Thin film deposition processes, including physical vapor deposition, sputtering, and pulsed laser deposition, etc., are used in microelectronic packaging to deposit thin layers of material with high accuracy. Shadow masks are used to selectively deposit material onto specific locations of the substrate with complex geometries. The quality and resolution of the deposition is directly dependent on contact uniformity to the substrate; low contact uniformity yields low deposition quality and resolution.
Alignment pins and fixture hardware are currently used to control shadow mask placement and hold the shadow mask flush with the substrate. However, inherent warping and design tolerances in the shadow mask can cause regions to be elevated from the substrate surface even when fixture hardware is used.
In one aspect, embodiments of the inventive concepts disclosed herein are directed to a system and method for pre-warping a mask to induce strain that produces a corresponding stress when affixed to a substrate and ensure positive contact between the mask and the substrate during all phases of deposition. A film is applied to the mask at a rate sufficient to impart stress to the film faster than such stress can be released.
In a further aspect, depending on the features defined by the mask, the pre-warping may be concentric, linear along one axis, or complex along a plurality of axes.
It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory only and should not restrict the scope of the claims. The accompanying drawings, which are incorporated in and constitute a part of the specification, illustrate exemplary embodiments of the inventive concepts disclosed herein and together with the general description, serve to explain the principles.
The numerous advantages of the embodiments of the inventive concepts disclosed herein may be better understood by those skilled in the art by reference to the accompanying figures in which:
Before explaining at least one embodiment of the inventive concepts disclosed herein in detail, it is to be understood that the inventive concepts are not limited in their application to the details of construction and the arrangement of the components or steps or methodologies set forth in the following description or illustrated in the drawings. In the following detailed description of embodiments of the instant inventive concepts, numerous specific details are set forth in order to provide a more thorough understanding of the inventive concepts. However, it will be apparent to one of ordinary skill in the art having the benefit of the instant disclosure that the inventive concepts disclosed herein may be practiced without these specific details. In other instances, well-known features may not be described in detail to avoid unnecessarily complicating the instant disclosure. The inventive concepts disclosed herein are capable of other embodiments or of being practiced or carried out in various ways. Also, it is to be understood that the phraseology and terminology employed herein is for the purpose of description and should not be regarded as limiting.
As used herein a letter following a reference numeral is intended to reference an embodiment of the feature or element that may be similar, but not necessarily identical, to a previously described element or feature bearing the same reference numeral (e.g., 1, 1a, 1b). Such shorthand notations are used for purposes of convenience only, and should not be construed to limit the inventive concepts disclosed herein in any way unless expressly stated to the contrary.
Further, unless expressly stated to the contrary, “or” refers to an inclusive or and not to an exclusive or. For example, a condition A or B is satisfied by anyone of the following: A is true (or present) and B is false (or not present), A is false (or not present) and B is true (or present), and both A and B are true (or present).
In addition, use of the “a” or “an” are employed to describe elements and components of embodiments of the instant inventive concepts. This is done merely for convenience and to give a general sense of the inventive concepts, and “a” and “an” are intended to include one or at least one and the singular also includes the plural unless it is obvious that it is meant otherwise.
Finally, as used herein any reference to “one embodiment,” or “some embodiments” means that a particular element, feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment of the inventive concepts disclosed herein. The appearances of the phrase “in some embodiments” in various places in the specification are not necessarily all referring to the same embodiment, and embodiments of the inventive concepts disclosed may include one or more of the features expressly described or inherently present herein, or any combination of sub-combination of two or more such features, along with any other features which may not necessarily be expressly described or inherently present in the instant disclosure.
Broadly, embodiments of the inventive concepts disclosed herein are directed to a system and method for pre-warping a mask to induce strain that produces a corresponding stress when affixed to a substrate and ensure positive contact between the mask and the substrate during all phases of deposition. A film is applied to the mask at a rate sufficient to impart stress to the film faster than such stress can be released.
Referring to
Referring to
Referring to
It may be appreciated that a higher deposition rate is useful for imparting mask deflection. Furthermore, deflection due to higher deposition rate, and the corresponding stress and pressure and the mask/substrate interface, will be maintained during later, lower deposition rate processes.
Referring to
In at least one embodiment, the processor 400 may be configured to apply a fairly uniform thin film via the film deposition device 404 for a substantially concentric warping. In at least one embodiment, a separate, warping mask may be used to control deposition on the mask 406 for linear or otherwise complex warping.
In at least one embodiment, a separate data storage device 406 may store deposition profiles including deposition rates, numbers of deposition layers, or other parameters that may be adjusted to alter warping to the mask 406.
In at least one embodiment, where a substrate is curved, it may be desirable for the mask 406 to include a conforming curvature. In such embodiments, the pre-warping of the mask 406 may be configured to produce that conforming curvature. For example, if may be desirable to apply electronic components to a curved substrate to form radiating elements in an antenna.
In at least one embodiment, it may be desirable to apply a grid pattern or a sequence of squares in a grid or hexagonal pattern. Such embodiments may induce specific topology in the mask 406.
Referring to
The determined film is then applied 504 to the mask and the mask is affixed 506 to a desired substrate. The warped mask includes strain that creates pressure at the interface between the mask and the substrate when affixed 506.
It is believed that the inventive concepts disclosed herein and many of their attendant advantages will be understood by the foregoing description of embodiments of the inventive concepts disclosed, and it will be apparent that various changes may be made in the form, construction, and arrangement of the components thereof without departing from the broad scope of the inventive concepts disclosed herein or without sacrificing all of their material advantages; and individual features from various embodiments may be combined to arrive at other embodiments. The form herein before described being merely an explanatory embodiment thereof, it is the intention of the following claims to encompass and include such changes. Furthermore, any of the features disclosed in relation to any of the individual embodiments may be incorporated into any other embodiment.
Number | Name | Date | Kind |
---|---|---|---|
20030224109 | Kang | Dec 2003 | A1 |
20040020435 | Tsuchiya | Feb 2004 | A1 |
20060103289 | Kim | May 2006 | A1 |
20090286447 | Kobayashi | Nov 2009 | A1 |
20100112194 | Inoue | May 2010 | A1 |
20110171768 | Hong | Jul 2011 | A1 |
20120107506 | Ukigaya | May 2012 | A1 |
20120240850 | Kobayashi | Sep 2012 | A1 |
20120282445 | Kim | Nov 2012 | A1 |
20160186305 | Han | Jun 2016 | A1 |
20160186317 | Han | Jun 2016 | A1 |
20170362698 | Kobayashi | Dec 2017 | A1 |
20180071764 | Gong | Mar 2018 | A1 |
20180209029 | Lin | Jul 2018 | A1 |
20180248120 | Zhang | Aug 2018 | A1 |
20190203337 | Luo | Jul 2019 | A1 |
20190242012 | Wang | Aug 2019 | A1 |
20190323117 | Ikenaga | Oct 2019 | A1 |
Number | Date | Country |
---|---|---|
2007193132 | Aug 2007 | JP |
2018145451 | Sep 2018 | JP |
101493119 | Feb 2015 | KR |
I354358 | Dec 2011 | TW |
2017163440 | Sep 2017 | WO |
Number | Date | Country | |
---|---|---|---|
20220025506 A1 | Jan 2022 | US |