Applicant hereby claims foreign priority benefits under U.S.C. § 119 from Chinese Patent Application No. 201711306983.1 filed on Dec. 8, 2017, the content of which is incorporated by reference herein.
The present disclosure relates to compressor technologies, and in particular, to a controller and a control method for a compressor, a compressor assembly, and a refrigeration system.
As a key component in refrigeration equipment, a compressor is widely concerned with its efficiency and stability. In a typical refrigeration system, if the compressor is operated with a high discharge temperature for a long period of time, severe damage will be brought to the compressor. Therefore, the existing refrigeration equipment is normally provided with a liquid injection valve, and a liquid injection controller is configured to control an open degree of the liquid injection valve to control the flow of the fluid injected to the compressor, thereby decreasing the discharge temperature of the compressor.
However, the existing liquid injection controller normally cannot trigger an effective protection action in time when a state parameter of the compressor becomes abnormal, thus resulting in low control efficiency and unreliable control effect.
Embodiments of the present disclosure provide a controller for a compressor and a control method for a compressor, a compressor assembly and a refrigeration system, which improve control efficiency and reliability.
In an aspect of the present disclosure, a controller for a compressor includes: an obtaining module configured to obtain at least one operation state parameter of the compressor; and a controlling module configured to shut off a liquid injection valve if one of the at least one operation state parameter of the compressor meets a protection action condition, wherein the liquid injection valve is configured to regulate the flow of fluid injected into the compressor.
In an embodiment, the at least one operation state parameter comprises a discharge temperature of the compressor, and the controlling module is further configured to control, if the at least one operation state parameter of the compressor does not meet the protection action condition, the liquid injection valve according to the discharge temperature of the compressor.
In an embodiment, the controlling module is configured to shut off the liquid injection valve and power off the compressor if the discharge temperature of the compressor is above a first threshold value.
In an embodiment, the controlling module is configured to adjust, if the discharge temperature of the compressor is above a second threshold value and below the first threshold value, an open degree of the liquid injection valve according to the discharge temperature of the compressor and the second threshold value.
In an embodiment, the at least one operation state parameter includes phase information of a power supply circuit of the compressor, and the controlling module is configured to shut off the liquid injection valve and power off the compressor if the power supply circuit is in a phase loss state or phase reverse state.
In an embodiment, the at least one operation state parameter includes information on whether the compressor is powered on, and the controlling module is configured to shut off the liquid injection valve if the compressor is not powered on.
In an embodiment, the controlling module is further configured to control an alarm to raise an alarm if one of the at least one operation state parameter meets the protection action condition, and/or to record the at least one operation state parameter if one of the at least one operation state parameter meets the protection action condition.
In an embodiment, the controlling module is further configured to record one or more of: a discharge temperature of the compressor, an open degree of the liquid injection valve, information on whether the compressor is powered on, whether a power supply circuit of the compressor is in a phase loss state or phase reverse state, and whether the discharge temperature exceeds a first threshold value.
In another aspect of the present disclosure, a method for controlling liquid injection for a compressor is provided. The method includes: obtaining at least one operation state parameter of the compressor; and shutting off a liquid injection valve if one of the at least one operation state parameter of the compressor meets a protection action condition, wherein the liquid injection valve is configured to regulate flow of fluid injected into the compressor.
In an embodiment, the at least one operation state parameter includes a discharge temperature of the compressor, and wherein the method further includes: controlling, if the at least one operation state parameter of the compressor does not meet the protection action condition, the liquid injection valve according to the discharge temperature of the compressor.
In an embodiment, the shutting off a liquid injection valve if one of the at least one operation state parameter of the compressor meets a protection action condition includes: shutting off the liquid injection valve and powering off the compressor if the discharge temperature of the compressor is above a first threshold value.
In an embodiment, the controlling a liquid injection valve according to the discharge temperature of the compressor if one of the at least one operation state parameter of the compressor meets a protection action condition includes: adjusting, if the discharge temperature of the compressor is above a second threshold value and below the first threshold value, an open degree of the liquid injection valve according to the discharge temperature of the compressor and the second threshold value.
In an embodiment, the at least one operation state parameter includes phase information of a power supply circuit of the compressor, and wherein the shutting off a liquid injection valve if one of the at least one operation state parameter of the compressor meets a protection action condition includes: shutting off the liquid injection valve and powering off the compressor if the power supply circuit is in a phase loss state or phase reverse state.
In an embodiment, the at least one operation state parameter includes information on whether the compressor is powered on, and wherein the shutting off a liquid injection valve if one of the at least one operation state parameter of the compressor meets a protection action condition includes: shutting off the liquid injection valve if the compressor is not powered on.
In a further aspect of the present disclosure, a compressor assembly is provided. The compressor assembly includes: a compressor; a liquid injection valve configured to regulate flow of fluid injected into the compressor; and a controller for controlling the liquid injection valve and/or the compressor according to above aspects of the disclosure.
In a yet further aspect of the present disclosure, a refrigeration system is provided. The system includes: a compressor assembly according to the above aspects of the disclosure; a condenser, an inlet of the condenser being connected to a refrigerant fluid outlet of the compressor; a throttle device, an inlet of the throttling device being connected to an outlet of the condenser; and an evaporator, an inlet of the evaporator being connected to an outlet of the throttling device, an outlet of the evaporator being connected to a refrigerant fluid inlet of the compressor.
Embodiments of the disclosure provide a controller for a compressor and a method therefor, a compressor assembly, and a refrigeration system. When one of the at least one state parameter meets the protection action condition and liquid injection need be stopped, the controller can directly and actively control the liquid injection valve to stop the liquid injection. Through actively controlling the protection action of the liquid injection valve by the controller, the liquid injection valve can be closed more reliably and efficiently or the liquid injection valve and the compressor can be off more reliably and efficiently, thereby improving the safety and operation efficiency of the entire control system. In addition, compared to the prior art which requires an additional solenoid valve to perform the protection action of the liquid injection valve, embodiments of the present disclosure omit the solenoid valve at the front end of the liquid injection valve, thereby simplifying the system structure and reducing the occupation space and product costs.
The technical solutions in the embodiments of the present invention are clearly and completely described in the following with reference to the accompanying drawings in the embodiments of the present invention. It is obvious that the described embodiments are only a part of the embodiments of the present invention, and not all of the embodiments. All other embodiments obtained by those skilled in the art based on the embodiments of the present invention without creative efforts are within the scope of the present invention.
In particular, the obtaining module 101 is configured to obtain at least one operation state parameter of a compressor 200. The at least one operation state parameter indicates operation state of the compressor 200. The controlling module 102 is configured to determine whether one of the at least one operation state parameter of the compressor meets a protection action condition. If one of the at least one operation state parameter of the compressor meets a protection action condition, the controlling module 102 shuts off a liquid injection valve 300. The liquid injection valve 300 is connected into the injection line of the compressor 200 and is configured to regulate the flow of fluid in the injection line so as to control the discharge temperature of the compressor 200. In an embodiment of the disclosure, the controlling module 102 may be connected to the obtaining module 101 and the liquid injection valve 300, respectively, to control the liquid injection valve 300 according to operation state parameters acquired by the obtaining module 101.
Therefore, according to the controller 100, when one of the at least one state parameter acquired meets the protection action condition and liquid injection need be stopped, the controlling module 102 in the controller 100 can directly control the liquid injection valve 300 to stop the liquid injection, and the liquid injection valve can be closed or the liquid injection valve and the compressor can be closed more reliably and efficiently. The safety and operation efficiency of the entire control system is thus improved. In addition, compared to the prior art which requires an additional solenoid valve to perform the protection action for the liquid injection valve, embodiments of the present disclosure do not need the solenoid valve, thereby simplifying the system structure and reducing the occupation space and product costs.
In an embodiment, the at least one operation state parameter may include a discharge temperature of the compressor 200. In this case, the controlling module 102 is further configured to control, if the at least one operation state parameter of the compressor does not meet the protection action condition, the liquid injection valve 300 according to the discharge temperature. As can be seen, the operation state parameter acquired by the obtaining module 101 includes the discharge temperature, and the controlling module 102 may control the liquid injection valve 300 according to the discharge temperature in the case that the protection action need not be performed. That is, the controlling module 102 has both functions of liquid injection control and protection control. In the conventional art, an additional solenoid valve is required to perform the protection action, and the protection action control is performed by a protection controller and the liquid injection control is performed by a liquid injection control. Comparatively, in the disclosure, the controlling module 102 can perform both the discharge temperature control and protection control for the compressor. Thus, the solenoid valve used in the conventional art at the front end of the liquid injection valve is not needed, and one controller is omitted. Thereby, the system structure is further simplified, and the occupation space and product costs are reduced. In an embodiment, as shown in
In an embodiment, the controlling module 102 is further configured to determine whether the discharge temperature obtained by the obtaining module 101 is above a first threshold value. If the discharge temperature is above the first threshold value, it means that the discharge temperature of the compressor 200 is too high and even the liquid injection valve 300 cannot reduce the discharge temperature of the compressor 200. In order to avoid damage to the compressor 200, the controlling module 102 is configured to perform protection actions, e.g., powering off the compressor 200, to protect the compressor 200. For example, the controlling module 102 can power off the compressor 200 by controlling a contactor connected in the power supply circuit of the compressor 200. Meanwhile, in order to prevent the liquid injection valve 300 from being in a liquid injection state even if the compressor 200 is stopped, the liquid injection valve 300 is shut off. It can be seen that the controlling module 102 has the function of controlling the liquid injection valve 300 to perform the protection action (i.e., shutting off the liquid injection valve 300 to stop liquid injection) and also the function of performing protection action of the compressor 200 (i.e., powering off the compressor 200).
If the discharge temperature of the compressor 200 does not exceed the first threshold value, it means that the discharge temperature of the compressor 200 is still within a controllable range. That is, the coolant ejected from the liquid injection valve 300 can still be used to effectively control the discharge temperature of the compressor 200. In this case, the controlling module 102 is configured to adjust, if the discharge temperature of the compressor is above a second threshold value and below the first threshold value, an open degree of the liquid injection valve 300 according to the discharge temperature of the compressor and the second threshold value. It should be understood that the first threshold value is a temperature threshold value where the compressor 200 operates normally and that the second threshold value is a predefined discharge temperature where liquid injection is needed for the compressor 200. If the discharge temperature of the compressor 200 is above the first threshold value, it means that the compressor 200 cannot operate normally. If the discharge temperature of the compressor 200 is above the second threshold value and below the first threshold value, the compressor 200 may operate normally but liquid injection is needed for the compressor 200 so as to avoid the discharge temperature from being too high. However, the specific values of the first and second thresholds can be set or adjusted by a designer or an operator according to a practical scenario. The specific values of the first and second thresholds will not be limited in the present disclosure. It can be seen that the controlling module 102 has the function of a liquid injection controller, in addition to performing protection action of the compressor 200 (i.e., powering off the compressor 200) and controlling the liquid injection valve 300 to perform the protection action (i.e., shutting off the liquid injection valve 300 to stop liquid injection). It should be understood that the specific control method of the open degree of the liquid injection valve 300 can be realized by, for example, PI or PID (proportional-integral or proportional-integral-derivative controller), and the specific control implementation manner of the open degree of the liquid injection valve 300 is not limited in the present disclosure.
In an embodiment, the at least one operation state parameter may further include phase information of a power supply circuit of the compressor 200. The controlling module 102 is further configured to determine whether the power supply circuit of the compressor 200 is in a phase loss state or phase reverse state. If the power supply circuit is in a phase loss state or phase reverse state, it means that there is an error or failure in the power supply circuit of the compressor 200, and the controlling module 102 should perform protection actions to power off the compressor 200 so that the compressor 200 stops operation. Meanwhile, the liquid injection valve 300 shall be shut off so as to prevent the liquid injection valve 300 from being in the injection state even if the compressor 200 is stopped. If the power supply circuit is not in a phase loss state or phase reverse state, it means that the power supply circuit of the compressor 200 operates normally. Therefore, similar to the above embodiment, the controlling module 102 also has the function of performing protection action of the compressor 200 (i.e., powering off the compressor 200) in addition to controlling the liquid injection valve 300 to perform the protection action (i.e., shutting off the liquid injection valve 300 to stop liquid injection). The difference lies in that the protection action condition is related to whether the power supply circuit of the compressor 200 is in a phase loss state or phase reverse state. In an embodiment, as shown in
In an embodiment of the present disclosure, as shown in
In an embodiment of the present disclosure, the at least one operation state parameter may further include information on whether the compressor 200 is powered on. For example, it can be determined whether the compressor 200 is powered on by determining whether the power supply circuit of the compressor 200 is powered on. The controlling module 102 is further configured to determine whether the power supply circuit of the compressor 200 is powered off according to power information acquired by the power detecting circuit 1013. If the power supply circuit is powered off, it means that the compressor 200 is not powered on and does not operate, and it may cause damage to the compressor 200 if the liquid injection valve 300 continues operating. Therefore, the controlling module 102 may shut off the liquid injection valve 300. Since the compressor 200 is inactive when it is not powered on, it is not necessary to determine whether one of the at least one operation state parameter meets the protection action condition, and thus the foregoing determination process based on the discharge temperature and phase information is no longer required. On the other hand, if the power supply circuit is powered on, it indicates that the compressor 200 is in a normal power-on state at this moment, and it is necessary to further determine whether one of the at least one operation state parameter meets the protection action condition, and the protection action is performed if one of the at least one operating state parameter meets the protection action condition. If neither of the at least one operation state parameter meets the protection action condition, the liquid injection valve 300 is controlled according to the discharge temperature. In an embodiment, as shown in
There may be five function modules J1˜J5 in the TCB. Specifically, the module J1 is connected to the three-phase live lines and null line of the power supply circuit for supplying power to the TCB. The module J2 integrates the functions of the phase detecting circuit 1012 and the power detecting circuit 1013, and is connected to the three-phase live lines of the power supply circuit of the compressor 200 to determine whether the power supply circuit is in a phase loss state or phase reverse state while determining whether the power supply circuit is powered on. The module J3 is connected to a platinum thermal resistance (PT1000) disposed at the discharge position of the compressor 200 to implement the temperature detecting circuit 1011. The module J5 is connected to a contactor K1 for communicating control commands from the controlling module 102 to the contactor K1. The contact of the contactor K1 (for example, the normally closed contact) is simultaneously connected to the power supply circuit of the compressor 200, and the controlling module 102 in the TCB may perform the protection action of powering off the compressor 200 through the contactor K1.
It should be understood that although specific embodiments of some of the devices, modules, or circuits in the controller 100 have been provided in the above description, those skilled in the art may actually select different types or models of electronic devices to implement the devices according to practical scenario requirements. The present disclosure does not limit the specific implementations of these devices, modules or circuits.
The recording module 105 connected to the control module 102 may also be used to record one or more types of the following information: the discharge temperature of the compressor 200, the open degree of the liquid injection valve 300, whether the power supply circuit of the compressor 200 is powered on, whether the power supply circuit of the compressor 200 is in a phase loss state or phase reverse state, and whether the discharge temperature exceeds a first threshold value. Those information record can enable tracing the cause of equipment failures, and thus can further improve modules in failure so as to improve reliability of products.
It should be understood that the alarm 104 and the recording module 105 need not necessarily coexist in a control system although both the alarm 104 and the recording module 105 are included in the embodiment shown in
By the controller 100 for the compressor 200 in accordance with the embodiment of the present disclosure, the controlling module 102 in the controller 100 can directly and actively control, if one of the acquired operation state parameters meets the protection action condition and thus the liquid injection need be stopped, the liquid injection valve 300 to stop so that the liquid injection valve 300 can be prevented in a reliable and efficient way from being still in the operating state even if the compressor 200 is stopped. Thereby, the safety and operating efficiency of the entire control system is improved. In addition, the embodiment of the present disclosure can omit an additional solenoid valve, thereby simplifying the system structure and reducing the occupation space and product costs.
In Step 601, at least one operation state parameter of the compressor is obtained. The operation state parameter indicates state of the compressor.
In Step 602, it is determined whether one of the at least one operation state parameter meets a protection action condition. For example, the protection action condition may be an abnormality in one of the at least one operation state parameter.
In Step 603, shutting off a liquid injection valve if one of the at least one operation state parameter of the compressor meets a protection action condition. The liquid injection valve is configured to regulate the flow of fluid injected into the compressor.
In an embodiment of the disclosure, the above described method for controlling liquid injection is implemented in a single controller. Thus, by using the method for controlling liquid injection provided by the embodiment of the disclosure, the controller can directly and actively control the liquid injection valve to stop liquid injection if one of the obtained operation state parameter meets the protection action condition and the liquid injection need be stopped.
In an embodiment of the disclosure, the at least one operation state parameter acquired includes at least discharge temperature of the compressor. As shown in
In an embodiment, it may be determined whether the protection action is required by determining whether the acquired discharge temperature is above a first threshold value. If the discharge temperature is above the first threshold value, it means that the discharge temperature of the compressor is too high and even the liquid injection valve cannot reduce the discharge temperature of the compressor. In order to avoid damage to the compressor, it is necessary to perform protection action, e.g., powering off the compressor, to protect the compressor. Meanwhile, the liquid injection valve is shut off in order to prevent the liquid injection valve from being in a liquid injection state when the compressor is stopped.
In a further embodiment, if the discharge temperature of the compressor does not exceed the first threshold value, it means that the discharge temperature of the compressor does not reach an alarm condition for the operation of the compressor. The discharge temperature of the compressor can be controlled by the cooling fluid injected from the liquid injection valve. If the discharge temperature of the compressor is above the second threshold value and below the first threshold value, an open degree of the liquid injection valve can be adjusted according to the discharge temperature of the compressor and a second threshold value. The specific control method for the open degree of the liquid injection valve can be realized by, for example, PI or PID (proportional-integral or proportional-integral-derivative controller), but the specific control implementation manner of the open degree of the liquid injection valve is not limited in the present disclosure.
It should be understood that the first threshold value is a temperature threshold value where the compressor may still operate normally and the second threshold value is a predefined discharge temperature where liquid injection is needed for the compressor. When the discharge temperature of the compressor is above the first threshold value, it means that the compressor cannot operate normally. When the discharge temperature of the compressor is above the second threshold value and below the first threshold value, the compressor may still operate normally but liquid injection is needed for the compressor so as to avoid the discharge temperature from becoming too high. However, the specific values of the first and second threshold values can be set or adjusted by a designer or an operator according to a practical scenario. The specific values of the first and second threshold values are not limited in the present disclosure.
In an embodiment, the at least one operation state parameter may further include phase information of a power supply circuit of the compressor. It may be determined whether the protection action is needed according to the phase information. If the power supply circuit of the compressor is in a phase loss state or phase reverse state, it means that there is a malfunction or failure in the power supply circuit of the compressor, and there may be damage if the compressor keeps active. Thus, it is necessary to perform a protection action to power off the compressor so that the compressor stops operation. Meanwhile, the liquid injection valve is to be shut off so as to prevent it from being in the injection state even when the compressor stops operation. If the power supply circuit is not in a phase loss state or phase reverse state, it means that the power supply circuit of the compressor operates normally.
In an embodiment of the present disclosure, the discharge temperature and phase information of the compressor can be used as the operation state parameters for determining whether the protection action condition is met. In a further embodiment, a power supply abnormality in the compressor may cause significantly damage to the compressor in a short time, while the discharge temperature abnormality does not affect the compressor so fast. Thereby, the protection action according to the power supply abnormality has a higher priority than the protection according to the discharge temperature abnormality. In other words, it is firstly determined whether the power supply circuit is in a phase loss state or phase reverse state according to the phase information acquired by a phase detecting circuit. If the power supply circuit is in a phase loss state or phase reverse state, the liquid injection valve is shut off and the compressor is powered off. If the power supply circuit is not in a phase loss state or phase reverse state, it is further determined whether the acquired discharge temperature exceeds a first threshold. When it is further determined that the discharge temperature exceeds the first threshold, the liquid injection valve is shut off and the compressor is powered off.
In an embodiment of the present disclosure, the at least one operation state parameter may further include information on whether the compressor is powered on. For example, it can be determined whether the compressor is powered on by determining whether the power supply circuit of the compressor is powered on or by determining whether the running speed of the compressor is zero. Since the compressor is inactive when it is not powered on, it is not necessary to determine whether the discharge temperature is too high or whether the phase information is abnormal. Thus, it can be determined whether the power supply circuit of the compressor is powered on prior to determining whether one of the at least one operation state parameter meets the protection action condition. If the power supply circuit is powered off, it means that the compressor is not powered on and does not operate, and it may cause damage to the compressor if the liquid injection valve continues operating. Therefore, it is necessary to shut off the liquid injection valve. Since the compressor is inactive when it is not powered on, it is not necessary to determine whether the discharge temperature is too high or whether the phase information is abnormal, and thus the foregoing determination process based on the discharge temperature and phase information is no longer required. On the other hand, if the power supply circuit is powered on, it indicates that the compressor is in a normal power-on state at this moment, and further determination is made to determine whether one of the at least one operation state parameter meets the protection action condition, and the protection action is performed when one of the at least one operating state parameter meets the protection action condition. When none of the at least one operation state parameter meets the protection action condition, open degree of the liquid injection valve is controlled according to the discharge temperature.
In Step 701, it is determined whether the compressor is powered on, such as whether the power supply circuit of the compressor is powered on. If no, Step 702 is proceeded; if yes, Step 703 is proceeded.
In Step 702, the liquid injection valve is shut off.
In Step 703, it is determined whether the power supply circuit of the compressor is in a phase loss state or phase reverse state. If yes, Step 704 is proceeded; if no, Step 705 is proceeded.
In Step 704, the liquid injection valve is shut off and the compressor is powered off.
In Step 705, it is determined whether the discharge temperature exceeds a first threshold value. If yes, Step 704; if no, Step 706.
In Step 706, it is determined whether the acquired discharge temperature exceeds a second threshold value. If yes, Step 707 is proceeded; if no, Step 701 is proceeded.
In Step 707, the open degree of the liquid injection valve is adjusted according to the discharge temperature of the compressor and the second threshold value.
It should be understood that each of the steps provided by the above method embodiments may correspond to the functions implemented by one of devices, modules or circuits in the aforementioned controller. Therefore, the operations and features described in the foregoing controller may also be applicable to each step of the foregoing embodiment, and the repeated content will not be described herein again.
An embodiment of the present disclosure further provides a computer device including a memory, a processor, and a computer program stored on the memory and executed by the processor, wherein the processor executes the computer program to implement the steps of the method as described in any of the preceding embodiments.
An embodiment of the present disclosure further provides a computer readable storage medium storing a computer program, when executed by a processor, implements the steps of the method as described in any of the preceding embodiments. The computer storage medium can be any tangible medium such as a floppy disk, CD-ROM, DVD, hard drive, or even Internet media.
It should be understood that the method or apparatus of the embodiments of the present disclosure may be implemented in software, hardware, or a combination of software and hardware although the computer program product is described as an embodiment of the present disclosure described above. The hardware may be implemented by dedicated logic; the software may be stored in a memory and executed by a suitable instruction execution system, such as a microprocessor or dedicated design hardware. One of ordinary skill in the art will appreciate that the methods and apparatus described above can be implemented using computer-executable instructions and/or embodied in processor control codes. Such codes are provided on a carrier medium such as a magnetic disk, CD or DVD-ROM, a programmable memory such as a read only memory (firmware) or a data carrier such as an optical or electronic signal carrier. The method and apparatus of the present disclosure may be implemented by hardware circuits such as very large scale integrated circuits or gate arrays, semiconductors such as logic chips, transistors, etc., or programmable hardware devices such as field programmable gate arrays, programmable logic devices, etc., and it can also be implemented by software executed by various types of processors or by a combination of the above-described hardware circuits and software such as firmware.
It will be understood that, although several modules or units of the device are referred to in the above detailed description, this is merely exemplary and not mandatory. In fact, the features and functions of the two or more modules/units described above may be implemented in one module/unit according to an exemplary embodiment of the present disclosure, and conversely, the features and functions of one module/unit described above may also be further divided into multiple modules/units. Moreover, some of the modules/units described above may be omitted in certain application scenarios.
It should be understood that the description is only illustrative of some essential techniques and features, and that some features that can be implemented by those skilled in the art are not described.
The above are only the preferred embodiments of the present disclosure, and are not intended to limit the present disclosure. Any modifications, equivalents, etc. within the spirit and scope of the present disclosure are intended to be included in the scope of the present disclosure.
Number | Date | Country | Kind |
---|---|---|---|
201711306983.1 | Dec 2017 | CN | national |
Number | Name | Date | Kind |
---|---|---|---|
4262492 | Morita | Apr 1981 | A |
4387368 | Day, III | Jun 1983 | A |
5076067 | Prenger | Dec 1991 | A |
5197297 | Brendel | Mar 1993 | A |
5640854 | Fogt et al. | Jun 1997 | A |
5873255 | Madigan | Feb 1999 | A |
5946925 | Williams et al. | Sep 1999 | A |
5996364 | Lifson | Dec 1999 | A |
6185949 | Madigan | Feb 2001 | B1 |
6324858 | Holden | Dec 2001 | B1 |
6571566 | Temple | Jun 2003 | B1 |
6948336 | Fujita | Sep 2005 | B2 |
7290398 | Wallace et al. | Nov 2007 | B2 |
8539785 | Jiang | Sep 2013 | B2 |
10018393 | Kopko | Jul 2018 | B2 |
10088202 | Huff | Oct 2018 | B2 |
20060042282 | Ludwig | Mar 2006 | A1 |
20070000261 | Flynn | Jan 2007 | A1 |
20090188265 | Ko | Jul 2009 | A1 |
20100236264 | Lifson | Sep 2010 | A1 |
20120318008 | Liu | Dec 2012 | A1 |
20140209288 | Simon | Jul 2014 | A1 |
20150204589 | Liu | Jul 2015 | A1 |
20150330692 | Kopko | Nov 2015 | A1 |
20160370039 | Kawano et al. | Dec 2016 | A1 |
20170056289 | Tsuno | Mar 2017 | A1 |
20170198707 | Umeda | Jul 2017 | A1 |
20170198720 | Umeda | Jul 2017 | A1 |
20180363954 | Zhao | Dec 2018 | A1 |
20190113264 | Tsukiyama | Apr 2019 | A1 |
20190154317 | Zha | May 2019 | A1 |
20190203995 | Ueda | Jul 2019 | A1 |
Number | Date | Country |
---|---|---|
2722484 | Aug 2005 | CN |
102261719 | Nov 2011 | CN |
102331124 | Jan 2012 | CN |
102575887 | Jul 2012 | CN |
102606481 | Jul 2012 | CN |
202991431 | Jun 2013 | CN |
104405629 | Mar 2015 | CN |
104728091 | Jun 2015 | CN |
105465962 | Apr 2016 | CN |
105928277 | Sep 2016 | CN |
106524548 | Mar 2017 | CN |
106595126 | Apr 2017 | CN |
107294065 | Oct 2017 | CN |
107683395 | Feb 2018 | CN |
2005188433 | Jul 2005 | JP |
20020063760 | Aug 2002 | KR |
WO-8808108 | Oct 1988 | WO |
2006045143 | May 2006 | WO |
WO-2017203608 | Nov 2017 | WO |
Entry |
---|
First Examination Report for Indian Serial No. 201814046606 dated Apr. 24, 2020. |
Number | Date | Country | |
---|---|---|---|
20190178547 A1 | Jun 2019 | US |