The invention relates to a controller for a motor, and particularly, a controller for a motor operating a pump.
Occasionally on a swimming pool, spa, or similar jetted-fluid application, the main drain can become obstructed with an object, such as a towel or pool toy. When this happens, the suction force of the pump is applied to the obstruction and the object sticks to the drain. This is called suction entrapment. If the object substantially covers the drain (such as a towel covering the drain), water is pumped out of the drain side of the pump. Eventually the pump runs dry, the seals burn out, and the pump can be damaged.
Another type of entrapment is referred to as mechanical entrapment. Mechanical entrapment occurs when an object, such as a towel or pool toy, gets tangled in the drain cover. Mechanical entrapment may also effect the operation of the pump.
Several solutions have been proposed for suction and mechanical entrapment. For example, new pool construction is required to have two drains, so that if one drain becomes plugged, the other can still flow freely and no vacuum entrapment can take place. This does not help existing pools, however, as adding a second drain to an in-ground, one-drain pool is very difficult and expensive. Modern pool drain covers are also designed such that items cannot become entwined with the cover.
As another example, several manufacturers offer systems known as Safety Vacuum Release Systems (SVRS). SVRS often contain several layers of protection to help prevent both mechanical and suction entrapment. Most SVRS use hydraulic release valves that are plumbed into the suction side of the pump. The valve is designed to release (open to the atmosphere) if the vacuum (or pressure) inside the drain pipe exceeds a set threshold, thus releasing the obstruction. These valves can be very effective at releasing the suction developed under these circumstances. Unfortunately, they have several technical problems that have limited their use.
In one embodiment, the invention provides a pumping apparatus for a jetted-fluid system having a vessel for holding a fluid, a drain, and a return. The pumping apparatus is connected to a power source and includes a pump having an inlet connectable to the drain, and an outlet connectable to the return. The pump is adapted to receive the fluid from the drain and jet fluid through the return. The pumping apparatus also includes a motor coupled to the pump to operate the pump, a sensor configured to generate a signal having a relation to a parameter of the motor, and a switch coupled to the motor and configured to control at least a characteristic of the motor. The pumping apparatus also includes a microcontroller coupled to the sensor and the switch. The microcontroller includes a model observer configured to receive a first value based on the signal and to generate a second value representative of at least one of a modeled flow or a modeled pressure based on the first value. The microcontroller is configured to control the motor based on the second value.
In another embodiment, the invention provides a pumping apparatus for a jetted-fluid system having a vessel for holding a fluid, a drain, and a return. The pumping apparatus is connected to a power source and includes a pump having an inlet connectable to the drain, and an outlet connectable to the return. The pump is adapted to receive the fluid from the drain and jet fluid through the return. The pumping apparatus also includes a motor coupled to the pump to operate the pump, a sensor configured to generate a signal having a relation to a parameter of the motor, and a switch coupled to the motor and configured to control at least a characteristic of the motor. The pumping apparatus also includes a microcontroller coupled to the sensor and the switch. The microcontroller includes a model observer configured to receive a first value based on the signal and to generate a second value representative of a modeled pressure based on the first value. The microcontroller is configured to control the motor based on the second value.
In another embodiment, the invention provides a method of controlling a motor operating a pumping apparatus of a jetted fluid system having a vessel for holding a fluid, a drain, and a return. The pumping apparatus includes a pump having an inlet connectable to the drain, and an outlet connectable to the return. The pump is adapted to receive the fluid from the drain and jet fluid through the return, and the motor coupled to the pump to operate the pump. The method includes determining a power of the pump motor, applying the power to a model observer, and obtaining a value representative of a flow based on the power and the model observer. The method also includes determining whether the value indicates a condition of the pump, and controlling the motor to operate the pump based on the condition of the pump.
In another embodiment, the invention provides a method of controlling a motor operating a pumping apparatus of a jetted fluid system having a vessel for holding a fluid, a drain, and a return. The pumping apparatus includes a pump with an inlet connectable to the drain, and an outlet connectable to the return. The pump adapted to receive the fluid from the drain and jet fluid through the return, and the motor coupled to the pump to operate the pump. The method includes determining a power of the pump motor, applying the power to a model observer, and obtaining a value representative of a pressure based on the power and the model observer. The method also includes determining whether the value indicates a condition of the pump, and controlling the motor to operate the pump based on the condition of the pump.
In another embodiment, the invention provides a method of controlling a fluid-movement system having a motor and a pump. The motor is coupled to the pump to operate the pump. The method includes calibrating the system to obtain a calibration value for a motor parameter, obtaining a relationship between the motor parameter and a fluid parameter, and determining a trip value based on the calibration value and the relationship. The method also includes controlling the motor to operate the pump, and monitoring the operation of the pump. The monitoring act includes determining a value for the motor parameter, comparing the value to the trip value, and determining whether the comparison indicates a condition of the pump. The method of controlling the fluid-movement system also includes controlling the motor to operate the pump based on the condition of the pump.
In another embodiment, the invention provides a method of controlling a fluid-movement system having a motor and a pump. The motor is coupled to the pump to operate the pump. The method includes determining a relationship between an input power to the motor and a flow rate through the pump, determining a calibration value for the input power, and determining a percentage drop for the relationship. The method also includes determining a trip value based on the relationship, the calibration value, and the percentage drop, and monitoring the operation of the pump. The monitoring act includes determining a first value for the input power, comparing the first value to the trip value, and determining whether the first value indicates a condition of the pump. The method of controlling the fluid-movement system also includes controlling the motor to operate the pump based on the condition of the pump.
Other features and aspects of the invention will become apparent by consideration of the detailed description and accompanying drawings.
Before any embodiments of the invention are explained in detail, it is to be understood that the invention is not limited in its application to the details of construction and the arrangement of components set forth in the following description or illustrated in the following drawings. The invention is capable of other embodiments and of being practiced or of being carried out in various ways. Also, it is to be understood that the phraseology and terminology used herein is for the purpose of description and should not be regarded as limiting. The use of “including,” “comprising,” or “having” and variations thereof herein is meant to encompass the items listed thereafter and equivalents thereof as well as additional items. Unless specified or limited otherwise, the terms “mounted,” “connected,” “supported,” and “coupled” and variations thereof are used broadly and encompass direct and indirect mountings, connections, supports, and couplings. Further, “connected” and “coupled” are not restricted to physical or mechanical connections or couplings.
As shown in
Referring back to
With reference to
For the controller 150 shown in
A voltage sense and average circuit 165, a current sense and average circuit 170, a line voltage sense circuit 175, a triac voltage sense circuit 180, and the microcontroller 185 perform the monitoring of the input power. One example voltage sense and average circuit 165 is shown in
One example current sense and average circuit 170 is shown in
One example line voltage sense circuit 175 is shown in
One example triac voltage sense circuit 180 is shown in
One example microcontroller 185 that can be used with the invention is a Motorola brand microcontroller, model no. MC68HC908QY4CP. The microcontroller 185 includes a processor and a memory. The memory includes software instructions that are read, interpreted, and executed by the processor to manipulate data or signals. The memory also includes data storage memory. The microcontroller 185 can include other circuitry (e.g., an analog-to-digital converter) necessary for operating the microcontroller 185. In general, the microcontroller 185 receives inputs (signals or data), executes software instructions to analyze the inputs, and generates outputs (signals or data) based on the analyses. Although the microcontroller 185 is shown and described, the functions of the microcontroller 185 can be implemented with other devices, including a variety of integrated circuits (e.g., an application-specific-integrated circuit), programmable devices, and/or discrete devices, as would be apparent to one of ordinary skill in the art. Additionally, it is envisioned that the microcontroller 185 or similar circuitry can be distributed among multiple microcontrollers 185 or similar circuitry. It is also envisioned that the microcontroller 185 or similar circuitry can perform the function of some of the other circuitry described (e.g., circuitry 165-180) above for the controller 150. For example, the microcontroller 185, in some constructions, can receive a sensed voltage and/or sensed current and determine an averaged voltage, an averaged current, the zero-crossings of the sensed voltage, and/or the zero crossings of the sensed current.
The microcontroller 185 receives the signals representing the average voltage applied to the motor 145, the average current through the motor 145, the zero crossings of the motor voltage, and the zero crossings of the motor current. Based on the zero crossings, the microcontroller 185 can determine a power factor. The power factor can be calculated using known mathematical equations or by using a lookup table based on the mathematical equations. The microcontroller 185 can then calculate a power with the averaged voltage, the averaged current, and the power factor as is known. As will be discussed later, the microcontroller 185 compares the calculated power with a power calibration value to determine whether a fault condition (e.g., due to an obstruction) is present.
Referring again to
The calibrating of the controller 150 occurs when the user activates a calibrate switch 195. One example calibrate switch 195 is shown in
As stated earlier, the controller 150 controllably provides power to the motor 145. With references to
The microcontroller 185 also provides an output to triac driver circuit 215, which controls triac Q2. As shown in
The controller 150 also includes a thermoswitch S1 for monitoring the triac heat sink, a power supply monitor 220 for monitoring the voltages produced by the power supply 160, and a plurality of LEDs DS1, DS2, and DS3 for providing information to the user. In the construction shown, a green LED DS1 indicates power is applied to the controller 150, a red LED DS2 indicates a fault has occurred, and a third LED DS3 is a heartbeat LED to indicate the microcontroller 185 is functioning. Of course, other interfaces can be used for providing information to the operator.
The following describes the normal sequence of events for one method of operation of the controller 150. When the fluid movement system 110 is initially activated, the system 110 may have to draw air out of the suction side plumbing and get the fluid flowing smoothly. This “priming” period usually lasts only a few seconds, but could last a minute or more if there is a lot of air in the system. After priming, the water flow, suction side pressure, and motor input power remain relatively constant. It is during this normal running period that the circuit is effective at detecting an abnormal event. The microcontroller 185 includes a startup-lockout feature that keeps the monitor from detecting the abnormal conditions during the priming period.
After the system 110 is running smoothly, the spa operator can calibrate the controller 150 to the current spa running conditions. The calibration values are stored in the microcontroller 185 memory, and will be used as the basis for monitoring the spa 100. If for some reason the operating conditions of the spa change, the controller 150 can be re-calibrated by the operator. If at any time during normal operations, however, the suction side pressure increases substantially (e.g., 12%) over the pressure calibration value, or the motor input power drops (e.g., 12%) under the power calibration value, the pump will be powered down and a fault indicator is lit.
As discussed earlier, the controller 150 measures motor input power, and not just motor power factor or input current. Some motors have electrical characteristics such that power factor remains constant while the motor is unloaded. Other motors have an electrical characteristic such that current remains relatively constant when the pump is unloaded. However, the input power drops on pump systems when the drain is plugged, and water flow is impeded.
The voltage sense and average circuit 165 generates a value representing the average power line voltage and the current sense and average circuit 170 generates a value representing the average motor current. Motor power factor is derived from the difference between power line zero crossing events and triac zero crossing events. The line voltage sense circuit 175 provides a signal representing the power line zero crossings. The triac zero crossings occur at the zero crossings of the motor current. The triac voltage sense circuit 180 provides a signal representing the triac zero crossings. The time difference from the zero crossing events is used to look up the motor power factor from a table stored in the microcontroller 185. This data is then used to calculate the motor input power using equation e1.
Vavg*Iavg*PF=Motor_Input_Power [e1]
The calculated motor_input_power is then compared to the calibrated value to determine whether a fault has occurred. If a fault has occurred, the motor is powered down and the fault LED DS2 is lit.
With reference to
For the controller 150a shown in
A voltage sense and average circuit 165a, a current sense and average circuit 170a, and the microcontroller 185a perform the monitoring of the input power. One example voltage sense and average circuit 165a is shown in
One example current sense and average circuit 170a is shown in
One example microcontroller 185a that can be used with the invention is a Motorola brand microcontroller, model no. MC68HC908QY4CP. Similar to what was discussed for the earlier construction, the microcontroller 185a includes a processor and a memory. The memory includes software instructions that are read, interpreted, and executed by the processor to manipulate data or signals. The memory also includes data storage memory. The microcontroller 185a can include other circuitry (e.g., an analog-to-digital converter) necessary for operating the microcontroller 185a and/or can perform the function of some of the other circuitry described above for the controller 150a. In general, the microcontroller 185a receives inputs (signals or data), executes software instructions to analyze the inputs, and generates outputs (signals or data) based on the analyses.
The microcontroller 185a receives the signals representing the average voltage applied to the motor 145, the average current through the motor 145, the zero crossings of the motor voltage, and the zero crossings of the motor current. Based on the zero crossings, the microcontroller 185a can determine a power factor and a power as was described earlier. The microcontroller 185a can then compare the calculated power with a power calibration value to determine whether a fault condition (e.g., due to an obstruction) is present.
The calibrating of the controller 150a occurs when the user activates a calibrate switch 195a. One example calibrate switch 195a is shown in
The controller 150a controllably provides power to the motor 145. With references to
The controller 150a further includes two voltage detectors 212a and 214a. The first voltage detector 212a includes resistors R71, R72, and R73; capacitor C26; diode D14; and switch Q4. The first voltage detector 212a detects when voltage is present across relay K1, and verifies that the relays are functioning properly before allowing the motor to be energized. The second voltage detector 214a includes resistors R66, R69, and R70; capacitor C9; diode D13; and switch Q3. The second voltage detector 214a senses if a two speed motor is being operated in high or low speed mode. The motor input power trip values are set according to what speed the motor is being operated. It is also envisioned that the controller 150a can be used with a single speed motor without the second voltage detector 214a (e.g., controller 150b is shown in
The controller 150a also includes an ambient thermal sensor circuit 216a for monitoring the operating temperature of the controller 150a, a power supply monitor 220a for monitoring the voltages produced by the power supply 160a, and a plurality of LEDs DS1 and DS3 for providing information to the user. In the construction shown, a green LED DS2 indicates power is applied to the controller 150a, and a red LED DS3 indicates a fault has occurred. Of course, other interfaces can be used for providing information to the operator.
The controller 150a further includes a clean mode switch 218a, which includes switch U4 and resistor R10. The clean mode switch can be actuated by an operator (e.g., a maintenance person) to deactivate the power monitoring function described herein for a time period (e.g., 30 minutes so that maintenance person can clean the vessel 105). Moreover, the red LED DS3 can be used to indicate that controller 150a is in a clean mode. After the time period, the controller 150a returns to normal operation. In some constructions, the maintenance person can actuate the clean mode switch 218a for the controller 150a to exit the clean mode before the time period is completed.
In some cases, it may be desirable to deactivate the power monitoring function for reasons other than performing cleaning operations on the vessel 105. Such cases may be referred as “deactivate mode”, “disabled mode”, “unprotected mode”, or the like. Regardless of the name, this later mode of operation can be at least partially characterized by the instructions defined under the clean mode operation above. Moreover, when referring to the clean mode and its operation herein, the discussion also applies to these later modes for deactivating the power monitoring function and vice versa.
The following describes the normal sequence of events for one method of operation of the controller 150a, some of which may be similar to the method of operation of the controller 150. When the fluid movement system 110 is initially activated, the system 110 may have to prime (discussed above) the suction side plumbing and get the fluid flowing smoothly (referred to as “the normal running period”). It is during the normal running period that the circuit is most effective at detecting an abnormal event.
Upon a system power-up, the system 110 can enter a priming period. The priming period can be preset for a time duration (e.g., a time duration of 3 minutes), or for a time duration determined by a sensed condition. After the priming period, the system 110 enters the normal running period. The controller 150a can include instructions to perform an automatic calibration to determine one or more calibration values after a first system power-up. One example calibration value is a power calibration value. In some cases, the power calibration value is an average of monitored power values over a predetermined period of time. The power calibration value is stored in the memory of the microcontroller 185, and will be used as the basis for monitoring the vessel 105.
If for some reason the operating conditions of the vessel 105 change, the controller 150a can be re-calibrated by the operator. In some constructions, the operator actuates the calibrate switch 195a to erase the existing one or more calibration values stored in the memory of the microcontroller 185. The operator then powers down the system 110, particularly the motor 145, and performs a system power-up. The system 110 starts the automatic calibration process as discussed above to determine new one or more calibration values. If at any time during normal operation, the monitored power varies from the power calibration value (e.g., varies from a 12.5% window around the power calibration value), the motor 145 will be powered down and the fault LED DS3 is lit.
In one construction, the automatic calibration instructions include not monitoring the power of the motor 145 during a start-up period, generally preset for a time duration (e.g., 2 seconds), upon the system power-up. In the case when the system 110 is operated for the first time, the system 110 enters the prime period, upon completion of the start-up period, and the power of the motor 145 is monitored to determine the power calibration value. As indicated above, the power calibration value is stored in the memory of the microcontroller 185. After completion of the 3 minutes of the priming period, the system 110 enters the normal running period. In subsequent system power-ups, the monitored power is compared against the power calibration value stored in the memory of the microcontroller 185 memory during the priming period. More specifically, the system 110 enters the normal running period when the monitored power rises above the power calibration value during the priming period. In some cases, the monitored power does not rise above the power calibration value within the 3 minutes of the priming period. As a consequence, the motor 145 is powered down and a fault indicator is lit.
In other constructions, the priming period of the automatic calibration can include a longer preset time duration (for example, 4 minutes) or an adjustable time duration capability. Additionally, the controller 150a can include instructions to perform signal conditioning operations to the monitored power. For example, the controller 150a can include instructions to perform an IIR filter to condition the monitored power. In some cases, the IIR filter can be applied to the monitored power during the priming period and the normal operation period. In other cases, the IIR filter can be applied to the monitored power upon determining the power calibration value after the priming period.
Similar to controller 150, the controller 150a measures motor input power, and not just motor power factor or input current. However, it is envisioned that the controllers 150 or 150a can be modified to monitor other motor parameters (e.g., only motor current, only motor power factor, or motor speed). But motor input power is the preferred motor parameter for controller 150a for determining whether the water is impeded. Also, it is envisioned that the controller 150a can be modified to monitor other parameters (e.g., suction side pressure) of the system 110.
For some constructions of the controller 150a, the microcontroller 185a monitors the motor input power for an over power condition in addition to an under power condition. The monitoring of an over power condition helps reduce the chance that controller 150a was incorrectly calibrated, and/or also helps detect when the pump is over loaded (e.g., the pump is moving too much fluid).
The voltage sense and average circuit 165a generates a value representing the averaged power line voltage and the current sense and average circuit 170a generates a value representing the averaged motor current. Motor power factor is derived from the timing difference between the sign of the voltage signal and the sign of the current signal. This time difference is used to look up the motor power factor from a table stored in the microcontroller 185a. The averaged power line voltage, the averaged motor current, and the motor power factor are then used to calculate the motor input power using equation e1 as was discussed earlier. The calculated motor input power is then compared to the calibrated value to determine whether a fault has occurred. If a fault has occurred, the motor is powered down and the fault indicator is lit.
Redundancy is also used for the power switches of the controller 150a. Two relays K1 and K2 are used in series to do this function. This way, a failure of either component will still leave one switch to turn off the motor 145. As an additional safety feature, the proper operation of both relays is checked by the microcontroller 185a every time the motor 145 is powered-on via the relay voltage detector circuit 212a.
Another aspect of the controller 150a is that the microcontroller 185a provides pulses at a frequency greater than a set frequency (determined by the retriggerable pulse generator circuits) to close the relays K1 and K2. If the pulse generators U3A and U3B are not triggered at the proper frequency, the relays K1 and K2 open and the motor powers down.
As previously indicated, the microcontroller 185, 185a can calculate an input power based on parameters such as averaged voltage, averaged current, and power factor. The microcontroller 185, 185a then compares the calculated input power with the power calibration value to determine whether a fault condition (e.g., due to an obstruction) is present. Other constructions can include variations of the microcontroller 185, 185a and the controller 150, 150a operable to receive other parameters and determine whether a fault condition is present.
One aspect of the controller 150, 150a is that the microcontroller 185, 185a can monitor the change of input power over a predetermine period of time. More specifically, the microcontroller 185, 185a determines and monitors a power derivative value equating about a change in input power divided by a change in time. In cases where the power derivative traverses a threshold value, the controller 150, 150a controls the motor 145 to shut down the pump 140. This aspect of the controller 150, 150a may be operable in replacement of, or in conjunction with, other similar aspects of the controller 150, 150a, such as shutting down the motor 145 when the power level of the motor 145 traverses a predetermined value.
For example,
In another aspect of the controller 150, 150a, the microcontroller 185, 185a can include instructions that correspond to a model observer, such as the exemplary model observer 310 shown in
It is to be understood that the model observer 310 is not limited to the elements described above. In other words, the model observer 310 may not necessarily include all the elements described above and/or may include other elements or combination of elements not explicitly described herein. In reference particularly to the fluid system model 330, a fluid system model may be defined utilizing various procedures. In some cases, a model may be generated for this particular aspect of the controller 150, 150a from another model corresponding to a simulation of another system, which may not necessarily be a fluid system. In other cases, a model may be generated solely based on controls knowledge of closed loop or feed back systems and formulas for fluid flow and power. In yet other cases, a model may be generated by experimentation with a prototype of the fluid system to be modeled.
In reference to the model observer 310 of
As shown in
ro=(PA−Fil)*regulator [e2]
The relationship shown in equation [e2] allows a user to control the motor 145 based on a direct relationship between the input power or torque and a parameter of the fluid flow, such as flow rate and pressure, without having to directly measure the fluid flow parameter.
In this particular example, the gain parameter of the fluid system model 330 is set to a value of 1, thereby measuring a unit of pressure with the same scale as the unit of power. In other examples, the user can set the gain parameter at a different value to at least control aspects of the operation of the motor 145, such as shut down time.
In another aspect of the controller 150, 150a, the microcontroller 185, 185a can be configured for determining a floating the threshold value or trip value indicating the parameter reading, such as input power or torque, at which the controller 150, 150a shuts down the pump 140. It is to be understood that the term “floating” refers to varying or adjusting a signal or value. In one example, the microcontroller 185, 185a continuously adjusts the trip value based on average input power readings, as shown in
The microcontroller 185, 185a may calculate the average input power 355 utilizing various methods. In one construction, the microcontroller 185, 185a may determine a running average based at least on signals generated by the current sense and average circuit 170, 170a and signals generated by the voltage sense and average circuit 165, 165a. In another construction, the microcontroller 185, 185a may determine an input power average over relatively short periods of time. As shown in
In some cases, the average power signal 355 may define a behavior, such as the one shown in
In other cases, the microcontroller 185, 185a can determine and monitor the average input power over a relatively short amount of time. For example, the microcontroller 185, 185a can monitor the average power over a first time period (e.g., 5 seconds). The controller 185, 185a can also determine a variable trip value based on a predetermine percentage (e.g., 6.25%) drop of the average power calculated over the first time period. In other words, the variable trip value is adjusted based on the predetermined percentage as the microcontroller 185, 185a determines the average power. The controller 150, 150a can shut down the pump 140 when the average power drops to a value substantially equal or lower than the variable trip value and sustains this condition over a second period of time (e.g., 1 second).
In another aspect of the controller 150, 150a, the microcontroller 185, 185a can be configured to determine a relationship between a parameter of the motor 145 (such as power or torque) and pressure/flow through the fluid-movement system 110 for a specific motor/pump combination. More specifically, the controller 150, 150a controls the motor 145 to calibrate the fluid-movement system 110 based on the environment in which the fluid-movement system 110 operates. The environment in which the fluid-movement system 110 operates can be defined by the capacity of the vessel 105, tubing configuration between the drain 115 and inlet 125, tubing configuration between outlet 130 and return 135 (shown in
Calibration of the fluid-movement system 110 is generally performed the first time the system is operated after installation. It is to be understood that the processes described herein are also applicable to recalibration procedures. In one example, calibration of the fluid-movement system 110 includes determining a threshold value based on characterizing a specific motor/pump combination and establishing a relationship between, for example, input power and pressure via a stored look-up table or an equation.
Referring particularly to the characterization data 365 shown in
In another aspect of the controller 150, 150a, the microcontroller 185, 185a can include a timer function to operate the fluid-movement system 110. In one example, the timer function of the microcontroller 185, 185a implements a RUN mode of the controller 150, 150a. More specifically regarding the RUN mode, the controller 150, 150a is configured to operate the motor 145 automatically over predetermined periods of time. In other words, the controller 150, 150a is configured to control the motor 145 based on predetermined time periods programmed in the microcontroller 185, 185a during manufacturing or programmed by a user. In another example, the timer function of the microcontroller 185, 185a implements an OFF mode of the controller 150, 150a. More specifically regarding the OFF mode, the controller 150, 150a is configured to operate the motor 145 only as a result of direct interaction of the user. In other words, the controller 150, 150a is configured to maintain the motor 145 off until a user directly operates the controller 150, 150a through the interface of the controller 150, 150a. In yet another example, the timer function of the microcontroller 185, 185a implements a PROGRAM mode of the controller 150, 150a. More specifically regarding the PROGRAM mode, the controller 150, 150a is configured to maintain the motor 145 off until the user actuates one of the switches (e.g., calibrate switch 195, 195a, clean mode switch 218a) of the controller 150, 150a indicating a desired one-time window of operation of the motor 145. For example, the user can actuate one switch three times indicating the controller 150, 150a to operate the motor 145 for a period of three hours. In some constructions, the controller 150, 150a includes a run-off-program switch to operate the controller 150, 150a between the RUN, OFF, and PROGRAM modes. It is to be understood that the same or other modes of operation of the controller 150, 150a can be defined differently. Additionally, not all modes described above are necessary and the controller 150, 150a can include a different number and combinations of modes of operation.
In another aspect of the controller 150, 150a, the microcontroller 185, 185a can be configured to determine and monitor a value corresponding to the torque of the motor 145. More specifically, the microcontroller 185, 185a receives signals from at least one of the voltage sense and average circuit 165, 165a and the current sense and average circuit 170, 170a to help determine the torque of the motor 145. As explained above, the microcontroller 185, 185a can also be configured to determine and monitor the speed of the motor 145, allowing the microcontroller 185, 185a to determine a value indicative of the torque of the motor 145 and a relationship between the torque and the input power. In some constructions, the speed of the motor 145 remains substantially constant during operation of the motor 145. In these particular cases, the microcontroller 185, 185a can include instructions related to formulas or look-up tables that indicate a direct relationship between the input power and the torque of the motor 145. Determining and monitoring the torque of the motor 145 allows the microcontroller 185, 185a to establish a trip value or a percentage based on torque to shut off the motor 145 in case of an undesired condition of the motor 145. For example,
In some constructions, the fluid-movement system 110 can operate two or more vessels 105. For example, the fluid-movement system 110 can include a piping system to control fluid flow to a pool, and a second piping system to control fluid flow to a spa. For this particular example, the flow requirements for the pool and the spa are generally different and may define or require separate settings of the controller 150, 150a for the controller 150, 150a to operate the motor 145 to control fluid flow to the pool, the spa, or both. The fluid-movement system 110 can include one or more valves that may be manually or automatically operated to direct fluid flow as desired. In an exemplary case where the fluid-movement system 110 includes one solenoid valve, a user can operate the valve to direct flow to one of the pool and the spa. Additionally, the controller 150, 150a can include a sensor or receiver coupled to the valve to determine the position of the valve. Under the above mentioned conditions, the controller 150, 150a can run a calibration sequence and determine individual settings and trip values for the fluid system including the pool, the spa, or both. Other constructions can include a different number of vessels 105, where fluid flow to the number of vessels 105 can be controller by one or more fluid-movement systems 110.
While numerous aspects of the controller 150, 150a were discussed above, not all of the aspects and features discussed above are required for the invention. Additionally, other aspects and features can be added to the controller 150, 150a shown in the figures.
The constructions described above and illustrated in the figures are presented by way of example only and are not intended as a limitation upon the concepts and principles of the invention. Various features and advantages of the invention are set forth in the following claims.
This application is a divisional of U.S. patent application Ser. No. 11/549,518, filed Oct. 13, 2006, the content of which is incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
1061919 | Miller | May 1913 | A |
2767277 | Wirth | Oct 1956 | A |
3191935 | Uecker | Jun 1965 | A |
3558910 | Dale et al. | Jan 1971 | A |
3781925 | Curtis et al. | Jan 1974 | A |
3838597 | Montgomery | Oct 1974 | A |
3953777 | McKee | Apr 1976 | A |
3963375 | Curtis | Jun 1976 | A |
4021700 | Ellis-Anwyl | May 1977 | A |
4168413 | Halpine | Sep 1979 | A |
4185187 | Rogers | Jan 1980 | A |
4319712 | Bar | Mar 1982 | A |
4370098 | McClain et al. | Jan 1983 | A |
4371315 | Shikasho | Feb 1983 | A |
4420787 | Tibbits et al. | Dec 1983 | A |
4428434 | Gelaude | Jan 1984 | A |
4449260 | Whitaker | May 1984 | A |
4473338 | Garmong | Sep 1984 | A |
4504773 | Suzuki et al. | Mar 1985 | A |
4505643 | Millis et al. | Mar 1985 | A |
4514989 | Mount | May 1985 | A |
4541029 | Ohyama | Sep 1985 | A |
4581900 | Lowe et al. | Apr 1986 | A |
4620835 | Bell | Nov 1986 | A |
4647825 | Profio et al. | Mar 1987 | A |
4676914 | Millis et al. | Jun 1987 | A |
4678404 | Lorett et al. | Jul 1987 | A |
4695779 | Yates | Sep 1987 | A |
4697464 | Martin | Oct 1987 | A |
4703387 | Miller | Oct 1987 | A |
4758697 | Jeuneu | Jul 1988 | A |
4837656 | Barnes | Jun 1989 | A |
4839571 | Farnham et al. | Jun 1989 | A |
4841404 | Marshall et al. | Jun 1989 | A |
4864287 | Kierstead | Sep 1989 | A |
4885655 | Springer et al. | Dec 1989 | A |
4896101 | Cobb | Jan 1990 | A |
4907610 | Meincke | Mar 1990 | A |
4971522 | Butlin | Nov 1990 | A |
4996646 | Farrington | Feb 1991 | A |
4998097 | Noth et al. | Mar 1991 | A |
5079784 | Rist et al. | Jan 1992 | A |
5100298 | Shibata et al. | Mar 1992 | A |
RE33874 | Miller | Apr 1992 | E |
5167041 | Burkitt, III | Dec 1992 | A |
5172089 | Wright et al. | Dec 1992 | A |
5234286 | Wagner | Aug 1993 | A |
5255148 | Yeh | Oct 1993 | A |
5324170 | Anastos et al. | Jun 1994 | A |
5347664 | Hamza et al. | Sep 1994 | A |
5361215 | Tompkins et al. | Nov 1994 | A |
5422014 | Allen et al. | Jun 1995 | A |
5473497 | Beatty | Dec 1995 | A |
5545012 | Anastos et al. | Aug 1996 | A |
5548854 | Bloemer et al. | Aug 1996 | A |
5550753 | Tompkins et al. | Aug 1996 | A |
5559720 | Tompkins et al. | Sep 1996 | A |
5570481 | Mathis et al. | Nov 1996 | A |
5577890 | Nielsen et al. | Nov 1996 | A |
5601413 | Langley et al. | Feb 1997 | A |
5624237 | Prescott et al. | Apr 1997 | A |
5632468 | Schoenmeyr | May 1997 | A |
5633540 | Moan | May 1997 | A |
5690476 | Miller | Nov 1997 | A |
5727933 | Laskaris et al. | Mar 1998 | A |
5777833 | Romillon | Jul 1998 | A |
5820350 | Mantey et al. | Oct 1998 | A |
5833437 | Kurth et al. | Nov 1998 | A |
5907281 | Miller, Jr. et al. | May 1999 | A |
5930092 | Nystrom | Jul 1999 | A |
5947700 | McKain et al. | Sep 1999 | A |
5959534 | Campbell et al. | Sep 1999 | A |
6043461 | Holling et al. | Mar 2000 | A |
6045333 | Breit | Apr 2000 | A |
6059536 | Stingl | May 2000 | A |
6092992 | Imblum et al. | Jul 2000 | A |
6157304 | Bennett et al. | Dec 2000 | A |
6171073 | McKain et al. | Jan 2001 | B1 |
6199224 | Versland | Mar 2001 | B1 |
6213724 | Haugen et al. | Apr 2001 | B1 |
6216814 | Fujita et al. | Apr 2001 | B1 |
6227808 | McDonough | May 2001 | B1 |
6238188 | Lifson | May 2001 | B1 |
6247429 | Hara et al. | Jun 2001 | B1 |
6253227 | Tompkins et al. | Jun 2001 | B1 |
6342841 | Stingl | Jan 2002 | B1 |
6354805 | Moller | Mar 2002 | B1 |
6364621 | Yamauchi | Apr 2002 | B1 |
6390781 | McDonough | May 2002 | B1 |
6468042 | Moller | Oct 2002 | B2 |
6468052 | McKain et al. | Oct 2002 | B2 |
6481973 | Struthers | Nov 2002 | B1 |
6501629 | Marriott | Dec 2002 | B1 |
6504338 | Eichon | Jan 2003 | B1 |
6522034 | Nakayama | Feb 2003 | B1 |
6534940 | Bell et al. | Mar 2003 | B2 |
6534947 | Johnson et al. | Mar 2003 | B2 |
6543940 | Chu | Apr 2003 | B2 |
6590188 | Cline et al. | Jul 2003 | B2 |
6595762 | Khanwilkar et al. | Jul 2003 | B2 |
6616413 | Humpheries | Sep 2003 | B2 |
6623245 | Meza et al. | Sep 2003 | B2 |
6636135 | Vetter | Oct 2003 | B1 |
6638023 | Scott | Oct 2003 | B2 |
6676831 | Wolfe | Jan 2004 | B2 |
6696676 | Graves et al. | Feb 2004 | B1 |
6709240 | Schmalz et al. | Mar 2004 | B1 |
6715996 | Moeller | Apr 2004 | B2 |
6732387 | Waldron | May 2004 | B1 |
6768279 | Skinner et al. | Jul 2004 | B1 |
6806677 | Kelly et al. | Oct 2004 | B2 |
6875961 | Collins | Apr 2005 | B1 |
6895608 | Goettl | May 2005 | B2 |
6933693 | Schuchmann | Aug 2005 | B2 |
6941785 | Haynes et al. | Sep 2005 | B2 |
6965815 | Tompkins et al. | Nov 2005 | B1 |
6976052 | Tompkins et al. | Dec 2005 | B2 |
7055189 | Goettl | Jun 2006 | B2 |
7089606 | Goettl | Aug 2006 | B2 |
7117120 | Beck et al. | Oct 2006 | B2 |
7163380 | Jones | Jan 2007 | B2 |
7213275 | Goettl | May 2007 | B2 |
7327275 | Brochu et al. | Feb 2008 | B2 |
7417834 | Cline et al. | Aug 2008 | B2 |
20010029407 | Tompkins et al. | Oct 2001 | A1 |
20020176783 | Moeller | Nov 2002 | A1 |
20020190687 | Bell et al. | Dec 2002 | A1 |
20030106147 | Cohen et al. | Jun 2003 | A1 |
20040009075 | Meza et al. | Jan 2004 | A1 |
20040062658 | Beck et al. | Apr 2004 | A1 |
20040090197 | Schuchmann | May 2004 | A1 |
20040205886 | Goettl | Oct 2004 | A1 |
20040213676 | Phillips | Oct 2004 | A1 |
20050097665 | Goettl | May 2005 | A1 |
20050123408 | Koehl | Jun 2005 | A1 |
20050133088 | Bologeorges | Jun 2005 | A1 |
20050158177 | Mehlhorn | Jul 2005 | A1 |
20050193485 | Wolfe | Sep 2005 | A1 |
20050226731 | Mehlhorn | Oct 2005 | A1 |
20050281681 | Anderson et al. | Dec 2005 | A1 |
20060045750 | Stiles | Mar 2006 | A1 |
20060090255 | Cohen | May 2006 | A1 |
20060101571 | Goettl | May 2006 | A1 |
20060107453 | Goettl | May 2006 | A1 |
20060127227 | Mehlhorn | Jun 2006 | A1 |
20060146462 | McMillian, IV | Jul 2006 | A1 |
20060238931 | Cline et al. | Oct 2006 | A1 |
20060242757 | Goettl | Nov 2006 | A1 |
20070056955 | Maddox | Mar 2007 | A1 |
20070056956 | Maddox | Mar 2007 | A1 |
20070058313 | Maddox | Mar 2007 | A1 |
20070058314 | Maddox | Mar 2007 | A1 |
20070058315 | Maddox | Mar 2007 | A1 |
20070061051 | Maddox | Mar 2007 | A1 |
20070114162 | Stiles, Jr. et al. | May 2007 | A1 |
20070154319 | Stiles, Jr. et al. | Jul 2007 | A1 |
20070154320 | Stiles, Jr. et al. | Jul 2007 | A1 |
20070154321 | Stiles, Jr. et al. | Jul 2007 | A1 |
20070154322 | Stiles, Jr. et al. | Jul 2007 | A1 |
20070154323 | Stiles, Jr. et al. | Jul 2007 | A1 |
20070160480 | Ruffo | Jul 2007 | A1 |
20070163929 | Stiles, Jr. et al. | Jul 2007 | A1 |
20070177985 | Walls et al. | Aug 2007 | A1 |
20070183902 | Stiles, Jr. et al. | Aug 2007 | A1 |
20070258827 | Gierke | Nov 2007 | A1 |
20080003114 | Levin et al. | Jan 2008 | A1 |
20080041839 | Tran | Feb 2008 | A1 |
20080063535 | Koehl | Mar 2008 | A1 |
20080095638 | Branecky | Apr 2008 | A1 |
20080095639 | Bartos | Apr 2008 | A1 |
20080095640 | Branecky | Apr 2008 | A1 |
20080168599 | Caudill et al. | Jul 2008 | A1 |
20090035151 | Sugiura et al. | Feb 2009 | A1 |
20090288407 | Bartos | Nov 2009 | A1 |
20090290989 | Mehlhorn | Nov 2009 | A1 |
20090290990 | Branecky | Nov 2009 | A1 |
20090290991 | Mehlhorn | Nov 2009 | A1 |
20100068073 | Branecky | Mar 2010 | A1 |
20100080714 | Mehlhorn | Apr 2010 | A1 |
20100232981 | Branecky et al. | Sep 2010 | A1 |
20110002792 | Bartos et al. | Jan 2011 | A1 |
Number | Date | Country |
---|---|---|
2946049 | May 1981 | DE |
19736079 | Feb 1999 | DE |
0150068 | Jul 1985 | EP |
0226858 | Jul 1987 | EP |
0246769 | Nov 1987 | EP |
0833436 | Apr 1998 | EP |
1585205 | Oct 2005 | EP |
355072678 | May 1980 | JP |
WO 2005111473 | Nov 2005 | WO |
2010039580 | Apr 2010 | WO |
Number | Date | Country | |
---|---|---|---|
20090280014 A1 | Nov 2009 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11549518 | Oct 2006 | US |
Child | 12506372 | US |