The present invention relates to a controller for a permanent magnet generator, and to such a controller in combination with a permanent magnet generator.
Permanent magnet generators represent a simple and reliable form of generator construction that is suitable for use in situations where high reliability is paramount. In essence, and as schematically illustrated in
The voltage generated in each stator coil is
where
This shows that, at least while no current is being drawn, the generator output voltage is proportional to the rotor speed.
When a current is drawn the situation becomes a little more complicated because:
Furthermore it is known that when uncontrolled, the generator output voltage can vary over a wide range dependent upon generator speed and load.
It is inconvenient for the voltage supplied to a load to vary over a wide range and therefore some form of stabilisation is useful.
It is known to convert the generator output to a DC voltage using a power converter. A controller can be used to control the power converter so as to provide a desired output voltage at a DC link.
Generally, in order to perform stable control of the generator, it has been necessary to include a position detector on the rotor. Sensing the rotor position allows the voltage waveform under no load conditions to be inferred from a knowledge of the generator design and sensor position. This can be compared with the current waveform to obtain a measurement of current angle. Such a system is described in U.S. Pat. No. 6,583,995.
U.S. Pat. No. 5,177,677 includes means (not described in detail) for measuring the “source voltage” of a generator, as described at column 6 lines 1 to 3. This measurement of source voltage is probably made with an additional sense coil wound onto the stator such that an output voltage under no-load conditions can be inferred. The circuit also measures the current waveforms and consequently the phase shift between the voltage and the current can be directly derived to give the power factor.
U.S. Pat. No. 6,239,581 discloses a regulation circuit which monitors the voltage occurring across a load and on the basis of this measurement may pass current through an inductor connected in parallel with the generator so as to add a “lag” into the power factor.
According to a first aspect of the present invention there is provided a method of controlling a permanent magnet generator where each phase of the generator is connectable to a DC link via electrically controllable switches, the method comprising the steps of:
In a preferred implementation of the invention there is provided a method of controlling a permanent magnet generator where each phase of the generator is connectable to a DC link via electrically controllable switches, the method comprising the steps of:
The additional step of forming the target voltage phase reference and then controlling the electronically controllable switches as a function of both the target voltage and the target voltage phase angle gives the control system the ability to cope with significant generator speed variation.
According to a second aspect of the present invention there is provided a generator controller adapted to:
It is thus possible to provide a generator controller that only needs to measure the phase currents supplied by the generator. No measurements of rotor position or generator output voltage under load or no-load conditions are required.
Preferably the generator is a three phase generator. Under such circumstances the currents in the phases can conveniently be designated Ia, Ib and Ic.
Advantageously the three phase current measurements are converted into an equivalent current vector Ī having a magnitude Im and a phase θi with respect to an arbitrary frame of reference. This arbitrary frame of reference acts as a common reference frame for both the current vector and, as will be considered later, a voltage vector.
Advantageously a Clark's transform is used to convert the measured current Ia, Ib and Ic from a phase-time based measurement to an equivalent space, generally designated (α, β, 0) as it is known to the person skilled in the art. A Cartesian to polar transform may then be used to convert α and β to magnitude and phase values.
Advantageously the target voltage, Vm, represents a voltage magnitude, and similarly the target voltage angle θv represents a phase angle with respect to the arbitrary (but common) frame of reference. Preferably a polar to Cartesian transform is applied to Vm and θv, followed by an inverse Clark's transform so as to derive a set of target voltages Va, Vb and Vc for each of the phases. These voltages Va, Vb and Vc can then be regenerated by driving pairs of electrically controllable switches connected in series between the voltage rails of the DC link voltage in order to produce pulse width modulated versions of those voltages at the node between the pairs of switches.
Preferably the target voltage Vm is proportional to or is partially proportional to the output current less the demanded current I*. This is counter intuitive as normally feedback loops respond proportionately to the demanded value minus the measured value, whereas this feedback loop responds proportionately to the measured value minus the demanded value. In this discussion it is assured that the constant of proportionality is a positive value.
In an embodiment of the invention the current error is used to derive a compensating phase angle. This may, for example, be computed in the analog or digital domains or looked up from a look-up table. In an alternative embodiment the demand current may be used to derive a compensating phase angle. The target voltage phase angle θv may then be modified by the desired power factor angle φ* and the current phase angle θi and this compensating phase angle.
According to a third aspect of the present invention there is provided a computer program for causing a programmable data processor to implement the method according to the first aspect of the present invention.
According to a fourth aspect of the present invention there is provided a power generation system comprising a permanent magnet generator and a generator controller in accordance with the second aspect of the present invention.
The current transformation block 40 receives the instantaneous measurements of the currents Ia, Ib and Ic and then seeks to convert these three current measurements into a parameterised version of current magnitude and angle with respect to an arbitrary reference vector. This is achieved firstly by performing a Clark's transform to convert the three measurements from phase space (a, b, c) to an equivalent space termed (α, β, 0) using its Clark's transform given by:
such that
After having converted the currents into this transformed space, a Cartesian to polar co-ordinate transformation is used to convert α and β to magnitude and phase information using the following equations:
Other transforms are known to the person skilled in the art, but the Clark's transform is generally accepted as being an appropriate transform for this task. The values Im and θi; provide a phasor representation of the current vector to an arbitrary frame of reference. These values Im and θi are then provided to the data processing unit 42. This section implements a control algorithm either within hardware or software and uses the measured current vector and a demand current magnitude and demand power factor angle (i.e. the angle between the voltage and current vectors) to produce a desired voltage vector defined by a voltage magnitude Vm and its phase angle θv relative to the arbitrary frame of reference. Once values Vm and θv have been calculated, they are passed to transform block 44 which effectively mirrors the operations of block 40 in that it first performs a polar to Cartesian co-ordinate transformation, using equations 3 and 4, to obtain Vα and Vβ, and then it performs an inverse Clark's transform to obtain target phase voltages Va, Vb and Vc, each one representing one of the inverter phases within the power converter 24.
A summing element 50 receives the representation Im of the current supplied by the generator at its non-inverting input, and subtracts the demand current I* from the supplied current in order to output a current error Ierror. The current error value is supplied as an input to a proportional block 52 which multiplies the value Ierror by a constant and outputs a target voltage magnitude Vm. The current error, Ierror, is also provided as an input to a control block 54 which converts the current error into a compensating phase angle. The phase angle is constrained to lie in the range 0 to 360°, and generally, within a generator, the current is out of phase with the voltage over the range of approximately 90° to 270°. The controller 54 may, for example, be implemented as a look up table or, in a digital system, it may be presented as an algorithm. The output of the controller 54 is supplied to a summer 56 where the demanded power factor angle is added to it. The output of the summer 56 is supplied to a further summer 58 where the current phase angle is added. The output of the summer 58 is the voltage phase angle θv. Although the operation of the controller has been described in terms of hardware processing blocks, all of its functionality can be performed within a suitably programmed data processor.
The controller 54 effectively produces the current error to produce a shift in the power factor angle when saturation of the voltage magnitude occurs due to the finite DC link voltage. This ensures the current controller retains control of the current during over modulation, i.e. when the circuit operation is limited by the DC link voltage.
It is worthwhile considering operation of the controller. For simplicity, assume that the controller and generator is in steady state and that the current error Ierror is positive and that the controller 52 comprises only a proportional control term such that Vm=K×Ierror. From this it follows that voltage magnitude Vm is a finite positive value.
As regards the calculation of the voltage angle θv, the angle of the current vector θi has already been obtained from the conversion unit 40 and this angle is rotating at the same frequency as the generator EMF. Therefore it remains fixed in the frame of reference. The controller 40 adds the desired power factor angle φ* to the angle of the current vector θi to produce the angle θv. Thus the controller 42 produces a voltage vector with magnitude and phase information. The voltage vector is used to control the power converter switches via the pulse width modulation circuit and in so doing forces the generator to produce the current necessary to keep the system in a steady state condition.
A further power controller, not shown, has knowledge of the nominal supply voltage and the power drawn by each load, and can use this in order to calculate the demand current and the desired power factor angle. It then supplies the new demand current and power factor angle to the generator controller. Suppose, that a new load is added to the output of a generator such that the demanded current will increase. This causes the current error Ierror, to reduce due to the action of the summation block 50. This in turn causes the magnitude of the voltage vector Vm to reduce which results in a reduction in the magnitude of the phase voltages Va, Vb, Vc. The power factor angle however remains the same.
For most operating regions of the generator, this action results in a greater magnitude current Im. Thus the magnitude of the current increases following the demand increase and reduces the current error. Ultimately a new steady state condition is reached. Similarly, when the current demand is reduced then the voltage magnitude increases. This action can be seen with reference to the phasor diagrams shown in
There is however a further possibility in that the voltage magnitude control of the voltage vector will reach an upper limit due to the finite available DC link voltage. This situation is shown in
It is thus possible to provide a generator controller for a permanent magnet generator which does not require any rotor position or voltage measurement of the generator.
Number | Date | Country | Kind |
---|---|---|---|
0510066.4 | May 2005 | GB | national |
Number | Name | Date | Kind |
---|---|---|---|
5177677 | Nakata et al. | Jan 1993 | A |
6239581 | Yoshida | May 2001 | B1 |
7304400 | Kang et al. | Dec 2007 | B2 |
7307404 | Mellor et al. | Dec 2007 | B2 |
7378808 | Kuras et al. | May 2008 | B2 |
Number | Date | Country | |
---|---|---|---|
20070210767 A1 | Sep 2007 | US |