulic fluid involved for the adjustments of the restriction device. This eliminates problems with fluid leaking from the restriction device.
The operation device may comprise hydraulic means and at least one valve for controlling a fluid flow in the hydraulic means. The control device may suitably comprise a wireless remote control for controlling the valve. The restriction device may comprise hydraulic means and the operation device may comprise a reservoir forming a fluid chamber with a variable volume connected to the hydraulic means. The operation device may distribute fluid from the chamber to the hydraulic means by reduction of the volume of the chamber and withdraw fluid from the hydraulic means to the chamber by expansion of the volume of the chamber.
In accordance with a first main aspect of the invention, the source of energy is external to the patient's body and the control device controls the source of energy to release wireless energy. The external source of energy may be of any conceivable kind, such as a nuclear source of energy or a chemical source of enemy.
An energy storage device, preferably an electric accumulator, may be implantable in the patient for storing the wireless energy released from the external source of energy. The electric accumulator may comprise at least one capacitor or at least one rechargeable battery, or a combination of at least one capacitor and at least one rechargeable battery. Alternatively, a battery may be implantable in the patient for supplying electric energy to implanted electric energy consuming components of the apparatus, in addition to the supply of wireless energy. Where the control device comprises implantable control unit the electronic circuit thereof and the restriction device may be directly powered by transformed wireless energy, or energy from either the implantable energy storage device or battery.
In accordance with a second main aspect of the invention, the wireless energy is directly used for operation of the restriction device, i.e. the restriction device is operated as the wireless energy is released from the external source of energy by the control device. In this case the term “directly” is used to mean, on one hand, that the restriction device is promptly operated by using the released energy without first storing the latter, on the other hand, that the released energy may be somewhat delayed, in the order of seconds, by for instance an energy stabilizer before being used for the operation of the restriction device. As a result, a very simple control of the restriction device is achieved and there are only a few implanted components of the apparatus. For example, there is no implanted source of energy, such as a battery, nor any implanted complicated signal control system. This gives the advantage that the apparatus will be extremely reliable.
Generally, the control device controls and directly or indirectly powers the operation device with wireless energy released from the source of energy and/or powers other implanted energy consuming components of the apparatus.
In a first particular embodiment in accordance with the first and second main aspects of the invention, the operation device comprises a motor, preferably an electric motor which may have electrically conductive parts made of plastics. The motor may include a rotary motor, wherein the control device is adapted to control the rotary motor to rotate a desired number of revolutions. Alternatively, the motor may include a linear motor, or a hydraulic or pneumatic fluid motor, wherein the control device is adapted to control the fluid flow through the fluid motor. Motors currently available on the market are getting smaller and smaller. Furthermore, there is a great variety of control methods and miniaturized control equipment available. For example, a number of revolutions of a rotary motor may be analyzed by a Hall-element just a few mm in size.
In a second particular embodiment in accordance with the first and second main aspects of the invention, the control device is adapted to shift polarity of the released energy to reverse the operation device. The operation device may suitably comprise an electric motor and the released energy may comprise electric energy.
In a third particular embodiment in accordance with the first and second main aspects of the invention, the restriction device is operable to perform a reversible function and there is a reversing device implantable in the patient for reversing the function performed by the restriction device. Such a reversing function preferably involves enlarging and restricting the urine passageway by the restriction device, suitably in a stepless manner. In this connection, the control device suitably controls the reversing device, which may include a switch, to reverse the function performed by the restriction device. The reversing device may comprise hydraulic means including a valve for shifting the flow direction of a fluid in the hydraulic means. Alternatively, the reversing device may comprise a mechanical reversing device, such as a switch or a gearbox.
Where the reversing device comprises a switch the control device suitably controls the operation of the switch by shifting polarity of released energy supplied to the switch. The switch may comprise an electric switch and the source of energy may supply electric energy for the operation of the switch. The switch mentioned above may comprise an electronic switch or, where applicable, a mechanical switch.
In accordance with the third particular embodiment, the operation device preferably comprises a motor, wherein the reversing device reverses the motor.
In a fourth particular embodiment in accordance with the first and second main aspects of the invention, the restriction device comprises hydraulic means, for example including an expansible/contractible cavity for fluid. Preferably, the operation device is adapted to conduct hydraulic fluid in the hydraulic means, and comprises a motor, a valveless fluid conduit connected to the hydraulic means of the restriction device, and a reservoir for fluid, wherein the reservoir forms part of the conduit. The operation device suitably comprises a pump operated by the motor. All of the hydraulic components involved are preferably devoid of any non-return valve. This is of great advantage, because with valves involved there is always a risk of malfunction due to improperly working valves, especially when long time periods passes between valve operations. The reservoir may form a fluid chamber with a variable volume, and the pump may distribute fluid from the chamber to the hydraulic means of the restriction device by reduction of the volume of the chamber and withdraw fluid from the hydraulic means to the chamber by expansion of the volume of the chamber.
In accordance with a third main aspect of the invention, the source of energy is implantable in the patient. Thus, when the source of energy is implanted in a patient the control device controls it from outside the patient's body to release energy. This solution is advantageous for embodiments of the apparatus that have a relatively high consumption of energy, which cannot be satisfied by direct supply of wireless energy.
The implantable source of energy may comprise an accumulator, preferably an electric source of energy, such as a battery having a lifetime of at least 10 years.
In accordance with a fourth main aspect of the invention, the apparatus comprises a switch implanted in the patient for directly or indirectly switching the operation of the restriction device and an internal source of energy, such as a battery, implanted in the patient for supplying energy for the operation of the restriction device, wherein the switch directly or indirectly affects the supply of energy from the internal source of energy. This solution is advantageous for embodiments of the apparatus that have a relatively high energy consumption which cannot be met by direct supply of wireless energy.
In a first particular embodiment in accordance with the fourth main aspect of the invention, the switch switches between an off mode, in which the internal source of energy is not in use, and an on mode, in which the internal source of energy supplies energy for the operation of the restriction device. In this case, the switch is conveniently operated by the wireless energy released from the external source of energy to switch between the on and off modes. The control device, preferably comprising a wireless remote control, may control the external source of energy to release the wireless energy. The advantage of this embodiment is that the lifetime of the implanted source of energy, such as a battery, can be significantly prolonged, since the implanted source of energy does not supply energy when the switch is in its off mode.
In a second particular embodiment in accordance with the fourth main aspect of the invention, the control device comprises a wireless remote control for controlling the internal source of energy. In this case, the switch is operable by the wireless energy from the external source of energy to switch between an off mode, in which the internal source of energy and remote control are not in use, and a standby mode, in which the remote control is permitted to control the internal source of energy to supply energy for the operation of the restriction device.
In a third particular embodiment in accordance with the fourth main aspect of the invention, the apparatus further comprises an energy transforming device implanted in the patient for transforming the wireless energy into storable energy, wherein the internal source of energy is capable of storing the storable energy. The internal source of energy preferably comprises an electric accumulator, at least one capacitor or at least one rechargeable battery, or a combination of at least one capacitor and at least one rechargeable battery. In this case, the switch switches from an off mode, in which the internal source of energy is not in use, to an on mode, in which the internal source of energy supplies energy for the operation of the restriction device.
The control device, preferably comprising a wireless remote control, may control the switch to switch between the on and off modes.
Alternatively, in this third particular embodiment an energy storage device may be implanted in the patient for storing the storable energy instead of the internal source of energy, wherein the switch is operable by energy from the implanted energy storage device to switch between an off mode, in which the internal source of energy is not in use, and an on mode, in which the internal source of energy supplies energy for the operation of the restriction device. In this case, the control device (the wireless remote control) controls the energy storage device to operate the switch.
The internal source of energy preferably comprises an electric source of energy, such as an accumulator or a battery having a lifetime of at least 10 years. However, other kinds of sources are also conceivable, such as a nuclear source of energy or a chemical source of energy.
The above first, second, third and fourth particular embodiments described in connection with the first and second main aspects of the invention are also applicable in accordance with the third main aspect of the invention, i.e. where the source of energy is implantable, and in accordance with the fourth main aspect of the invention, i.e. where the apparatus comprises an implantable switch.
All of the above embodiments may be combined with at least one implantable sensor for sensing at least one physical parameter of the patient, wherein the control device may control the restriction device in response to signals from the sensor. For example, the sensor may comprise a pressure sensor for directly or indirectly sensing the pressure in the urethra or urine bladder. The expression “indirectly sensing the pressure in the urethra or urine bladder” should be understood to encompass the cases where the sensor senses the pressure against the restriction device or human tissue of the patient. Where the control device comprises an internal control unit to be implanted in the patient, the internal control unit may suitably directly control the restriction device in response to signals from the sensor. In response to signals from the sensor, for example pressure, the patient's position or any other important physical parameter, the internal control unit may send information thereon to outside the patient's body. The control unit may also automatically control the restriction device in response to signals from the sensor. For example, the control unit may control the restriction device to firmly close the urine passageway in response to the sensor sensing that the patient is lying, or enlarge the urine passageway in response to the sensor sensing an abnormally high pressure against the restriction device.
Where the control device comprises an external control unit outside the patient's body, the external control unit may, suitably directly, control the restriction device in response to signals from the sensor. The external control unit may store information on the physical parameter sensed by the sensor and may be manually operated to control the restriction device based on the stored information. In addition, there may be at least one implantable sender for sending information on the physical parameter sensed by the sensor.
An external data communicator may be provided outside the patient's body and an internal data communicator to be implanted in the patient may be provided for communicating with the external data communicator. The internal data communicator may feed data related to the patient, or related to the restriction device, back to the external data communicator. Alternatively or in combination, the external data communicator may feed data to the internal data communicator. The internal data communicator may suitably feed data related to at least one physical signal of the patient.
Generally, the apparatus of the invention may comprise a switch implantable in the patient for directly or indirectly switching the energy released from the source of energy. For example, the restriction device may be operable to open and close the urine passageway or may steplessly control the restriction of the urine passageway. A pressure sensor may be provided for directly or indirectly sensing the pressure in the urethra or urine bladder. The control device may control the restriction device in response to signals from the pressure sensor.
The apparatus may comprise an implantable energy transforming device, wherein the control device releases electric energy and the energy transforming device transforms the electric energy into kinetic energy for, preferably direct, operation of the restriction device. Suitably, an implantable stabilizer, such as a capacitor or a rechargeable accumulator, or the like, may be provided for stabilizing the electric energy released by the control device. In addition, the control device may control the source of energy to release energy for a determined time period or in a determined number of energy pulses. Finally, the restriction device may be non-inflatable.
All of the above embodiments are preferably remote controlled. Thus, the control device advantageously comprises a wireless remote control transmitting at least one wireless control signal for controlling the restriction device. With such a remote control it will be possible to adapt the function of the apparatus to the patient's need in a daily basis, which is beneficial with respect to the treatment of the patient.
The wireless remote control may be capable of obtaining information on the condition of the restriction device and of controlling the restriction device in response to the information. Also, The remote control may be capable of sending information related to the restriction device from inside the patient's body to the outside thereof.
In a particular embodiment of the invention, the wireless remote control comprises at least one external signal transmitter or transceiver and at least one internal signal receiver or transceiver implantable in the patient. In another particular embodiment of the invention, the wireless remote control comprises at least one external signal receiver or transceiver and at least one internal signal transmitter or transceiver implantable the patient.
The remote control may transmit a carrier signal for carrying the control signal, wherein the carrier signal is frequency, amplitude or frequency and amplitude modulated and is digital, analog or digital and analog. Also the control signal used with the carrier signal may be frequency, amplitude or frequency and amplitude modulated.
The control signal may comprise a wave signal, for example, a sound wave signal, such as an ultrasound wave signal, an electromagnetic wave signal, such as an infrared light signal, a visible light signal, an ultra violet light signal, a laser signal, a micro wave signal, a radio wave signal, an x-ray radiation signal, or a gamma radiation signal. Where applicable, two or more of the above signals may be combined.
The control signal may be digital or analog, and may comprise an electric or magnetic field. Suitably, the wireless remote control may transmit an electromagnetic carrier wave signal for carrying the digital or analog control signal. For example, use of an analog carrier wave signal carrying a digital control signal would give safe communication. The control signal may be transmitted in pulses by the wireless remote control.
In all of the above solutions, the control device advantageously releases energy from the source of energy in a non-invasive, magnetic, non-magnetic, mechanical or non-mechanical manner.
The control device may release magnetic, electromagnetic, kinetic or thermal energy, or non-magnetic, non-thermal, non-electromagnetic or non-kinetic energy.
The control device may be activated in a manual or non-manual manner to control the source of energy to release energy.
The above-presented embodiments of the invention may be modified in accordance with the following suggestions. The released energy may comprise electric energy and an implantable capacitor having a capacity less than 0.1 μF may be provided for producing the above-mentioned train of energy pulses.
An implantable motor or pump may be provided for operating the restriction device, wherein the control device is adapted to control the source of energy to directly power the motor or pump with the released energy. Specifically, the control device may be adapted to release wireless energy in the form of a magnetic field or electromagnetic waves (excluding radio waves) for direct power of the motor or pump, as the wireless energy is being released. Where a pump is used it preferably is not a plunger type of pump.
Generally, the wireless energy comprises a signal.
The apparatus may further comprise implantable energy transforming device for transforming wireless energy directly or indirectly into energy different than the wireless energy, for operation of the restriction device. For example, the motor or pump may be powered by the transformed energy.
The energy transforming device may transform the wireless energy in the form of sound waves, preferably directly, into electric energy for operation of the restriction device. The energy transforming device may comprise a capacitor adapted to produce electric pulses from the transformed electric energy.
The motor mentioned in the present specification may also be directly powered with wirelessly transmitted electromagnetic or magnetic energy in the form of signals, as the energy is transmitted. Furthermore, all the various functions of the motor and associated components described in the present specification may be used where applicable.
Generally, the restriction device advantageously is embedded in a soft or gel-like material, such as a silicone material having hardness less than 20 Shore.
Of course, the restriction device preferably is adjustable in a non-manual manner.
All the above described various components, such as the motor, pump and capacitor, may be combined in the different embodiments where applicable. Also the various functions described in connection with the above embodiments of the invention may be used in different applications, where applicable.
All the various, ways of transferring energy and controlling the energy presented in the present specification may be practiced by using all of the various components and solutions described.
The present invention also provides methods for treating urinary incontinent patients.
Accordingly, in accordance with a first alternative method, there is provided a method of treating a patient suffering from urinary incontinence, comprising the steps of implanting an operable restriction device in the patient, so that the restriction device engages the urethra or urine bladder to form a restricted urine passageway in the urethra or urine bladder, providing a source of energy for energizing the restriction device, and controlling the source of energy to release energy for use in connection with the operation of the restriction device. The method may further comprise using energy released from the source of energy to operate the restriction device to open and close, respectively, the urine passageway.
In accordance with a second alternative method, there is provided a method of treating a patient suffering from urinary incontinence, comprising the steps of placing at least two laparascopical trocars in the patient's body, inserting a dissecting tool through the trocars and dissecting an area of the urethra or urine bladder, placing an operable restriction device in the dissected area, so that the restriction device engages the urethra or urine bladder to form a restricted urine passageway in the urethra or urine bladder, implanting a source of energy in the patient, and controlling the implanted source of energy from outside the patient's body to release energy for use in connection with the operation of the restriction device.
In accordance with a third alternative method, there is provided a method of treating a patient suffering from urinary incontinence, comprising: (a) Surgically implanting in the patient an operable restriction device engaging the patient's urethra or urine bladder to form a restricted urine passageway in the urethra or urine bladder. (b) Providing a source of energy external to the patient's body. (c) Controlling the external source of energy from outside the patient's body to release wireless energy. And (d) using the released wireless energy in connection with the operation of the restriction device.
The method may further comprise (e) implanting in the human or animal an operation device which can adjust the restricted urine passageway in response to supplied energy, and (f) using the released wireless energy to activate the implanted operation device so as (i) to enlarge the restricted urine passageway to allow urine to readily pass therethrough but normally restrict the urine passageway. In the method (f) may be practiced at least once a day, normally several times (e.g. 2-10) a day.
In accordance with a fourth alternative method, there is provided a method of treating a patient suffering from urinary incontinence, comprising the steps of placing at least two laparascopical trocars in the patient's body, inserting a dissecting tool through the trocars and dissecting an area of the urethra or urine bladder, placing an operable restriction device in the dissected area, so that the restriction device engages the urethra or urine bladder to form a restricted urine passageway in the urethra or urine bladder, providing an external source of energy outside the patient's body, controlling the external source of energy from outside the patient's body to release wireless energy, and using the released wireless energy in connection with the operation of the restriction device.
In accordance with a fifth alternative method, there is provided a method of treating a patient suffering from urinary incontinence, comprising the steps of placing at least two laparascopical trocars in the patient's body, inserting a dissecting tool through the trocars and dissecting an area of the urethra or urine bladder, implanting an operable restriction device in the dissected area, so that the restriction device engages the urethra or urine bladder to form a restricted urine passageway in the urethra or urine bladder, implanting an energy transforming device, providing an external source of energy, controlling the external source of energy to release wireless energy, and transforming the wireless energy by the energy transforming device into energy different than the wireless energy for use in connection with the operation of the restriction device. This method may further comprise implanting a stabilizer in the patient for stabilizing the energy transformed by the energy transforming device.
The invention is described in more detail in the following with reference to the accompanying drawings, in which
Referring to the drawing figures, like reference numerals designate identical or corresponding elements throughout the several figures.
In response to a control signal from the external control unit 40 the implanted control unit 6 powers the motor/pump unit 36 with energy from the battery 32, whereby the motor/pump unit 36 distributes hydraulic fluid between the reservoir 34 and the restriction device 4. The control unit 6 controls the shifting device 38 to shift the hydraulic fluid flow direction between one direction in which the fluid is pumped by the motor/pump unit 36 from the reservoir 34 to the restriction device 4 to restrict the urine passageway, and another opposite direction in which the fluid is pumped by the motor/pump unit 36 back from the restriction device 4 to the reservoir 34 to enlarge the urine passageway.
A sensor 54 may be implanted in the patient for sensing a physical parameter of the patient, such as the pressure in the stomach. The control unit 6, or alternatively the external control unit 10, may control the restriction device 4 in response to signals from the sensor 54. A transceiver may be combined with the sensor 54 for sending information on the sensed physical parameter to the external control unit 10. The wireless remote control of the external control unit 10 may comprise a signal transmitter or transceiver and the implanted control unit 6 may comprise a signal receiver or transceiver. Alternatively, the wireless remote control of the external control unit 10 may comprise a signal receiver or transceiver and the implanted control unit 6 may comprise a signal transmitter or transceiver. The above transceivers, transmitters and receivers may be used for sending information or data related to the restriction device from inside the patient's body to the outside thereof.
The motor 44 may be implanted for operating the restriction device 4 and also the battery 32 may be implanted for powering the motor 44. The battery 32 may be equipped with a transceiver for sending information on the charge condition of the battery.
Those skilled in the art will realize that the above various embodiments according to
An external signal transmitting antenna 132 is to be positioned close to a signal receiving antenna, 134 implanted close to the skin 130. As an alternative, the receiving antenna 134 may be placed for example inside the abdomen of the patient. The receiving antenna 134 comprises a coil, approximately 1-100 mm, preferably 25 mm in diameter, wound with a very thin wire and tuned with a capacitor to a specific high frequency. A small coil is chosen if it is to be implanted under the skin of the patient and a large coil is chosen if it is to be implanted in the abdomen of the patient. The transmitting antenna 132 comprises a coil having about the same restriction as the coil of the receiving antenna 134 but wound with a thick wire that can handle the larger currents that is necessary. The coil of the transmitting antenna 132 is tuned to the same specific high frequency as the coil of the receiving antenna 134.
An external control unit 136 comprises a microprocessor, a high frequency electromagnetic wave signal generator and a power amplifier. The microprocessor of the control unit 136 is adapted to switch the generator on/off and to modulate signals generated by the generator to send digital information via the power amplifier and the antennas 132,134 to an implanted control unit 138. To avoid that accidental random high frequency fields trigger control commands, digital signal codes are used. A conventional keypad placed on the external control unit 136 is connected to the microprocessor thereof. The keypad is used to order the microprocessor to send digital signals to activate the restriction device to either restrict or enlarge the urine passageway. The microprocessor starts a command by applying a high frequency signal on the antenna 132. After a short time, when the signal has energized the implanted parts of the control system, commands are sent to restrict or enlarge the urine passageway in predefined steps. The commands are sent as digital packets in the form illustrated below.
The commands are sent continuously during a rather long time period (e.g. about 30 seconds or more). When a new restrict or enlarge step is desired the Count byte is increased by one to allow the implanted control unit 138 to decode and understand that another step is demanded by the external control unit 136. If any part of the digital packet is erroneous, its content is simply ignored.
Through a line 140, an implanted energizer unit 126 draws energy from the high frequency electromagnetic wave signals received by the receiving antenna 134. The energizer unit 126 stores the energy in a power supply, such as a large capacitor, powers the control unit 138 and powers the electric motor 128 via a line 142.
The control unit 138 comprises a demodulator and a microprocessor. The demodulator demodulates digital signals sent from the external control unit 136. The microprocessor of the control unit 138 receives the digital packet, decodes it and, provided that the power supply of the energizer unit 126 has sufficient energy stored, sends a signal via a signal line 144 to the motor 128 to either contract or enlarge the restriction device depending on the received command code.
Alternatively, the energy stored in the power supply of the energizer unit may only be used for powering a switch, and the energy for powering the motor 128 may be obtained from another implanted power source of relatively high capacity, for example a battery. In this case the switch is adapted to connect said battery to the control unit 138 in an on mode when said switch is powered by said power supply and to keep said battery disconnected from the control unit in a standby mode when said switch is unpowered.
With reference to
The implanted signal receiving antenna coil 134 forms together with a capacitor 154 a resonant circuit that is tuned to the same frequency as the transmitting antenna 132. The signal receiving antenna coil 134 induces a current from the received high frequency electromagnetic waves and a rectifying diode 160 rectifies the induced current, which charges a storage capacitor 158. A coil 156 connected between the antenna coil 134 and the diode 160 prevents the capacitor 158 and the diode 160 from loading the circuit of the signal receiving antenna 134 at higher frequencies. Thus, the coil 156 makes it possible to charge the capacitor 158 and to transmit digital information using amplitude modulation.
A capacitor 162 and a resistor 164 connected in parallel and a diode 166 forms a detector used to detect amplitude modulated digital information. A filter circuit is formed by a resistor 168 connected in series with a resistor 170 connected in series with a capacitor 172 connected in series with the resistor 168 via ground, and a capacitor 174, one terminal of which is connected between the resistors 168,170 and the other terminal of which is connected between the diode 166 and the circuit formed by the capacitor 162 and resistor 164. The filter circuit is used to filter out undesired low and high frequencies. The detected and filtered signals are fed to an implanted microprocessor 176 that decodes the digital information and controls the motor 128 via an H-bridge 178 comprising transistors 180,182,184 and 186. The motor 128 can be driven in two opposite directions by the H-bridge 178.
The microprocessor 176 also monitors the amount of stored energy in the storage capacitor 158. Before sending signals to activate the motor 128, the microprocessor 176 checks whether the energy stored in the storage capacitor 158 is enough. If the stored energy is not enough to perform the requested operation, the microprocessor 176 waits for the received signals to charge the storage capacitor 158 before activating the motor 128.
This application is a Continuation Application of U.S. application Ser. No. 10/203,094, filed Oct. 16, 2002 now U.S. Pat. No. 7,648,455 which is the U.S. National Phase of International Application No. PCT/SE01/00252, filed Feb. 8, 2001, which designated the U.S., and which claims the benefit of Provisional Application Ser. No. 60/181,465, filed Feb. 10, 2000, and Provisional Application Ser. No. 60/181,466, filed Feb. 10, 2000, the entire contents of each of which are hereby incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
2060913 | Weaver | Nov 1936 | A |
2795641 | Ross | Jun 1957 | A |
3209081 | Ducote et al. | Sep 1965 | A |
3598287 | De Man | Aug 1971 | A |
3662758 | Glover | May 1972 | A |
3692027 | Ellinwood, Jr. | Sep 1972 | A |
3705575 | Edwards | Dec 1972 | A |
3731679 | Wilhelmson et al. | May 1973 | A |
3731681 | Blackshear et al. | May 1973 | A |
3750194 | Summers | Aug 1973 | A |
3817237 | Bolduc | Jun 1974 | A |
3855122 | Bourganel | Dec 1974 | A |
3863622 | Buuck | Feb 1975 | A |
3875928 | Angelchik | Apr 1975 | A |
3906674 | Stone | Sep 1975 | A |
3923060 | Ellinwood, Jr. | Dec 1975 | A |
3954102 | Buuck | May 1976 | A |
4003379 | Ellinwood, Jr. | Jan 1977 | A |
4009711 | Uson | Mar 1977 | A |
4026305 | Brownlee et al. | May 1977 | A |
4044401 | Guiset | Aug 1977 | A |
4146029 | Ellinwood, Jr. | Mar 1979 | A |
4190040 | Schulte | Feb 1980 | A |
4201202 | Finney et al. | May 1980 | A |
4221219 | Tucker | Sep 1980 | A |
4235222 | Ionescu | Nov 1980 | A |
4243306 | Bononi | Jan 1981 | A |
4246893 | Berson | Jan 1981 | A |
4265241 | Portner et al. | May 1981 | A |
4271827 | Angelchik | Jun 1981 | A |
4274407 | Scarlett | Jun 1981 | A |
4304225 | Freeman | Dec 1981 | A |
4318396 | Finney | Mar 1982 | A |
4342308 | Trick | Aug 1982 | A |
4369771 | Trick | Jan 1983 | A |
4400169 | Stephen | Aug 1983 | A |
4408597 | Tenney, Jr. | Oct 1983 | A |
4412530 | Burton | Nov 1983 | A |
4424807 | Evans | Jan 1984 | A |
4426893 | Miller | Jan 1984 | A |
4456175 | Mamrosov et al. | Jun 1984 | A |
4464628 | Nozawa | Aug 1984 | A |
4491461 | Hoekstra | Jan 1985 | A |
4505710 | Collins | Mar 1985 | A |
4509947 | Lattin | Apr 1985 | A |
4538607 | Saul | Sep 1985 | A |
4542753 | Brenman et al. | Sep 1985 | A |
4550720 | Trick | Nov 1985 | A |
4556050 | Hodgson et al. | Dec 1985 | A |
4559930 | Cobiski | Dec 1985 | A |
4559931 | Fischell | Dec 1985 | A |
4563175 | LaFond | Jan 1986 | A |
4568851 | Soni et al. | Feb 1986 | A |
4583523 | Kleinke et al. | Apr 1986 | A |
4584994 | Bamberger et al. | Apr 1986 | A |
4592339 | Kuzmak et al. | Jun 1986 | A |
4592355 | Antebi | Jun 1986 | A |
4599081 | Cohen | Jul 1986 | A |
4602621 | Hakky | Jul 1986 | A |
4610658 | Buchwald et al. | Sep 1986 | A |
4623350 | Lapeyre et al. | Nov 1986 | A |
4628928 | Lowell | Dec 1986 | A |
4634443 | Haber | Jan 1987 | A |
4664100 | Rudloff | May 1987 | A |
4677534 | Okochi | Jun 1987 | A |
4679560 | Galbraith | Jul 1987 | A |
4696288 | Kuzmak et al. | Sep 1987 | A |
4711231 | Finegold et al. | Dec 1987 | A |
4723538 | Stewart et al. | Feb 1988 | A |
4756949 | Spence et al. | Jul 1988 | A |
4771772 | DeWitt | Sep 1988 | A |
4771780 | Sholder | Sep 1988 | A |
4773403 | Daly | Sep 1988 | A |
4780064 | Olsen | Oct 1988 | A |
4822341 | Colone | Apr 1989 | A |
4828544 | Lane et al. | May 1989 | A |
4828990 | Higashi et al. | May 1989 | A |
4829990 | Thuroff et al. | May 1989 | A |
4846794 | Hertzer | Jul 1989 | A |
4902279 | Schmidtz et al. | Feb 1990 | A |
4925443 | Heilman et al. | May 1990 | A |
4941461 | Fischell | Jul 1990 | A |
4942668 | Franklin | Jul 1990 | A |
4950224 | Gorsuch et al. | Aug 1990 | A |
4958630 | Rosenbluth et al. | Sep 1990 | A |
4979955 | Smith | Dec 1990 | A |
4982731 | Lue et al. | Jan 1991 | A |
4983177 | Wolf | Jan 1991 | A |
5006106 | Angelchik | Apr 1991 | A |
5012822 | Schwarz | May 1991 | A |
5042084 | Daly | Aug 1991 | A |
5048511 | Rosenbluth et al. | Sep 1991 | A |
5057075 | Moncrief et al. | Oct 1991 | A |
5062416 | Stucks | Nov 1991 | A |
5074868 | Kuzmak | Dec 1991 | A |
5078676 | Bailly | Jan 1992 | A |
5098369 | Heilman et al. | Mar 1992 | A |
5112202 | Oshima et al. | May 1992 | A |
5123428 | Schwarz | Jun 1992 | A |
5151082 | Gorsuch et al. | Sep 1992 | A |
5152743 | Gorsuch et al. | Oct 1992 | A |
5160338 | Vincent | Nov 1992 | A |
5194145 | Schoendorfer | Mar 1993 | A |
5224926 | Gorsuch et al. | Jul 1993 | A |
5226429 | Kuzmak | Jul 1993 | A |
5250020 | Bley | Oct 1993 | A |
5272664 | Alexander | Dec 1993 | A |
5297536 | Wilk | Mar 1994 | A |
5304206 | Baker, Jr. et al. | Apr 1994 | A |
5316543 | Eberbach | May 1994 | A |
5358474 | Kaldany | Oct 1994 | A |
5397354 | Wilk et al. | Mar 1995 | A |
5415660 | Campbell et al. | May 1995 | A |
5435230 | Phillips | Jul 1995 | A |
5437605 | Helmy | Aug 1995 | A |
5449368 | Kuzmak | Sep 1995 | A |
5453079 | Schwaninger | Sep 1995 | A |
5454840 | Krakovsky et al. | Oct 1995 | A |
5501703 | Holsheimer et al. | Mar 1996 | A |
5504700 | Insley | Apr 1996 | A |
5505733 | Justin et al. | Apr 1996 | A |
5509888 | Miller | Apr 1996 | A |
5518499 | Aghr | May 1996 | A |
5518504 | Polyak | May 1996 | A |
5531684 | Ensminger et al. | Jul 1996 | A |
5540731 | Testerman | Jul 1996 | A |
5562598 | Whalen et al. | Oct 1996 | A |
5569187 | Kaiser | Oct 1996 | A |
5578069 | Miner, II | Nov 1996 | A |
5582580 | Buckman, Jr. et al. | Dec 1996 | A |
5665065 | Colman et al. | Sep 1997 | A |
5676674 | Bolanos et al. | Oct 1997 | A |
5690108 | Chakeres | Nov 1997 | A |
5702431 | Wang et al. | Dec 1997 | A |
5704893 | Timm | Jan 1998 | A |
5704915 | Melsky et al. | Jan 1998 | A |
5735809 | Gorsuch | Apr 1998 | A |
5735887 | Barreras et al. | Apr 1998 | A |
5738792 | Schoendorfer | Apr 1998 | A |
5749909 | Schroeppel et al. | May 1998 | A |
5769877 | Barreras | Jun 1998 | A |
5771903 | Jakobsson | Jun 1998 | A |
5814020 | Gross | Sep 1998 | A |
5823991 | Shim | Oct 1998 | A |
5827286 | Incavo et al. | Oct 1998 | A |
5836935 | Ashton et al. | Nov 1998 | A |
5848962 | Feindt et al. | Dec 1998 | A |
5858001 | Tsals et al. | Jan 1999 | A |
5876425 | Gord et al. | Mar 1999 | A |
5900909 | Parulski et al. | May 1999 | A |
5902336 | Mishkin | May 1999 | A |
5910149 | Kuzmak | Jun 1999 | A |
5928195 | Malamud et al. | Jul 1999 | A |
5938584 | Ardito et al. | Aug 1999 | A |
5938669 | Klaiber et al. | Aug 1999 | A |
5954715 | Harrington et al. | Sep 1999 | A |
5964789 | Karsdon | Oct 1999 | A |
5978712 | Suda et al. | Nov 1999 | A |
5980478 | Gorsuch et al. | Nov 1999 | A |
5995874 | Borza | Nov 1999 | A |
5997501 | Gross et al. | Dec 1999 | A |
6003736 | Ljunggren | Dec 1999 | A |
6034878 | Umemura | Mar 2000 | A |
6067991 | Forsell | May 2000 | A |
6074341 | Anderson et al. | Jun 2000 | A |
6077215 | Leysieffer | Jun 2000 | A |
6095968 | Snyders | Aug 2000 | A |
6099460 | Denker | Aug 2000 | A |
6102887 | Altman | Aug 2000 | A |
6102922 | Jakobsson et al. | Aug 2000 | A |
6113574 | Spinello | Sep 2000 | A |
6116193 | Goeckner | Sep 2000 | A |
6117067 | Gil-Vernet | Sep 2000 | A |
6134470 | Hartlaub | Oct 2000 | A |
6135945 | Sultan | Oct 2000 | A |
6145505 | Nikolchev et al. | Nov 2000 | A |
6162238 | Kaplan et al. | Dec 2000 | A |
6185452 | Schulman et al. | Feb 2001 | B1 |
6197055 | Matthews | Mar 2001 | B1 |
6210347 | Forsell | Apr 2001 | B1 |
6215727 | Parson | Apr 2001 | B1 |
6221060 | Willard | Apr 2001 | B1 |
6233474 | Lemelson | May 2001 | B1 |
6275737 | Mann | Aug 2001 | B1 |
6302910 | Yamazaki et al. | Oct 2001 | B1 |
6319191 | Sayet et al. | Nov 2001 | B1 |
6321282 | Horowitz | Nov 2001 | B1 |
6332466 | Yoon | Dec 2001 | B1 |
6346099 | Altman | Feb 2002 | B1 |
6377640 | Trans | Apr 2002 | B2 |
6400988 | Gurewitsch | Jun 2002 | B1 |
6436054 | Viola et al. | Aug 2002 | B1 |
6450173 | Forsell | Sep 2002 | B1 |
6450946 | Forsell | Sep 2002 | B1 |
6453907 | Forsell | Sep 2002 | B1 |
6454698 | Forsell | Sep 2002 | B1 |
6454699 | Forsell | Sep 2002 | B1 |
6454700 | Forsell | Sep 2002 | B1 |
6454701 | Forsell | Sep 2002 | B1 |
6456883 | Torgerson et al. | Sep 2002 | B1 |
6460543 | Forsell | Oct 2002 | B1 |
6461292 | Forsell | Oct 2002 | B1 |
6461293 | Forsell | Oct 2002 | B1 |
6463935 | Forsell | Oct 2002 | B1 |
6464628 | Forsell | Oct 2002 | B1 |
6464655 | Shahinpoor | Oct 2002 | B1 |
6470892 | Forsell | Oct 2002 | B1 |
6471635 | Forsell | Oct 2002 | B1 |
6471688 | Harper et al. | Oct 2002 | B1 |
6475136 | Forsell | Nov 2002 | B1 |
6480946 | Tomishima | Nov 2002 | B1 |
6482145 | Forsell | Nov 2002 | B1 |
6502161 | Perego et al. | Dec 2002 | B1 |
6503189 | Forsell | Jan 2003 | B1 |
6516282 | Hedlund | Feb 2003 | B2 |
6571127 | Ben-Haim et al. | May 2003 | B1 |
6572585 | Choi | Jun 2003 | B2 |
6576010 | Ulert et al. | Jun 2003 | B2 |
6589229 | Connelly et al. | Jul 2003 | B1 |
6600953 | Flesler et al. | Jul 2003 | B2 |
6638208 | Natarajan et al. | Oct 2003 | B1 |
6638303 | Campbell | Oct 2003 | B1 |
6640309 | Doblar | Oct 2003 | B2 |
6650943 | Whitehurst et al. | Nov 2003 | B1 |
6659936 | Furness et al. | Dec 2003 | B1 |
6678561 | Forsell | Jan 2004 | B2 |
6689085 | Rubenstein et al. | Feb 2004 | B1 |
6709385 | Forsell | Mar 2004 | B2 |
6740075 | Lebel et al. | May 2004 | B2 |
6772011 | Dolgin | Aug 2004 | B2 |
6839393 | Sidiropoulos | Jan 2005 | B1 |
6862479 | Whitehurst et al. | Mar 2005 | B1 |
6895280 | Meadows et al. | May 2005 | B2 |
6911002 | Fierro | Jun 2005 | B2 |
6915165 | Forsell | Jul 2005 | B2 |
6928338 | Buchser et al. | Aug 2005 | B1 |
6929625 | Bierman | Aug 2005 | B2 |
6948918 | Hansen | Sep 2005 | B2 |
6953429 | Forsell | Oct 2005 | B2 |
6954871 | Kuhn | Oct 2005 | B2 |
6960233 | Berg et al. | Nov 2005 | B1 |
6979351 | Forsell et al. | Dec 2005 | B2 |
7003684 | Chang | Feb 2006 | B2 |
7011624 | Forsell | Mar 2006 | B2 |
7017583 | Forsell | Mar 2006 | B2 |
7043295 | Starkebaum | May 2006 | B2 |
7066922 | Angel et al. | Jun 2006 | B2 |
7108686 | Burke et al. | Sep 2006 | B2 |
7165153 | Vogt | Jan 2007 | B2 |
7207936 | Forsell | Apr 2007 | B2 |
7214233 | Gannoe et al. | May 2007 | B2 |
7217236 | Calderon et al. | May 2007 | B2 |
7222224 | Woo | May 2007 | B2 |
7235044 | Forsell | Jun 2007 | B2 |
7238165 | Vincent | Jul 2007 | B2 |
7250037 | Shermer et al. | Jul 2007 | B2 |
7311690 | Burnett | Dec 2007 | B2 |
7313639 | Perego et al. | Dec 2007 | B2 |
7330753 | Policker et al. | Feb 2008 | B2 |
7338437 | Forsell | Mar 2008 | B2 |
7367938 | Forsell | May 2008 | B2 |
7371208 | Forsell | May 2008 | B2 |
7395822 | Burton et al. | Jul 2008 | B1 |
7407479 | Forsell | Aug 2008 | B2 |
7407481 | Forsell | Aug 2008 | B2 |
7442165 | Forsell | Oct 2008 | B2 |
7455663 | Bikovsky | Nov 2008 | B2 |
7569050 | Moberg et al. | Aug 2009 | B2 |
7621863 | Forsell | Nov 2009 | B2 |
7648455 | Forsell | Jan 2010 | B2 |
7666132 | Forsell | Feb 2010 | B2 |
7669601 | Tal | Mar 2010 | B2 |
7670280 | Gloth | Mar 2010 | B2 |
7844342 | Dlugos et al. | Nov 2010 | B2 |
7846160 | Payne et al. | Dec 2010 | B2 |
7931582 | Forsell | Apr 2011 | B2 |
7972354 | Prestezog et al. | Jul 2011 | B2 |
7987853 | Swann et al. | Aug 2011 | B2 |
7988616 | Forsell | Aug 2011 | B2 |
7991476 | Nachum | Aug 2011 | B2 |
8070768 | Kim et al. | Dec 2011 | B2 |
8096938 | Forsell | Jan 2012 | B2 |
8096939 | Forsell | Jan 2012 | B2 |
8126558 | Forsell | Feb 2012 | B2 |
8195296 | Longhini et al. | Jun 2012 | B2 |
8287444 | Forsell | Oct 2012 | B2 |
8290594 | Forsell | Oct 2012 | B2 |
8313423 | Forsell | Nov 2012 | B2 |
20010011543 | Forsell | Aug 2001 | A1 |
20010016738 | Harrington et al. | Aug 2001 | A1 |
20010041824 | Zappala | Nov 2001 | A1 |
20020022759 | Forsell | Feb 2002 | A1 |
20020028980 | Thierfelder et al. | Mar 2002 | A1 |
20020040208 | Flaherty et al. | Apr 2002 | A1 |
20020055711 | Lavi et al. | May 2002 | A1 |
20020072698 | Chiang et al. | Jun 2002 | A1 |
20020072759 | Fry | Jun 2002 | A1 |
20020095139 | Keogh et al. | Jul 2002 | A1 |
20020095164 | Andreas et al. | Jul 2002 | A1 |
20020120219 | Hovland et al. | Aug 2002 | A1 |
20020151922 | Hogendijk et al. | Oct 2002 | A1 |
20020165575 | Saleh | Nov 2002 | A1 |
20020183588 | Fierro | Dec 2002 | A1 |
20030009201 | Forsell | Jan 2003 | A1 |
20030009221 | Forsell | Jan 2003 | A1 |
20030014010 | Carpenter et al. | Jan 2003 | A1 |
20030014086 | Sharma | Jan 2003 | A1 |
20030021822 | Lloyd | Jan 2003 | A1 |
20030032855 | Shahinpoor | Feb 2003 | A1 |
20030032857 | Forsell | Feb 2003 | A1 |
20030050591 | Patrick McHale | Mar 2003 | A1 |
20030055442 | Laufer et al. | Mar 2003 | A1 |
20030060893 | Forsell | Mar 2003 | A1 |
20030066536 | Forsell | Apr 2003 | A1 |
20030069547 | Gonon | Apr 2003 | A1 |
20030088148 | Forsell | May 2003 | A1 |
20030092962 | Forsell | May 2003 | A1 |
20030100929 | Forsell | May 2003 | A1 |
20030105385 | Forsell | Jun 2003 | A1 |
20030109771 | Forsell | Jun 2003 | A1 |
20030125768 | Forsell | Jul 2003 | A1 |
20030144575 | Forsell | Jul 2003 | A1 |
20030144648 | Forsell | Jul 2003 | A1 |
20030163029 | Sonnenschein et al. | Aug 2003 | A1 |
20030200407 | Osaka | Oct 2003 | A1 |
20030208247 | Spinelli et al. | Nov 2003 | A1 |
20030231543 | Matsui | Dec 2003 | A1 |
20030233143 | Gharib et al. | Dec 2003 | A1 |
20040015041 | Melvin | Jan 2004 | A1 |
20040024285 | Muckter | Feb 2004 | A1 |
20040024419 | Slepian et al. | Feb 2004 | A1 |
20040034275 | Forsell | Feb 2004 | A1 |
20040068299 | Laske et al. | Apr 2004 | A1 |
20040089313 | Utley et al. | May 2004 | A1 |
20040098113 | Forsell et al. | May 2004 | A1 |
20040098545 | Pline et al. | May 2004 | A1 |
20040102804 | Chin | May 2004 | A1 |
20040122526 | Imran | Jun 2004 | A1 |
20040122527 | Imran | Jun 2004 | A1 |
20040147871 | Burnett | Jul 2004 | A1 |
20040162568 | Saadat et al. | Aug 2004 | A1 |
20040177918 | Murata et al. | Sep 2004 | A1 |
20040230718 | Polzin et al. | Nov 2004 | A1 |
20040236877 | Burton | Nov 2004 | A1 |
20040249451 | Lu et al. | Dec 2004 | A1 |
20040260316 | Knudson et al. | Dec 2004 | A1 |
20050009178 | Yost et al. | Jan 2005 | A1 |
20050038484 | Knudson et al. | Feb 2005 | A1 |
20050055025 | Zacouto et al. | Mar 2005 | A1 |
20050060030 | Lashinski et al. | Mar 2005 | A1 |
20050075697 | Olson et al. | Apr 2005 | A1 |
20050209633 | Callister et al. | Sep 2005 | A1 |
20050222678 | Lashinski et al. | Oct 2005 | A1 |
20050238506 | Mescher et al. | Oct 2005 | A1 |
20050240229 | Whitehurst et al. | Oct 2005 | A1 |
20050245957 | Starkebaum et al. | Nov 2005 | A1 |
20050261712 | Balbierz et al. | Nov 2005 | A1 |
20050266042 | Tseng | Dec 2005 | A1 |
20050267405 | Shah | Dec 2005 | A1 |
20050267596 | Chen et al. | Dec 2005 | A1 |
20050276261 | Kim | Dec 2005 | A1 |
20060025855 | Lashinski et al. | Feb 2006 | A1 |
20060034358 | Okamura | Feb 2006 | A1 |
20060069414 | Imran et al. | Mar 2006 | A1 |
20060083899 | Burazin et al. | Apr 2006 | A1 |
20060127246 | Forsell | Jun 2006 | A1 |
20060129028 | Krakousky | Jun 2006 | A1 |
20060142635 | Forsell | Jun 2006 | A1 |
20060149124 | Forsell | Jul 2006 | A1 |
20060149129 | Watts et al. | Jul 2006 | A1 |
20060161217 | Jaax et al. | Jul 2006 | A1 |
20060167539 | McEwan | Jul 2006 | A1 |
20060212055 | Karabey et al. | Sep 2006 | A1 |
20060224177 | Finitsis | Oct 2006 | A1 |
20060229688 | McClure et al. | Oct 2006 | A1 |
20060235482 | Forsell | Oct 2006 | A1 |
20060257446 | Tropsha et al. | Nov 2006 | A1 |
20070015959 | Forsell | Jan 2007 | A1 |
20070038232 | Kraemer | Feb 2007 | A1 |
20070038831 | Kim | Feb 2007 | A1 |
20070049790 | Wagner et al. | Mar 2007 | A1 |
20070073099 | Forsell | Mar 2007 | A1 |
20070092862 | Gerber | Apr 2007 | A1 |
20070109019 | Wu | May 2007 | A1 |
20070121389 | Wu | May 2007 | A1 |
20070156204 | Denker et al. | Jul 2007 | A1 |
20070162670 | Yang | Jul 2007 | A1 |
20070167670 | Coleman et al. | Jul 2007 | A1 |
20070193632 | Shu | Aug 2007 | A1 |
20070204924 | Delgiacco et al. | Sep 2007 | A1 |
20070225802 | Forsell | Sep 2007 | A1 |
20070232848 | Forsell | Oct 2007 | A1 |
20070233019 | Forsell | Oct 2007 | A1 |
20070250020 | Kim et al. | Oct 2007 | A1 |
20070265675 | Lund et al. | Nov 2007 | A1 |
20080004487 | Haverfield | Jan 2008 | A1 |
20080045783 | Forsell | Feb 2008 | A1 |
20080051718 | Kavazov et al. | Feb 2008 | A1 |
20080086179 | Sharma | Apr 2008 | A1 |
20080103544 | Weiner | May 2008 | A1 |
20080139873 | Peters et al. | Jun 2008 | A1 |
20080154256 | Payne et al. | Jun 2008 | A1 |
20080178889 | Tal | Jul 2008 | A1 |
20080200753 | Forsell | Aug 2008 | A1 |
20080214888 | Ben Shalom | Sep 2008 | A1 |
20080245371 | Gruber | Oct 2008 | A1 |
20080269548 | Vecchiotti et al. | Oct 2008 | A1 |
20080275296 | Forsell | Nov 2008 | A1 |
20090018388 | Forsell | Jan 2009 | A1 |
20090024108 | Lee-Sepsick et al. | Jan 2009 | A1 |
20090054725 | Forsell | Feb 2009 | A1 |
20090082705 | Asfora | Mar 2009 | A1 |
20090131959 | Rolland | May 2009 | A1 |
20090240100 | Forsell | Sep 2009 | A1 |
20090240294 | Forsell | Sep 2009 | A1 |
20090247817 | Forsell | Oct 2009 | A1 |
20090247818 | Forsell | Oct 2009 | A1 |
20090248033 | Forsell | Oct 2009 | A1 |
20090250068 | Forsell | Oct 2009 | A1 |
20090254106 | Forsell | Oct 2009 | A1 |
20090266366 | Swann et al. | Oct 2009 | A1 |
20100145139 | Forsell | Jun 2010 | A1 |
20100217067 | Forsell | Aug 2010 | A1 |
20100286735 | Garfield et al. | Nov 2010 | A1 |
20100305656 | Imran et al. | Dec 2010 | A1 |
20100312047 | Forsell | Dec 2010 | A1 |
20100312048 | Forsell | Dec 2010 | A1 |
20100312049 | Forsell | Dec 2010 | A1 |
20100312050 | Forsell | Dec 2010 | A1 |
20100312163 | Forsell | Dec 2010 | A1 |
20100312164 | Forsell | Dec 2010 | A1 |
20100312356 | Forsell | Dec 2010 | A1 |
20100318116 | Forsell | Dec 2010 | A1 |
20100318117 | Forsell | Dec 2010 | A1 |
20100318118 | Forsell | Dec 2010 | A1 |
20100324360 | Forsell | Dec 2010 | A1 |
20100324361 | Forsell | Dec 2010 | A1 |
20100324362 | Forsell | Dec 2010 | A1 |
20100324591 | Forsell | Dec 2010 | A1 |
20100331614 | Forsell | Dec 2010 | A1 |
20100331615 | Forsell | Dec 2010 | A1 |
20100331616 | Forsell | Dec 2010 | A1 |
20100331617 | Forsell | Dec 2010 | A1 |
20100331945 | Forsell | Dec 2010 | A1 |
20100332000 | Forsell | Dec 2010 | A1 |
20110009894 | Forsell | Jan 2011 | A1 |
20110009896 | Forsell | Jan 2011 | A1 |
20110009897 | Forsell | Jan 2011 | A1 |
20110015473 | Forsell | Jan 2011 | A1 |
20110015474 | Forsell | Jan 2011 | A1 |
20110040143 | Forsell | Feb 2011 | A1 |
20110066254 | Forsell | Mar 2011 | A1 |
20110087337 | Forsell | Apr 2011 | A1 |
20110172693 | Forsell | Jul 2011 | A1 |
20110184230 | Forsell | Jul 2011 | A1 |
20110196505 | Forsell | Aug 2011 | A1 |
20110196506 | Forsell | Aug 2011 | A1 |
20120029550 | Forsell | Feb 2012 | A1 |
Number | Date | Country |
---|---|---|
104 74 47 | Dec 1990 | CN |
227 58 59 | Mar 1998 | CN |
19511998 | Oct 1996 | DE |
0102548 | Mar 1984 | EP |
01 343 40 | Mar 1985 | EP |
0 200 286 | Nov 1986 | EP |
0 252 258 | Jan 1988 | EP |
0300552 | Jan 1989 | EP |
0378251 | Jul 1990 | EP |
0412191 | Feb 1991 | EP |
0 532 162 | Mar 1993 | EP |
0 583 012 | Feb 1994 | EP |
0611561 | Sep 1994 | EP |
0626154 | Nov 1994 | EP |
0876808 | Nov 1998 | EP |
1 004 330 | May 2000 | EP |
1 033 142 | Sep 2000 | EP |
1 072 238 | Jan 2001 | EP |
1 514 526 | Mar 2005 | EP |
1563814 | Aug 2005 | EP |
1563866 | Aug 2005 | EP |
1563886 | Aug 2005 | EP |
1 586 283 | Oct 2005 | EP |
1598030 | Nov 2005 | EP |
1 681 041 | Jul 2006 | EP |
1 878 452 | Jan 2008 | EP |
1 884 259 | Feb 2008 | EP |
1 913 880 | Apr 2008 | EP |
2688693 | Sep 1993 | FR |
2692777 | Dec 1993 | FR |
27565485 | Jun 1998 | FR |
2797181 | Feb 2001 | FR |
8 856 74 | Dec 1961 | GB |
1194358 | Jun 1970 | GB |
1-305945 | Dec 1989 | JP |
2-211170 | Aug 1990 | JP |
3-63047 | Mar 1991 | JP |
3-158154 | Jul 1991 | JP |
WO 8401282 | Apr 1984 | WO |
WO 9100094 | Jan 1991 | WO |
WO 9427504 | Dec 1994 | WO |
WO 9601597 | Jan 1996 | WO |
WO 9611036 | Apr 1996 | WO |
WO 9639932 | Dec 1996 | WO |
WO 9741799 | Nov 1997 | WO |
WO 9806358 | Feb 1998 | WO |
WO 9850099 | Nov 1998 | WO |
WO 9918885 | Apr 1999 | WO |
WO 9963907 | Dec 1999 | WO |
WO 0009047 | Feb 2000 | WO |
WO 0009048 | Feb 2000 | WO |
WO 0015158 | Mar 2000 | WO |
WO 0016686 | Mar 2000 | WO |
WO 0033825 | Jun 2000 | WO |
WO 0112078 | Feb 2001 | WO |
WO 0112108 | Feb 2001 | WO |
WO 0145487 | Jun 2001 | WO |
WO 0145590 | Jun 2001 | WO |
WO 0147431 | Jul 2001 | WO |
WO 0147575 | Jul 2001 | WO |
WO 0147434 | Jul 2001 | WO |
WO 0147435 | Jul 2001 | WO |
WO 0147439 | Jul 2001 | WO |
WO 0158391 | Aug 2001 | WO |
WO 0154615 | Aug 2001 | WO |
WO 0167964 | Sep 2001 | WO |
WO 0238217 | May 2002 | WO |
WO 0240083 | May 2002 | WO |
WO 02053210 | Jul 2002 | WO |
WO 02058563 | Aug 2002 | WO |
WO 02087657 | Nov 2002 | WO |
WO 02100481 | Dec 2002 | WO |
WO 03002192 | Jan 2003 | WO |
WO 03033054 | Apr 2003 | WO |
WO 2004012806 | Feb 2004 | WO |
WO 2004018037 | Mar 2004 | WO |
WO 2004019765 | Mar 2004 | WO |
WO 2004060171 | Jul 2004 | WO |
WO 2004071684 | Aug 2004 | WO |
WO 2004101029 | Nov 2004 | WO |
WO 2005072169 | Aug 2005 | WO |
WO 2005105003 | Nov 2005 | WO |
WO 2006114004 | Nov 2006 | WO |
WO 2006122285 | Nov 2006 | WO |
WO 2006134106 | Dec 2006 | WO |
WO 2007017880 | Feb 2007 | WO |
WO 2007041795 | Apr 2007 | WO |
WO 2007051563 | May 2007 | WO |
WO 2007109759 | Sep 2007 | WO |
WO 2007137026 | Nov 2007 | WO |
WO 2007149555 | Dec 2007 | WO |
WO 2008135988 | Nov 2008 | WO |
WO 2009010799 | Jan 2009 | WO |
WO 2009096854 | Aug 2009 | WO |
WO 2009096865 | Aug 2009 | WO |
WO 2009096868 | Aug 2009 | WO |
WO 2009115645 | Sep 2009 | WO |
Entry |
---|
U.S. Appl. No. 12/656,513, Forsell Feb. 1, 2010. |
U.S. Appl. No. 12/839,115, Forsell, Jul. 19, 2010. |
U.S. Appl. No. 12/839,162, Forsell, Jul. 19, 2010. |
U.S. Appl. No. 12/859,454, Forsell, Aug. 19, 2010. |
U.S. Appl. No. 12/758,684, Forsell Apr. 12, 2010. |
Publication No. EP 1568338A2, dated Aug. 31, 2005, for European Patent Application No. 05010107.0. |
European Search Report, dated Sep. 14, 2006, for EP 05010107.0. |
Examination Report, dated Nov. 4, 2008, in European Patent Application No. 05010107.0. |
U.S. Appl. No. 09/373,224, filed Aug. 12, 1999, Forsell. |
U.S. Appl. No. 11/988,450, filed May 27, 2009, Forsell. |
Webster's II New River side University, 1984, pp. 573,1000. |
Anand, SNEH. “Electrical Pacing of the Ampullary Isthmic Junction for Contraception”, IEEE Engineering in Medicine & Biology 10TH Annual International Conference, 1988. |
Number | Date | Country | |
---|---|---|---|
20100145139 A1 | Jun 2010 | US |
Number | Date | Country | |
---|---|---|---|
60181465 | Feb 2000 | US | |
60181466 | Feb 2000 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10203094 | US | |
Child | 12688375 | US |