This invention relates generally to a sheet registration device, and more particularly, to a controlled decoupling device employed in the sheet registration device that improves registration at transfer.
In a typical electrophotographic printing process, a photoconductive member is charged to a substantially uniform potential so as to sensitize the surface thereof. The charged portion of the photoconductive member is exposed to a light image of an original document being reproduced. Exposure of the charged photoconductive member selectively dissipates the charges thereon in the irradiated areas. This records an electrostatic latent image on the photoconductive member corresponding to the informational areas contained within the original document. After the electrostatic latent image is recorded on the photoconductive member, the latent image is developed by bringing a developer material into contact therewith. Generally, the developer material comprises toner particles adhering triboelectrically to carrier granules to the latent image forming a toner powder image on the photoconductive member. The toner powder image is then transferred from the photoconductive member to a copy sheet. The toner particles are heated to permanently affix the powder image to the copy sheet.
In printing machines such as those described above, it is necessary to align and register the individual cut sheet so that the developed image is placed in the proper location on the sheet. When transferring media from a registration system to a photoreceptor in a printer any velocity differential between the registration system and photoreceptor can lead to unwanted image artifacts. Image on paper (IOP) is considered critical to customer requirement. Media registration is a large component to the equation that leads to the final IOP output. Any improvement to sheet registration at the registration drive is only as valid as how that sheet registration is maintained at the transfer to the photoreceptor. Essentially, once the lead edge of the sheet has left the registration drive nip the paper is being “pushed” to the photoreceptor. Each sheet reacts differently to being pushed based on its beam strength, environmental conditions, and other paper properties, such as, curl and grain direction. The impact on registration due to these effects is known by those skilled in the art. It is also known that tighter baffle spacing is important in maintaining registration accuracy of the lead edge as it is pushed to the photoreceptor.
On the other side of the IOP equation is the transfer of the image to the sheet occurring at that photoreceptor. Any mismatch in the drive velocities between the photoreceptor and the registration drive nip will have a negative impact on the IOP and will result in media handling related image artifacts.
Various schemes have been developed to overcome this problem of velocity mismatch, for example, as shown in U.S. Pat. No. 5,428,431 a buckle is built ahead of the photoreceptor and then removed during transfer. Also, printers such as shown in Prior Art
Hence, there is still a need for a device that improves media registration at transfer.
Accordingly, a velocity decoupling device is disclosed that includes a one-way clutch in a drive roll of a registration subsystem to decouple velocities between the registration subsystem and a photoreceptor. The one-way clutched drive roll prevents the formation of a buckle in a sheet prior to the sheet engaging the photoreceptor and thus allowing for more controlled registration of the sheet to the photoreceptor. The drive roll is set to a lower speed than the photoreceptor in order to allow for variability in the velocity differences and ensure that no buckle is formed prior to transfer.
The disclosed reprographic system that incorporates the disclosed improved device that improves media registration at transfer may be operated by and controlled by appropriate operation of conventional control systems. It is well-known and preferable to program and execute imaging, printing, paper handling, and other control functions and logic with software instructions for conventional or general purpose microprocessors, as taught by numerous prior patents and commercial products. Such programming or software may, of course, vary depending on the particular functions, software type, and microprocessor or other computer system utilized, but will be available to, or readily programmable without undue experimentation from, functional descriptions, such as, those provided herein, and/or prior knowledge of functions which are conventional, together with general knowledge in the software of computer arts. Alternatively, any disclosed control system or method may be implemented partially or fully in hardware, using standard logic circuits or single chip VLSI designs.
The term ‘sheet’ herein refers to any flimsy physical sheet or paper, plastic, or other useable physical substrate for printing images thereon, whether precut or initially web fed. A compiled collated set of printed output sheets may be alternatively referred to as a document, booklet, or the like. It is also known to use interposes or inserters to add covers or other inserts to the compiled sets.
As to specific components of the subject apparatus or methods, or alternatives therefor, it will be appreciated that, as normally the case, some such components are known per se' in other apparatus or applications, which may be additionally or alternatively used herein, including those from art cited herein. For example, it will be appreciated by respective engineers and others that many of the particular components mountings, component actuations, or component drive systems illustrated herein are merely exemplary, and that the same novel motions and functions can be provided by many other known or readily available alternatives. All cited references, and their references, are incorporated by reference herein where appropriate for teachings of additional or alternative details, features, and/or technical background. What is well known to those skilled in the art need not be described herein.
Various of the above-mentioned and further features and advantages will be apparent to those skilled in the art from the specific apparatus and its operation or methods described in the example(s) below, and the claims. Thus, they will be better understood from this description of these specific embodiment(s), including the drawing figures (which are approximately to scale) wherein:
While the disclosure will be described hereinafter in connection with a preferred embodiment thereof, it will be understood that limiting the disclosure to that embodiment is not intended. On the contrary, it is intended to cover all alternatives, modifications and equivalents as may be included within the spirit and scope of the disclosure as defined by the appended claims.
The disclosure will now be described by reference to a preferred embodiment xerographic printing apparatus that includes a method and apparatus for decoupling velocities between registration and a photoreceptor.
For a general understanding of the features of the disclosure, reference is made to the drawings. In the drawings, like reference numerals have been used throughout to identify identical elements.
Referring now to printer 20 in
Subsequently, charger 32 charges the area of belt 22 to a relatively high, substantially uniform potential. Next, the charged area of belt 22 passes laser 34 to expose selected areas of belt 22 to a pattern of light, to discharge selected areas to produce an electrostatic latent image. Next, the illuminated area of the belt passes developer unit Y, which deposits yellow toner on charged areas of the belt.
Subsequently, charger 36 charges the area of belt 22 to a relatively high, substantially uniform potential. Next, the charged area of belt 22 passes laser 38 to expose selected areas of belt 22 to a pattern of light, to discharge selected areas to produce an electrostatic latent image. Next, the illuminated area of the belt passes developer unit C, which deposits cyan toner on charged areas of the belt.
Subsequently, charger 40 charges the area of belt 22 to a relatively high, substantially uniform potential. Next, the charged area of belt 22 passes laser 42 to expose selected areas of belt 22 to a pattern of light, to discharge selected areas to produce an electrostatic latent image. Next, the illuminated area of the belt passes developer unit K, which deposits black toner on charged areas of the belt.
As a result of the processing described above, a full color toner image is now moving on belt 22. In synchronism with the movement of the image on belt 22, a registration system 60 that is more particularly disclosed and described herein with reference to
A corotron 44 charges a sheet to tack the sheet to belt 22 and to move the toner from belt 22 to the sheet. Subsequently, detack corotron 46 charges the sheet to an opposite polarity to detack the sheet from belt 22. Prefuser transport 48 moves the sheet to fuser E, which permanently affixes the toner to the sheet with heat and pressure. The sheet then advances to conventional stacker module F, or to duplex loop D.
Cleaner 50 removes toner that may remain on the image area of belt 22. In order to complete duplex copying, duplex loop D feeds sheets back for transfer of a toner powder image to the opposed sides of the sheets. Duplex inverter 90, in duplex loop D, inverts the sheet such that what was the top face of the sheet, on the previous pass through transfer, will be the bottom face on the sheet, on the next pass through transfer. Duplex inverter 90 inverts each sheet such that what was the leading edge of the sheet, on the previous pass through transfer, will be the trailing on the sheet, on the next pass through transfer.
With reference to
In operation, with the one-way clutch being installed in the drive roll that is installed on a rotatable drive shaft, the drive shaft rotates in a clockwise direction. As the drive shaft turns, in a conventional manner the one-way clutch locks to the drive shaft to create drive to the drive roll. When a sheet is driven by the registration drive roll/idler roll nip it is pulled at a higher velocity by a downstream “nip” (i.e., tacking on the photoreceptor belt). The registration drive roll is free to rotate faster than the registration drive shaft is turning. The one-way clutch allows for free clockwise movement at any velocity above the angular velocity of the drive shaft. In addition, the one-way clutch can have frictional loading to maintain a predetermined level of tension in the sheet.
It should now be understood that an improvement has been disclosed that provides controlled velocity decoupling for hand-off between a registration drive nip and a photoreceptor (or any downstream nip) that limits velocity/force differential effects while maintaining accurate sheet control by the use of a one-way clutch in a shaft mounted drive roll. Several advantages are obtained with the use of the one-way clutch mounted within a drive roll including the elimination of the need to have a pre-transfer baffle that allows for sheet buckle as a velocity decoupler. This reduces the sheet dynamics, such as, trail edge flip and process velocity errors, which lead to image artifacts. It also eliminates the need to closely match velocities to eliminate hand-off issues. In addition, the device is easily incorporated into current registration/transfer design and the one-way technology is proven in media handling applications. Further, balanced resistance is provided to control tension between upstream and downstream drives.
The claims, as originally presented and as they may be amended, encompass variations, alternatives, modifications, improvements, equivalents, and substantial equivalents of the embodiments and teachings disclosed herein, including those that are presently unforeseen or unappreciated, and that, for example, may arise from applicants/patentees and others. Unless specifically recited in a claim, steps or components of claims should not be implied or imported from the specification or any other claims as to any particular order, number, position, size, shape, angle, color, or material.
Number | Name | Date | Kind |
---|---|---|---|
4128327 | Sugiyama et al. | Dec 1978 | A |
4963895 | Harada et al. | Oct 1990 | A |
5428431 | Abe et al. | Jun 1995 | A |
20060165452 | Takiguchi et al. | Jul 2006 | A1 |
20070025768 | Komatsu et al. | Feb 2007 | A1 |
20070280724 | Park | Dec 2007 | A1 |
20090279906 | Kuma et al. | Nov 2009 | A1 |
Number | Date | Country |
---|---|---|
04062575 | Feb 1992 | JP |
09244317 | Sep 1997 | JP |
10254204 | Sep 1998 | JP |
2002362776 | Dec 2002 | JP |
2003057909 | Feb 2003 | JP |
2003149960 | May 2003 | JP |
2003312887 | Nov 2003 | JP |
2007219181 | Aug 2007 | JP |
Entry |
---|
Abstract, Drawings, and Machine Translation of JP 09244317 A, JPO, Nov. 20, 2011. |
Machine Translation of JP 2002362776 A, JPO, Feb. 17, 2012. |
Number | Date | Country | |
---|---|---|---|
20100092226 A1 | Apr 2010 | US |