These and other features and advantages of the present invention will be appreciated, as they become better understood by reference to the following detailed description when considered in connection with the accompanying drawings, wherein:
The present invention is directed to a controller to be used in a blood parameter testing system, such as the one described in co-pending U.S. patent application Ser. No. 11/386,078, incorporated herein by reference. Reference will now be made in detail to specific embodiments of the invention. While the invention will be described in conjunction with specific embodiments, it is not intended to limit the invention to one embodiment. Thus, the present invention is not intended to be limited to the embodiments described, but is to be accorded the broadest scope consistent with the disclosure set forth herein.
Referring to
The pinch valve B 209 forms the interface between the patient 214 and a sample port 215. In one embodiment, the tubing between the patient 214 and the sample port 215 is 36″ mini volume tubing, however other tubing of appropriate size can be used. The valves can be any type of valve, including a pinch valve or stopcock.
In one embodiment, blood presence sensor 213 is used for determining the presence of blood in the tube for analysis. In another embodiment, the sensor 213 is used for determining the presence of undiluted blood in the tube for analysis. Optionally, the sensor 213 is used to verify that no bubbles are present in the fluid contained in the tube. In an alternative embodiment, the sensor 213 is used to determine the oxygenation level of the blood and uses the oxygenation level to calibrate or adjust the glucose calculation.
The operation of each of the aforementioned valves, pumps, and sensors are controlled by controller 216. Controller 216 comprises at least one processor operating software that is capable of conducting tests on the system 200 and conducting blood parameter testing in accordance with user commands and/or predefined testing protocols. The controller 216 used in the present invention can be any appropriate microcontroller, control device, control circuit or any suitable computing device including, but not limited to laptop, personal digital assistant (PDA), mobile phones, wireless activated gadgets, infrared devices and bluetooth devices. It should be appreciated that the controller 216 is in data communication, either through wired or wireless connections, with the valves, pump, blood presence sensor, and/or sample port. It should also be appreciated that when actions are described in the present system, such as beginning in a first state, opening and closing valves, causing a pump to infuse or re-infuse fluid, such actions occur based upon instructions being issued from at least one processor in the controller and transmitted to the system component through wired or wireless data communication.
In one embodiment, the controller operates by beginning in a first state, e.g. a non-measurement state. In this first state, the pinch valve A 208 and the pinch valve B 209 are open while the valve C 210 is closed. The KVO solution 204 is in fluid communication with the vascular access point of the patient 114. The KVO solution 204 is maintained at a slight positive pressure, usually by gravity, thus completely filling the tube with the solution.
A start process is activated in the controller 216. The start process can be activated using a plurality of predefined protocols or can be manually activated by a user. The predefined protocols can establish a plurality of times when a measurement must occur based upon any set of parameters, including but not limited to time, historical measurements, historical glucose measurements, other physiological measurements, such as blood pressure, pulse rates, and oxygenation level, eating schedule, the patient's sex, the patient's age, and/or the time since the last measurement.
When the start process is activated, the controller communicates a signal to close valve A. Once valve A is closed, the controller communicates a signal to the syringe pump 212 to extract fluid into the syringe body. Fluid flowing from tube 206 fills the reservoir of the pump mechanism, generating negative pressure in the tube. The negative pressure at the extreme end of the tubing results in the withdrawal of blood from the vascular access point 214. As blood enters the tube and moves upward, it eventually passes the blood presence sensor 213. The blood sensor activates and sends a signal to the controller 216 that blood is present in the section of tubing being monitored by the blood sensor 213.
With blood being present at the sensor 213, it is assured that blood is also present at point 215, the sample port. The sample port 215 can then be used by a healthcare provider to access blood in order to manually test it. In a preferred embodiment, an automated glucose monitoring device, as described in the aforementioned co-pending, co-assigned patent applications, can be used to automatically sample blood and measure glucose.
In one embodiment, the measurement element used in either manual or automatic measurement is a glucose oxidase strip or any other glucose measurement strip known to diabetes patients or persons of ordinary skill in the art. In another embodiment, measurement element is a fixed sensor.
The blood sample on the reagent strip reacts with the reagents in the reagent strip; thus, the resulting color change is read from the backside of the test strip via the optical sensor. The optical sensor signals are converted by electronic meter into a numerical readout on display, which reflects a numerical glucose level of the blood sample. Once the glucose concentration of the blood sample is displayed on the display panel, the data is transferred to the central monitoring station for future use.
Once a measurement reading is completed, the controller activates the syringe pump 212 to re-infuse the fluid back into the tubing which, in turn, causes the blood sample to re-infuse back to the patient 214. The controller 216 activates the re-infusion process based upon a manual instruction from a user or automatically. In an automated implementation, the automated glucose monitoring device, located at point 215, communicates a measurement completion signal and/or measurement data to the controller 216, thereby signaling the controller 216 to initiate the re-infusion process. Once the re-infusion process is complete, as determined by a feedback signal from the syringe pump 212 or the blood presence sensor 213 or by a pre-defined period of time, the controller 216 opens the valve C 210 and the flush tubing system of the automated blood parameter testing apparatus is activated.
The flush solution 202 is maintained at a slight positive pressure by gravity. Therefore, the moment valve C 210 is opened, the flush solution 202 flows into the tubular system. Controller 216 closes valve 209 and activates the syringe pump 212 again and the plunger is extracted, thus filling the reservoir of the pump mechanism with the flush solution 202. Once the extraction is complete and a signal is transmitted to controller 216, controller 216 closes valve C 210 and opens valve B 209. Controller then communicates a signal to syringe pump 212 to re-infuse the fluid into the tubing, including the 36″ mini volume tubing, between the pinch valve B 208 and the distal end. The automated blood parameter testing apparatus is now again ready for the next sample analysis and flushing.
In an alternative embodiment; additional stopcock 317 and waste container 318 are added to the system. With these additional elements; blood withdrawn from the patient and/or flush solution may be diverted to the waste container as required instead of being returned to the patient's vascular system.
In an alternative embodiment; additional extension tubing 424 is added to the system as shown in order to reduce or eliminate sample dilution. The extension tube 424 is preferably in the range of length 0.5 to 2 m, more preferably 1 m, and width 2.5 mm.
Referring now to
Blood sensor 600 comprises an illumination source 601 and a detector 602. Illumination source 601 is used to trans-illuminate the tubing. The illumination source can be a single, multi-wavelength laser diode, a tunable laser or a series of discrete LEDs or laser diode elements, each emitting a distinct wavelength of light selected from the near infrared region. Alternatively, the illumination source can be a broadband near infrared (IR) emitter, emitting wavelengths as part of a broadband interrogation burst of IR light or radiation, such as lamps used for spectroscopy.
At least one detector 603 detects light reflected and/or transmitted by sample blood. The wavelength selection can be performed by either sequencing single wavelength light sources or by wavelength selective elements, such as using different filters for the different detectors or using a grating that directs the different wavelengths to the different detectors. The detector converts the reflected light into electrical signals indicative of the degree of absorption light at each wavelength and transfers the converted signals to an absorption ratio analyzer such as a microprocessor. The analyzer processes the electrical signals and derives an absorption (e.g., a reflection and/or transmittance) ratio for at least one wavelength. The analyzer then compares the calculated ratio with predetermined values to detect the concentration and/or presence of an analyte such as, but not limited to glucose, hematocrit levels and/or hemoglobin oxygenation levels in the patient blood sample. For example, changes in the ratios can be correlated with the specific near infrared (IR) absorption peak for glucose at about 1650 nm or 2000-2500 nm or around 10 micron, which varies with concentration of the blood analyte. Alternatively, the algorithm detects rate of change or temporal pattern to determine the concentration and/or presence of an analyte.
In one embodiment, the abovementioned blood sensor 600 is an electrochemical sensor capable of detecting the presence of, and enabling the measurement of, the level of an analyte in a blood sample via electrochemical oxidation and reduction reactions at the sensor. In another embodiment, the sensor 600 is an optochemical sensor capable of detecting the presence of and enabling the measurement of the level of an analyte in a blood or plasma.
In one embodiment, blood sensor 600 establishes the presence of blood in the tube and subsequently activates other components of the blood parameter testing apparatus, such as advancement of a glucose oxidase strip and measurement by the electronic meter, for further analysis of the blood sample. Blood sensor 600 also determines whether the blood available in the tube is undiluted and bubble-free in the fluid circuit.
As described above, the method of detecting whether undiluted blood has reached the proximity of the sensor and is ready for sampling is to illuminate the tubing in the proximity of the sensor. Based upon the transmitted and/or reflected signal, the device can establish whether the fluid in the specific segment is undiluted blood. Dead space is managed by actively sensing the arrival and departure of blood from the sensor location.
In addition, blood sensor 600 is capable of other blood analysis functions, including but not limited to, determining the oxygenation level of the blood and using the oxygen status to adjust or calibrate the glucose calculation. In one embodiment, the optically measured hematocrit level is used to correct for the influence of hemodilution on blood analytes such as, but not limited to, glucose. Hematocrit levels and hemoglobin oxygenation levels are accurately measured using one or more wavelengths. Other combinations regarding the number and type of optical wavelengths and the parameters to be corrected can be used according to known correlations between blood parameters.
As described with reference to
Referring now to
Thus, glucose meter 701 includes the software necessary to process, analyze and interpret the recorded diabetes patient data and generate an appropriate data interpretation output. The results of the data analysis and interpretation performed upon the stored patient data by the monitor 700 are displayed in the form of a paper report generated through a printer (not shown) associated with the monitor 700. Alternatively, the results of the data interpretation procedure may be directly displayed on a graphical user interface unit (not shown) associated with the central monitoring station (not shown).
The software uses a blend of symbolic and numerical methods to analyze the data, detect clinical implications contained in the data and present the pertinent information in the form of a graphics-based data interpretation report. The symbolic methods used by the software encode the logical methodology used by healthcare providers as they examine patient logs for clinically significant findings, while the numeric or statistical methods test the patient data for evidence to support a hypothesis posited by the symbolic methods, which may be of assistance to a reviewing physician.
Referring to
Software program 801 allows the user to perform queries on the stored information. For example, the user may wish to view a selected group of patients or all patients under observation. The user may set an alarm, when a desired sensor is in operation. The results of the user's query are displayed through a graphical user interface (GUI) on a display panel (not shown).
Operationally, a user may choose a person to be examined by selecting the appropriate glucose meter unit attached to that individual, using the GUI application. Each glucose meter consists of a unique identification. The selection causes the emulator, which emulates a remote control, to send instructions for that particular glucose meter. The instructions are sent via an infrared signal transmitted from the infrared port of the monitor to the photodetector (not shown) of the glucose meter, which is further conveyed to the sensor unit. The sensor unit is now initiated to communicate with the monitor. The monitor then receives the physiological signals from sensor unit and measures the desired physiological parameter.
Referring now to
In an alternative embodiment, either single or multiple lumen tubing structures may be attached to the catheter attached to the vascular access point. The tubing structure may vary depending upon functional and structural requirements of the system and are not limited to the embodiments described herein.
The automated system for periodically measuring blood analytes and blood parameters further includes alerts and integrated test systems. The alerts may also include alerts for a hemoglobin level below a defined level. In addition, the alerts may include alerts for hyperglycemia and hypoglycemia. The alerts may also include alerts for detection of air in a line and detection of a blocked tube.
Optionally, the control unit of the automated system for periodically measuring blood analytes and blood parameters enables input of user-defined ranges for blood parameters. Still optionally, the system alerts the user when the blood measurement falls outside of the user-defined ranges for blood parameters. The system may optionally alert the user when the rate of change of a parameter (eg blood glucose) is rising or falling too quickly or too slowly. Still optionally, the data from the system is correlated with other blood parameters to indicate an overall patient condition.
The above examples are merely illustrative of the many applications of the system of present invention. Although only a few embodiments of the present invention have been described herein, it should be understood that the present invention might be embodied in many other specific forms without departing from the spirit or scope of the invention. Therefore, the present examples and embodiments are to be considered as illustrative and not restrictive, and the invention is not to be limited to the details given herein, but may be modified within the scope of the appended claims.