Controller for a power converter and method of operating the same

Information

  • Patent Grant
  • 9190898
  • Patent Number
    9,190,898
  • Date Filed
    Friday, July 6, 2012
    12 years ago
  • Date Issued
    Tuesday, November 17, 2015
    8 years ago
Abstract
A controller for a power converter and method of operating the same. In one embodiment, the controller includes an inductor-inductor-capacitor (“LLC”) controller configured to receive an error signal from an error amplifier to control a switching frequency of an LLC stage of the power converter to regulate an output voltage thereof. The controller also includes a power factor correction (“PFC”) controller configured to control a bus voltage produced by a PFC stage of the power converter and provided to the LLC stage so that an average switching frequency thereof is substantially maintained at a desired switching frequency.
Description
TECHNICAL FIELD

The present invention is directed, in general, to power electronics and, more specifically, to a controller for a power converter and method of operating the same.


BACKGROUND

A switched-mode power converter (also referred to as a “power converter” or “regulator”) is a power supply or power processing circuit that converts an input voltage waveform into a specified output voltage waveform. A power factor correction (“PFC”)/resonant inductor-inductor-capacitor (“LLC”) power converter includes a power train with a PFC stage followed by a LLC stage. The power converter is coupled to a source of electrical power (an alternating current (“ac”) power source) and provides a direct current (“dc”) output voltage. The PFC stage receives a rectified version of the ac input voltage (from the ac power source) and provides a dc bus voltage. The LLC stage employs the bus voltage to provide the dc output voltage to a load. The power converter including the PFC stage and the LLC stage can be employed to construct an “ac adapter” to provide the dc output voltage to a notebook computer or the like from the ac power source.


Controllers associated with the power converter manage an operation thereof by controlling conduction periods of power switches employed therein. Generally, the controllers are coupled between an input and output of the power converter in a feedback loop configuration (also referred to as a “control loop” or “closed control loop”). Two control processes are often employed to control the output voltage of a power converter formed with the PFC stage followed by the LLC stage. One process controls the bus voltage of the PFC stage to control the output voltage, and the other process controls the switching frequency of the LLC stage to control the output voltage. As will become more apparent, employing two independent processes to control the output voltage of the power converter with the PFC stage and the LLC stage can lead to several design issues that detract from the operation and efficiency of the power converter.


Another area of interest with respect to power converters in general is the detection and operation thereof under light load conditions. Under such conditions, it may be advantageous for the power converter to enter a burst mode of operation. Regarding the burst mode of operation, power loss of a power converter is dependent on gate drive signals for the power switches and other continuing power losses that generally do not vary substantially with the load. These power losses are commonly addressed at very low power levels by using the burst mode of operation wherein the controller is disabled for a period of time (e.g., one second) followed by a short period of high power operation (e.g., 10 milliseconds (“ms”)) to provide a low average output power with low dissipation. The controller as described herein can employ the time interval of the burst mode of operation to estimate an output (or load) power of the power converter.


Accordingly, what is needed in the art is a controller that incorporates a hybrid approach to the control processes for a power converter employing different power stages in a power train thereof to avoid the deficiencies in the prior art. Additionally, what is needed in the art is a controller that can detect and manage a power converter at light loads including an operation of the power converter entering a burst mode of operation to avoid the deficiencies in the prior art.


SUMMARY OF THE INVENTION

Technical advantages are generally achieved, by advantageous embodiments of the present invention, including a controller for a power converter and method of operating the same. In one embodiment, the controller includes an inductor-inductor-capacitor (“LLC”) controller configured to receive an error signal from an error amplifier to control a switching frequency of an LLC stage of the power converter to regulate an output voltage thereof. The controller also includes a power factor correction (“PFC”) controller configured to control a bus voltage produced by a PFC stage of the power converter and provided to the LLC stage so that an average switching frequency thereof is substantially maintained at a desired switching frequency.


In another aspect, a burst mode controller for a power converter includes a burst mode initiate circuit configured to initiate a burst mode of operation when a signal representing an output voltage of the power converter crosses a first burst threshold level. The burst mode controller also includes a voltage elevate circuit configured to provide a voltage elevate signal to raise the output voltage if a time window expires before the signal representing the output voltage of the power converter crosses a second burst threshold level.


The foregoing has outlined rather broadly the features and technical advantages of the present invention in order that the detailed description of the invention that follows may be better understood. Additional features and advantages of the invention will be described hereinafter, which form the subject of the claims of the invention. It should be appreciated by those skilled in the art that the conception and specific embodiment disclosed may be readily utilized as a basis for modifying or designing other structures or processes for carrying out the same purposes of the present invention. It should also be realized by those skilled in the art that such equivalent constructions do not depart from the spirit and scope of the invention as set forth in the appended claims.





BRIEF DESCRIPTION OF THE DRAWINGS

For a more complete understanding of the present invention, reference is now made to the following descriptions taken in conjunction with the accompanying drawings, in which:



FIG. 1 illustrates a block diagram of an embodiment of a power converter including a controller constructed according to the principles of the present invention;



FIG. 2 illustrates a schematic diagram of a portion of power converter including an exemplary power train employing a boost topology constructed according to the principles of the present invention;



FIG. 3 illustrates a circuit diagram of an embodiment of a power converter formed with a PFC stage coupled to a LLC stage constructed according to the principles of the present invention;



FIGS. 4-6 illustrate graphical representations of exemplary operating characteristics of a power converter according to the principles of the present invention;



FIGS. 7 and 8 illustrate diagrams of embodiments of a power converter formed with a PFC stage coupled to a LLC stage constructed according to the principles of the present invention;



FIG. 9 illustrates a schematic drawing of an embodiment of a burst mode controller configured to manage a burst mode of operation for a power converter in accordance with the principles of the present invention;



FIG. 10 illustrates a graphical representation of exemplary waveforms produced within a power converter in accordance with the principles of the present invention;



FIG. 11 illustrates a diagram of an embodiment of a resistor divider coupled to an output voltage of a power converter constructed according to the principles of the present invention; and



FIG. 12 illustrates a diagram of an embodiment of a portion of a voltage elevate circuit to produce a slope signal indicative of a slope of an output voltage of a power converter employable in a burst mode controller constructed according to the principles of the present invention.





Corresponding numerals and symbols in the different figures generally refer to corresponding parts unless otherwise indicated, and may not be redescribed in the interest of brevity after the first instance. The FIGUREs are drawn to illustrate the relevant aspects of exemplary embodiments.


DETAILED DESCRIPTION OF ILLUSTRATIVE EMBODIMENTS

The making and using of the present exemplary embodiments are discussed in detail below. It should be appreciated, however, that the present invention provides many applicable inventive concepts that can be embodied in a wide variety of specific contexts. The specific embodiments discussed are merely illustrative of specific ways to make and use the invention, and do not limit the scope of the invention.


The present invention will be described with respect to exemplary embodiments in a specific context, namely, a controller for a power converter. While the principles of the present invention will be described in the environment of a controller for a power factor correction (“PFC”)/resonant inductor-inductor-capacitor (“LLC”) power converter, any application that may benefit from a controller such as a power amplifier or a motor controller is well within the broad scope of the present invention.


Referring initially to FIG. 1, illustrated is a block diagram of an embodiment of a power converter including a controller 110 constructed according to the principles of the present invention. The power converter is coupled to ac mains represented by the ac power source providing an input voltage Vin. The power converter includes a power train 105 that is controlled by the controller 110. The controller 110 generally measures an operating characteristic of the power converter such as its output voltage Vout and controls a duty cycle D of a power switch therein in response to the measured operating characteristic to regulate the characteristic. The power train 105 may include multiple power stages to provide a regulated output voltage Vout or other output characteristic to a load. The power train 105 of the power converter includes a plurality of power switches coupled to a magnetic device to provide the power conversion function.


Turning now to FIG. 2, illustrated is a schematic diagram of a portion of power converter including an exemplary power train (e.g., a PFC stage 201) employing a boost topology (e.g., a PFC boost stage) constructed according to the principles of the present invention. The PFC stage 201 of the power converter receives an input voltage Vin (e.g., an unregulated ac input voltage) from a source of electrical power such as ac mains at an input thereof and provides a regulated DC bus voltage (also referred to as a bus voltage) Vbus. In keeping with the principles of a boost topology, the bus voltage Vbus is generally higher than the input voltage Vin such that a switching operation thereof can regulate the bus voltage Vbus. A main power switch S1, (e.g., an n-channel metal-oxide semiconductor (“NMOS”) “active” switch) is enabled to conduct by a gate drive signal GD for a primary interval and couples the input voltage Vin through a bridge rectifier 203 to a boost inductor Lboost. During a primary interval D of a switching cycle, an inductor current iin increases and flows through the boost inductor Lboost to local circuit ground. The boost inductor Lboost is generally formed with a single-layer winding to reduce the proximity effect to increase the efficiency of the power converter.


The duty cycle for the PFC stage 201 depends in steady state on the ratio of the input voltage and the bus voltage Vin, Vbus, respectively, according to the equation:






D
=

1
-


Vin
Vbus

.







During a complementary interval 1-D, the main power switch S1 is transitioned to a non-conducting state and an auxiliary power switch (e.g., the diode D1) conducts. In an alternative circuit arrangement, the auxiliary power switch may include a second active switch that is controlled to conduct by a complementary gate drive signal. The auxiliary power switch D1 provides a path to maintain a continuity of the inductor current iin, flowing through the boost inductor Lboost. During the complementary interval 1-D, the inductor current iin flowing through the boost inductor Lboost decreases, and may become zero and remain zero for a period of time resulting in a “discontinuous conduction mode” of operation.


During the complementary interval 1-D, the inductor current iin flowing through the boost inductor Lboost flows through the diode D1 (i.e., the auxiliary power switch) into a filter capacitor C. In general, the duty cycle of the main power switch S1 (and the complementary duty cycle of the auxiliary power switch D1) may be adjusted to maintain a regulation of the bus voltage Vbus of the PFC stage 201. Those skilled in the art understand that conduction periods for the main and auxiliary power switches S1, D1 may be separated by a small time interval by the use of “snubber” circuit elements (not shown) or by control circuit timing to avoid cross conduction current therebetween, and beneficially to reduce the switching losses associated with the power converter. Circuit and control techniques to avoid cross-conduction currents between the main and auxiliary power switches S1, D1 are well understood in the art and will not be described further in the interest of brevity. The boost inductor Lboost is generally formed with a single-layer winding to reduce power loss associated with the proximity effect.


Turning now to FIG. 3, illustrated is a circuit diagram of an embodiment of a power converter formed with a PFC stage (such as the PFC stage 201 of FIG. 2) coupled to a LLC stage 320 (e.g., a half-bridge LLC isolated resonant buck stage) constructed according to the principles of the present invention. The PFC stage 201 and the LLC stage 320 can be employed to construct an “ac adapter” to provide a dc output voltage Vout (e.g., 19.5 volts) to a notebook computer from an ac mains source (represented by input voltage Vin).


As mentioned above, two control processes are often employed to control the output voltage Vout of a power converter formed with a PFC stage 201 followed by the LLC stage 320. One process controls the bus voltage Vbus of the PFC stage 201 to control the output voltage Vout, and the other process controls the switching frequency (also designated switching frequency fs) of the LLC stage 320 to control the output voltage Vout. The bus voltage Vbus produced by the PFC stage 201 is controlled in a slower response feedback loop in response to a load coupled to an output of the LLC stage 320. The LLC stage 320 is operated at a fixed switching frequency fs that is selected to augment the power conversion efficiency thereof. The LLC stage 320 is operated continuously in an ideal transformer state with the bus voltage Vbus produced by the PFC stage 320 controlled to compensate an IR (current times resistance) drop in the LLC stage 320. Usually the variation of the bus voltage Vbus produced by the PFC stage 201 is of the order of a few tens of volts.


Using switching frequency to control the LLC stage 320, the PFC stage 201 produces a constant dc bus voltage Vbus, but the LLC stage 320 is operated with a switching frequency that is controlled with a fast response control loop (i.e., a control loop with a high crossover frequency) in response to variations in a load coupled to an output of the power converter. Altering the switching frequency of the LLC stage 320 generally causes the LLC stage 320 to operate at a non-efficient switching frequency.


A hybrid control approach is provided wherein the bus voltage Vbus produced by the PFC stage 201 is controlled with a slower response control loop (i.e., a control loop with a low crossover frequency) to handle the average load power. The switching frequency of the LLC stage 320 is controlled with a fast response feedback loop to handle load transients and ac mains dropout events. Controlling the PFC stage 201 to control the output voltage Vout leads to several design issues. First, the bus voltage Vbus generally exhibits poor transient response due to a low PFC control-loop crossover frequency. Second, there is a substantial ripple voltage (e.g., a 100-120 hertz ripple voltage) on the bus voltage Vbus that supplies the LLC stage 320 that appears on the output thereof.


As introduced herein, the switching frequency of the LLC stage 320 is controlled with a fast response control loop to attenuate the effect of the ripple voltage produced by the PFC stage 201 that ordinarily appears on the output of the LLC stage 320. In addition, the transformer/stage gain of the LLC stage 320 is employed with a fast response control loop in a frequency region between 1/(2π·sqrt((Lm+Lk)·Cr)) and 1/(2π·sqrt(Lk·Cr)) to accommodate large load step changes and ac mains input voltage Vin dropout events. The bus voltage Vbus of the PFC stage 201 is controlled in response to slow changes in the load to enable the LLC stage 320 to operate ideally at or near its resonant frequency, at which point its power conversion efficiency is generally best. By operating the LLC stage 320 most of the time at or near its resonant frequency but allowing the switching frequency to change in response to transients, improved load step response, reduced output voltage Vout ripple, and higher power conversion efficiency can be obtained.


The primary inductance of the transformer T1 is the leakage inductance Lk plus the magnetizing inductance Lm, both inductances referenced to the primary winding of the transformer T1. The resonant capacitor is Cr. The resonant capacitor Cr can be split into two capacitors coupled in a series circuit, one end of the series circuit coupled to ground and the other end coupled to the bus voltage Vbus. A series circuit arrangement can be employed to reduce inrush current at startup. The ideal switching frequency for fs is fo=1/(2π·sqrt(Lk·Cr)), which is normally the high-efficiency operating point (e.g., 50 kilohertz (“kHz”)). The low switching frequency at which inefficient capacitive switching starts is fmin=1/(2·sqrt(Lp·Cr)). It is generally desired to operate at switching frequencies greater than the minimum switching frequency fmin, and even avoid switching frequencies that approach the same.


A controller 325 has an input for the bus voltage Vbus and an input for the output voltage Vout of the power converter from a feedback circuit including an optocoupler 350. A voltage controlled oscillator (“VCO”) 336 controls the switching frequency fs of the LLC stage 320 as illustrated and described hereinbelow with reference to FIGS. 7 and 8. Thus, the PFC stage 201 and the LLC stage 320 are jointly controlled in voltage and frequency domains. As described further hereinbelow, the operation of the controller 325 is tested from time to time so that a burst mode can be entered at light loads.


As illustrated in FIG. 3, the input voltage Vin is coupled to electromagnetic interference (“EMI”) filter 310, the output of which is coupled to bridge rectifier 203 to produce a rectified voltage Vrect. The PFC stage 201 produces the bus voltage Vbus that is coupled to the input of the LLC stage 320 to produce the output voltage Vout, filtered by an output filter capacitor Cout of the power converter. In an alternative embodiment, the LLC stage 320 may be formed with a full-bridge topology. The output voltage Vout is sensed with an error amplifier 340 coupled to a resistor divider formed with first and second resistors Rsense1, Rsense2. The output signal from the error amplifier 340 is coupled to the optocoupler 350, which produces an output voltage error signal (also referred to as an “error signal”) δV. The output voltage error signal δV and the bus voltage Vbus are coupled to a PFC controller 330 and/or a LLC controller 333 (hereinafter described in more detail below with respect to FIG. 7) of the controller 325. The controller 325 jointly controls the bus voltage Vbus produced by the PFC stage 201 and the switching frequency fs of the LLC stage 320 to regulate the output voltage Vout while maintaining the switching frequency fs (most of the time) at the high-efficiency operating point of the LLC stage 320.


In operation, a zero-to-full load step change in a load coupled to the output voltage Vout can, for example, cause the bus voltage Vbus to sag from 370 volts down to 290 volts due to the inherently low crossover frequency of the controller 325. By dropping the switching frequency fs of the LLC stage 320 from 50 kHz to 25 kHz with a fast response control loop, the increased voltage gain of the LLC stage 320, which can be 1.3 to 1 or higher, can be used to substantially compensate for the sag in the bus voltage Vbus. As the bus voltage Vbus recovers to about 390 volts to compensate for the IR drop in the LLC stage 320, the switching frequency fs thereof returns to 50 kHz.


The same principle can be applied to a holdup event when the ac mains voltage (the input voltage Vin) drops out. The residual energy stored in the filter capacitor C of the PFC stage 201 can be employed to maintain regulation of the output voltage Vout while the bus voltage Vbus sags from 390 volts to 280 volts. Again, the frequency-dependent voltage gain of the LLC stage 320 is used in response to a fast response control loop to regulate the output voltage Vout of the power converter. The response of the LLC stage 320 can thereby be employed to reduce the size of the filter capacitor C of the PFC stage 201 or to increase the ride-through time of the power converter for ac input voltage (the input voltage Vin) sags. Nonlinear feedback is employed for control loop compensation as described further hereinbelow.


As described in more detail below, a burst mode control signal is derived by the controller 325. When the burst mode control signal is high, the controller 325 is enabled to operate. Conversely, when the burst mode control signal is low, the controller 325 is disabled. The burst mode control signal can be used to enable a burst mode of operation for the power converter. The PFC controller 330 provides a gate drive signal for the main power switch S1 of the PFC stage 201 during the primary and complementary duty cycles D, 1-D of a switching cycle and the LLC controller 333 provides gate drive signals for the main and auxiliary power switches M1, M2 of the LLC stage 320 during the primary and complementary intervals D, 1-D of a switching cycle. The PFC controller 330 also employs a voltage Vrect to control a low frequency current waveform from the bridge rectifier 203. A gate drive signal designated GDM2 represents the gate drive signal to the auxiliary power switch M2 during the complementary interval 1-D for the LLC stage 320 that will employed in the circuit illustrated in FIG. 12.


Turning now to FIGS. 4-6, illustrated are graphical representations of exemplary operating characteristics of a power converter according to the principles of the present invention. FIG. 4 illustrates a voltage transfer characteristic of an LLC stage of a power converter. The output voltage Vout of the LLC stage (and power converter) at a particular bus voltage Vbus (such as 400 volts) from a PFC stage depends in a nonlinear way on the switching frequency fs of the LLC stage. As the bus voltage Vbus is reduced, the output voltage Vout is approximately proportionately reduced if the switching frequency fs is not altered. The result is that the switching frequency fs can be varied to control the output voltage Vout as the bus voltage Vbus varies. The effect of changing the switching frequency fs on the output voltage Vout, however, is nonlinear. The resonant frequency fres represents the resonant frequency of the LLC stage.


Turning now to FIG. 5, illustrated is a graphical representation of a correction factor G that is an inverse function to the frequency-dependent curves illustrated in FIG. 4. A frequency-dependent curve as illustrated in FIG. 4 multiplied by the correction factor G produces straight lines for a frequency-dependent characteristic of the voltage transfer characteristic of the LLC stage. The result of multiplication by the correction factor G is illustrated in FIG. 6, such as a straight line 610 for the bus voltage Vbus equal to 400 volts. In an embodiment, the correction factor G is approximated by a broken line correction factor (such as the five-segment broken line correction factor) G′ illustrated in FIG. 5.


Turning now to FIG. 7, illustrated is a diagram of an embodiment of a power converter formed with a PFC stage (such as the PFC stage 201 of FIG. 2) coupled to a LLC stage (such as LLC stage 320 of FIG. 3) constructed according to the principles of the present invention. The power converter receives an input voltage and provides a rectified voltage Vrect (via a bridge rectifier), which is converted by the PFC stage 201 and LLC stage 320 into an output voltage Vout. The output voltage Vout is sensed with the resistor divider formed with first and second resistors Rsense1, Rsense2, and the sensed output voltage is coupled to an inverting input of an operational amplifier 345 of an error amplifier 340. The error amplifier 340 includes a resistor capacitor network 360 in its feedback path to produce an output voltage error signal (also referred to as an “error signal”) δV.


Greater feedback loop stability is achieved by employing a nonlinear function subsystem 335 in the feedback loop to control the switching frequency fs of the LLC stage 320, to compensate for the frequency-dependent response thereof. In accordance with the nonlinear subsystem 335, a correction factor G is approximated in the form of a broken line correction factor (e.g., a five-segment broken line correction factor G′), which is applied to the output voltage error signal δV to produce a corrected error signal δV_cor. It should be understood that an optocoupler (such as optocoupler 350 illustrated in FIG. 3) may cooperate with the error amplifier 340 to produce the output voltage error signal δV. In an embodiment, a five-segment broken line correction factor G′ is employed in the nonlinear function subsystem 335 to reduce nonlinear feedback effects produced by the LLC stage 320. The five-segment broken line correction factor G′ may be more general referred to as a broken line correction factor. The corrected error signal δV_cor is coupled to the input of a voltage controlled oscillator (“VCO”) 336 that controls the switching frequency fs of the LLC stage 320. The nonlinear function subsystem 335 and the voltage controlled oscillator 336 form at least a portion of a LLC controller 333 (see, also, FIG. 3).


The switching frequency fs is also coupled to a PFC controller 330 that produces a gate drive signal GD for the main power switch S1 of the PFC stage 201 (see FIG. 3). The PFC controller 330 senses the bus voltage Vbus of the PFC stage 201. The PFC controller 330 controls the bus voltage Vbus in a slower response control loop to maintain an average value of the switching frequency fs near the ideal switching frequency fo=1/(2π·sqrt(Lk·Cr)) to maintain high power conversion efficiency of the LLC stage 320.


In a further aspect, the PFC controller 330 briefly elevates the bus voltage Vbus from time to time (e.g., by 6 or 7 volts for 20 milliseconds) to generate an error in the error signal δV, or correspondingly in the corrected error signal δV_cor, to detect light-load operation so that a burst mode of operation can be entered. Burst-mode operation at light loads produces a significant improvement in power conversion efficiency in accordance with a burst mode controller 370 as described in more detail below. The bus voltage Vbus can be elevated by the PFC controller 330 by briefly elevating a reference voltage therein that is employed in conjunction with an error amplifier to regulate the bus voltage Vbus. As described hereinbelow with reference to FIG. 8, a bus voltage reference Vbus_ref coupled to an input of an error amplifier 332 is briefly elevated to enable detection of light-load operation. A burst mode is entered when the error signal δV or the corrected error signal δV_cor crosses a threshold level.


In operation at light load, the bus voltage Vbus is reduced to a low value due to reduce losses in the LLC stage 320. When the bus voltage Vbus is elevated for a short period of time, the induced change (e.g., reduction) in the error signal δV is used to determine whether to enter a burst mode. A higher bus voltage Vbus reduces the switching frequency of the LLC stage 320. A raised bus voltage Vbus and light load cause the error signal δV to go down sufficiently, which is detected to enter the burst mode. The burst mode is exited when the output voltage Vout drifts down to a threshold level, as indicated by elevation of the error signal δV. In a burst mode of operation, the switching actions of the PFC stage 201 and the LLC stage 320 are both shut down (e.g., the alternating characteristic of the duty cycle D for the gate drive signals to control the respective power switches is terminated).


Turning now to FIG. 8, illustrated is a diagram of an embodiment of a power converter formed with a PFC stage (such as the PFC stage 201 of FIG. 2) coupled to a LLC stage (such as LLC stage 320 of FIG. 3) and a controller (including portions of the controller 325 of FIG. 7) constructed according to the principles of the present invention. The PFC controller 330 includes an error amplifier (“E/A”) 331 with one input, preferably an inverting input, coupled to the switching frequency fs produced by the voltage controlled oscillator (“VCO”) 336. The other input of the error amplifier 331, preferably a non-inverting input, is coupled to a frequency reference fs_ref that is a desired switching frequency for the LLC stage 320. In an embodiment, the desired switching frequency (akin to the ideal switching frequency) is fo=1/(2π·sqrt(Lk·Cr)). The error amplifier 331 produces a bus voltage reference Vbus_ref that is employed by an error amplifier (“E/A”) 332 in a slower response control loop to regulate the bus voltage Vbus produced by the PFC stage 201. The bus voltage reference Vbus_ref is representative of a desired voltage level for the bus voltage Vbus that provides a high power-conversion efficiency for the power converter. In this manner, the controller 325 regulates the bus voltage Vbus produced by the PFC stage 201 to produce an average switching frequency fs for the LLC stage 320 that results in a high power conversion efficiency therefor. The error amplifier 340 is retained to regulate the output voltage Vout of the power converter with a fast response control loop to enable the power converter to tightly regulate the output voltage Vout with a reduced level of ripple voltage that otherwise would be produced by a ripple voltage on the bus voltage Vbus of the PFC stage 201.


Thus a controller for a power converter has been introduced herein. In one embodiment, the controller includes a LLC controller configured to receive an error signal from an error amplifier to control a switching frequency of an LLC stage (e.g., a LLC resonant buck stage) of the power converter to regulate an output voltage thereof. The controller also includes a PFC controller configured to control a bus voltage produced by a PFC stage (e.g., a PFC boost stage) of the power converter and provided to the LLC stage so that an average switching frequency thereof is substantially maintained at a desired switching frequency (e.g., substantially equal to a resonant frequency of the LLC stage). The control loop associated with the LLC stage may have a faster response than a control loop associated with the PFC stage. The LLC controller may include a nonlinear function subsystem configured to apply a correction factor (e.g., approximated by a broken line correction factor) to the error signal to produce a corrected error signal. The LLC controller may include a voltage controlled oscillator configured to receive the corrected error signal to control the switching frequency of the LLC stage.


The PFC controller is configured to elevate the bus voltage to generate an error in the error signal to detect light-load operation of the power converter. The error amplifier is coupled to a resistor divider configured to sense the output voltage and provide a sensed output voltage to an operational amplifier of the error amplifier to produce the error signal. The PFC stage may include at least one error amplifier configured to control the bus voltage as a function of the switching frequency of the LLC stage and the desired switching frequency. The controller may also include a burst mode controller configured to cause the power converter to enter a burst mode of operation under a light load and/or when the error signal crosses a burst threshold level. The controller may also be coupled to a resistor divider configured to sense the output voltage, and first and second sense switches, coupled to the resistor divider, configured to reduce a power dissipation when the power converter enters a burst mode of operation.


Turning now to FIG. 9, illustrated is a schematic drawing of an embodiment of a burst mode controller (such as burst mode controller 370 of FIGS. 7 and 8) configured to manage a burst mode of operation for a power converter in accordance with the principles of the present invention. The length of the time (or time interval or window) during which operation of the controller 325 is disabled (e.g., the controller not outputting PFC stage or LLC stage gate drive signals) can be used as a reasonably accurate indicator for determining output power. The time interval can be used to determine a burst mode exit to prepare for a possible transient load step that may follow. The off time of the controller 325 is measured using a voltage produced across a ramp voltage timing capacitor Cramp.


The burst mode controller 370 is coupled to the error signal δV produced by the error amplifier 340 to set the burst mode control signal Fon and the voltage elevate signal Fves. The error signal δV is related to and provides an indicator of the output voltage Vout of the power converter. When the burst mode control signal Fon is set high, switching action of the PFC stage 201 and the LLC stage 320 of the power converter are enabled. Conversely, when the burst mode control signal Fon is low, the switching action of the PFC stage 201 and the LLC stage 320 of the power converter are disabled. The voltage elevate signal Fves is employed to briefly raise the regulated output voltage Vout of the power converter so that low load power can be detected to enable entry into a burst mode of operation.


The burst mode controller 370 is formed with a first comparator 920 with a non-inverting input coupled to the error signal δV and an inverting input coupled to a high burst threshold level Vburst_high (a second burst threshold level) and a second comparator 930 with an inverting input coupled to the error signal δV and a non-inverting input coupled to a low burst threshold level Vburst_low (a first burst threshold level). The outputs of comparators 920, 930 are coupled to ones of “set” and “reset” inputs of first and second set-reset flip-flops 940, 970. The “Q” output of the first set-reset flip-flop 940 sets the burst mode control signal Fon. The comparators 920, 930 and the first set-reset flip-flop 940 form at least a portion of a burst mode initiate circuit of the burst mode controller 370.


A current source 950 produces a current to charge the ramp voltage timing capacitor Cramp, a capacitor voltage Vcap of which is coupled to a non-inverting input of a third comparator 960. An inverting input of the third comparator 960 is coupled to capacitor voltage threshold V_cap_thresh. The burst mode control signal Fon produced by the first set-reset flip-flop 940 is also coupled to the gate of a ramp switch (e.g., an n-channel MOSFET) Qramp. When the burst mode control signal Fon is high, the ramp switch Qramp discharges ramp voltage timing capacitor Cramp. The output signal 990 of the third comparator 960 is coupled to the set input of the second set-reset flip-flop 970. The set input of second set-reset flip-flop 970 is also coupled through an AND gate 995 to a timer 980. The timer 980 periodically sets the voltage elevate signal Fves high, for example, every 40 milliseconds. When the voltage elevate signal Fves is high, the reference voltage Vref for the operational amplifier 345 of the error amplifier 340 (see FIGS. 3, 7 and 8) is raised by a small amount (e.g., by an amount sufficient to raise the output voltage Vout by a couple of volts) so that the second comparator 930 can detect a high voltage level for the output voltage Vout. The current source 950, the third comparator 960, the second set-reset flip-flop 970, the ramp voltage timing capacitor Cramp and the ramp switch Qramp form at least a portion of a voltage elevate circuit of the burst mode controller 370. As will be described in more detail below, the current source 950, the ramp voltage timing capacitor Cramp and the comparator 960 detect if the time window for the burst mode of operation expires.


The burst mode controller 370 operates with the following logic. If the error signal δV is greater than the high burst threshold level Vburst_high, then the burst mode control signal Fon is set high. The error signal δV then rises to a high level when the output voltage Vout is reduced. If the error signal δV is less than the low burst threshold level Vburst_low, then the burst mode control signal Fon is set low to enter a burst mode of operation. Conversely, the error signal δV is reduced to a low level when the output voltage Vout increases to a high level, which sets the output of the second comparator 930 high. Thus, the error signal δV provides an indicator for the output voltage Vout on the primary side of an isolation barrier (see transformer T1 of FIG. 3) that is generally formed between the primary and secondary sides of a power converter, and error signal δV accordingly controls the burst mode control signal Fon. If the error signal δV is less than the low burst threshold level Vburst_low, the voltage elevate signal Fves is also set low.


The voltage elevate signal Fves is set high if the capacitor voltage Vcap across the ramp voltage timing capacitor Cramp is greater than the capacitor voltage threshold V_cap_thresh. A high voltage across ramp voltage timing capacitor Cramp is taken as an indication of a low-power load coupled to the output of the power converter, thereby enabling entry into a burst mode of operation. The voltage elevate signal Fves is also set high in response to a signal from the timer 980, which provides a mechanism for testing the load coupled to the output of the power converter.


Turning now to FIG. 10, illustrated is a graphical representation of exemplary waveforms produced within a power converter in accordance with the principles of the present invention. With continuing reference to the proceeding FIGUREs, initially the power converter is assumed to be providing substantial power to a load coupled to its output, as indicated by periodic switching of the duty cycle D for the gate drive signals for the switches of the power train of the power converter. The periodic switching of the switches of the power converter is enabled by the burst mode control signal Fon. The error signal δV assumes a value between the high burst threshold level Vburst_high and the low burst threshold level Vburst_low indicating that the output voltage Vout is within an acceptable voltage regulation range. The capacitor voltage Vcap remains at zero volts because the burst mode control signal Fon is high, which turns on the ramp switch Qramp, shorting the ramp voltage timing capacitor Cramp.


At time T0, the timer 980 sets the output of the second set-reset flip-flop 970 high, which sets the voltage elevate signal Fves high and raises the reference voltage Vref for the operational amplifier 345 of the error amplifier 340 (see FIGS. 7, 8 and 11). The voltage elevate signal Fves initiates a test for a light load coupled to the output of the power converter. In response thereto, the output voltage Vout of the power converter is raised, which eventually reduces the error signal δV to the low burst threshold level Vburst_low at time T1. This causes the burst mode control signal Fon to be reset low (to enter the burst mode of operation), and the voltage elevate signal Fves also to be set low. The switching action of the power converter is stopped, as indicated by the absence of the duty cycle D. The capacitor voltage Vcap ramps up and, if the load on the power converter is sufficiently low, it crosses the capacitor voltage threshold V_cap_thresh at time T2, which causes the voltage elevate signal Fves and the burst mode control signal Fon to be set high. Thus, the time window for the burst mode of operation is between time T1 and time T2. Thus, the voltage elevate signal Fves is set high to raise the output voltage Vout of the power converter as the time window expires before the error signal δV crosses the high burst threshold level Vburst_high. Alternatively, the timer 980 can cause the voltage elevate signal Fves to be set high and, correspondingly, the reference voltage Vref to be elevated. Thus, the output voltage Vout of the power converter is sensed indirectly using the error signal δV and an output power of the power converter is estimated employing a slope of the output voltage Vout, which is measured by the time interval to control the burst mode operation.


An indicator of the slope of the output voltage Vout is determined by an interval of time (time window) sensed by the third comparator 960 illustrated in FIG. 9. If the capacitor voltage Vcap does not cross the capacitor voltage threshold V_cap_thresh between time T1 and time T2 (e.g., when the burst mode control signal Fon is low indicating that the output voltage Vout is within an acceptable voltage regulation range), then the slope of the output voltage Vout is sufficiently small to signal entry into a burst mode of operation. Accordingly, a load on the power converter is estimated to be less than a predetermined low threshold level. For example, if the power converter is rated to supply a 60 watt load, the predetermined low threshold level may be five watts and the burst mode controller 370 determines through the operation described above that the output power is less than five watts. In other words, the burst mode controller 370 estimates the output power in a conjunction with the slope of the output voltage Vout.


Conversely, if the capacitor voltage Vcap does cross the capacitor voltage threshold V_cap_thresh before time T2 (e.g., when the burst mode control signal Fon is low indicating that the output voltage Vout is below an acceptable voltage regulation range), then the slope of the output voltage Vout is sufficiently high to signal exit from the burst mode of operation (i.e., to enable the switching action of the power converter). Accordingly, a load on the power converter is estimated to be greater than a predetermined low threshold level. For example, if the power converter is rated to supply a 60 watt load, the predetermined low threshold level may be five watts and the burst mode controller 370 determines through the operation described above that the output power is greater than five watts. In other words, the burst mode controller 370 estimates the output power in a conjunction with the slope of the output voltage Vout.


The result is that a sufficiently high output voltage Vout sets the burst mode control signal Fon low, and a low output voltage Vout sets the burst mode control signal Fon high. The timer 980 periodically sets the voltage elevate signal Fves high, and a sufficiently high capacitor voltage Vcap produced across the ramp voltage timing capacitor Cramp also sets the voltage elevate signal Fves high. Thus, the time interval of the burst mode of operation for the power converter is employed to determine a slope of the output voltage Vout to make an estimate of the output power of the power converter. A low-power load coupled to an output of the power converter is detected to enable the power converter to enter the burst mode of operation. The capacitor voltage Vcap crossing the capacitor voltage threshold V_cap_thresh is used as an indicator of a low slope of the output voltage Vout of the power converter and, correspondingly, a low-power load.


Turning now to FIG. 11, illustrated is a diagram of an embodiment of a resistor divider formed with first and second resistors Rsense1, Rsense2 coupled to an output voltage Vout of a power converter (see, e.g., the power converters of FIGS. 3, 7 and 8) constructed according to the principles of the present invention. The resistor divider is now coupled to the non-inverting input of the operational amplifier 345 through a first sense switch (e.g., an n-channel MOSFET) Qsense2, and to ground through a second sense switch (e.g., an n-channel MOSFET) Qsense1. The burst mode control signal Fon opens the first and second sense switches Qsense1, Qsense2 to reduce power dissipation when the power converter is in a burst mode of operation as indicated by the burst mode control signal Fon being low.


The reference voltage Vref that is employed to regulate power converter output voltage Vout is coupled through a resistor R1 to a voltage source V1, and through another resistor R2 to the voltage elevate signal Fves. In this manner, the voltage elevate signal Fves elevates the reference voltage Vref when the voltage elevate signal Fves is set high.


Turning now to FIG. 12, illustrated is a diagram of an embodiment of a portion of a voltage elevate circuit to produce a slope signal Vslope indicative of a slope of the output voltage Vout of a power converter (see, e.g., the power converters of FIGS. 3, 7 and 8) employable in a burst mode controller 370 constructed according to the principles of the present invention. The portion of a voltage elevate circuit of FIG. 12 is an alternative to the current source 950, the third comparator 960, the ramp switch Qramp and the ramp voltage timing capacitor Cramp of the burst mode controller 370 illustrated in FIG. 9. The portion of a voltage elevate circuit of FIG. 12 senses the output voltage Vout in lieu of the error signal δV of indicated in FIG. 9. A resistor Rrip is coupled to the output voltage Vout through a capacitor Crip to sense a derivative of the output voltage Vout. The derivative is filtered with a low-pass filter formed with filter resistor Rfilter coupled to a filter capacitor Cfilter to produce a filtered slope signal Vslope. In an embodiment, a time constant of the circuit formed with the resistor Rrip coupled to the capacitor Crip is a multiple of a switching period of the power converter (e.g., 10 times the switching period). In an embodiment, a time constant of the low-pass filter formed with the filter resistor Rfilter coupled to the filter capacitor Cfilter is a submultiple of a switching period of the power converter (e.g., 0.01 times the switching period).


During a complementary interval 1-D, the slope signal Vslope can be employed to estimate an output or load power coupled to an output of the power converter. The slope signal Vslope is coupled to a non-inverting input of a comparator 1220, and an inverting input of the comparator 1220 is coupled to a slope reference voltage Vref1. The output signal 1230 of the comparator 1220 is coupled to an input of an AND gate 1240, and another input of the AND gate 1240 is coupled to the gate drive signal GDM2 representing the gate drive signal to the auxiliary power switch M2 during the complementary interval 1-D for the LLC stage 320 (see FIG. 3). The output of the AND gate 1240 corresponds to the output signal 990 that is employed with the second set-reset flip-flop 970 that was illustrated and described with reference to FIG. 9 to set the voltage elevate signal Fves.


A voltage slope dVout/dt of the output voltage Vout is related to the load power by the equations:










Vout



t


=


-
Vslope


Rrip
·
Crip



,
and






Pload
=


Iload
·
Vout

=



-
Vout

·
Cout
·



Vout



t



=

-



Vout
·
Vslope
·
Cout


Rrip
·
Crip


.









where Cout is output filter capacitor of the power converter as illustrated in FIG. 3.


The output signal 1230 can be employed to estimate a load power coupled to an output of the power converter and, if the load power is sufficiently light, the output signal 1230 can be employed as another mechanism to enable entry into a burst mode of operation (e.g., by setting the voltage elevate signal Fves high). The output signal 1230 can be employed with other switched-mode power converters to estimate a load power, and is not limited to enable entry of a power converter formed with a PFC stage 201 and an LLC stage 320 into a burst mode of operation.


As mentioned above with respect to the burst mode of operation, power loss of a power converter is dependent on gate drive signals for the power switches and other continuing power losses that generally do not vary substantially with the load. These power losses are commonly addressed at very low power levels by using the burst mode of operation wherein the controller (such as controller 325 of the preceding FIGUREs) is disabled for a period of time (e.g., one second) followed by a short period of high power operation (e.g., 10 milliseconds (“ms”)) to provide a low average output power with low dissipation. The controller as described herein can employ the time interval of the burst mode of operation to estimate an output (or load) power of the power converter.


Thus, a burst mode controller for use with a power converter has been introduced herein. In one embodiment, the burst mode controller includes a burst mode initiate circuit configured to initiate a burst mode of operation when a signal representing an output voltage of the power converter crosses a first burst threshold level. The burst mode controller also includes a voltage elevate circuit configured to provide a voltage elevate signal to raise the output voltage if a time window expires before the signal representing the output voltage of the power converter crosses a second burst threshold level. The burst mode initiate circuit is also configured to terminate the burst mode of operation when the signal representing the output voltage of the power converter crosses the second burst threshold level.


The burst mode initiate circuit may include a comparator configured to compare the signal representing the output voltage of the power converter to the first burst threshold level. The burst mode initiate circuit may also include a flip-flop configured to set a burst mode control signal to initiate the burst mode of operation when the signal representing the output voltage of the power converter crosses the first burst threshold level. The voltage elevate circuit may include a current source, a ramp voltage timing capacitor and a comparator configured to detect if the time window expires. The voltage elevate circuit may also include a flip-flop configured to set the voltage elevate signal to raise the output voltage. The voltage elevate signal is configured to raise a reference voltage for an error amplifier configured to control the output voltage of the power converter. The burst mode initiate circuit is configured to disable the voltage elevate signal when the signal representing the output voltage of the power converter crosses the first burst threshold level. The burst mode controller may also include a timer configured to initiate (and/or periodically initiate) the voltage elevate signal to raise the output voltage.


The controller or related method may be implemented as hardware (embodied in one or more chips including an integrated circuit such as an application specific integrated circuit), or may be implemented as software or firmware for execution by a processor (e.g., a digital signal processor) in accordance with memory. In particular, in the case of firmware or software, the exemplary embodiment can be provided as a computer program product including a computer readable medium embodying computer program code (i.e., software or firmware) thereon for execution by the processor.


Program or code segments making up the various embodiments may be stored in the computer readable medium. For instance, a computer program product including a program code stored in a computer readable medium (e.g., a non-transitory computer readable medium) may form various embodiments. The “computer readable medium” may include any medium that can store or transfer information. Examples of the computer readable medium include an electronic circuit, a semiconductor memory device, a read only memory (“ROM”), a flash memory, an erasable ROM (“EROM”), a floppy diskette, a compact disk (“CD”)-ROM, and the like.


Those skilled in the art should understand that the previously described embodiments of a power converter including a magnetics structure including U-shaped core pieces positioned on a rectilinear core piece and related methods of forming the same are submitted for illustrative purposes only. While a magnetics structure has been described in the environment of a power converter, the magnetics structure may also be applied to other systems such as, without limitation, a power amplifier and a motor controller.


For a better understanding of power converters, see “Modern DC-to-DC Power Switch-mode Power Converter Circuits,” by Rudolph P. Severns and Gordon Bloom, Van Nostrand Reinhold Company, New York, N.Y. (1985) and “Principles of Power Electronics,” by J. G. Kassakian, M. F. Schlecht and G. C. Verghese, Addison-Wesley (1991). The aforementioned references are incorporated herein by reference in their entirety.


Also, although the present invention and its advantages have been described in detail, it should be understood that various changes, substitutions and alterations can be made herein without departing from the spirit and scope of the invention as defined by the appended claims. For example, many of the processes discussed above can be implemented in different methodologies and replaced by other processes, or a combination thereof.


Moreover, the scope of the present application is not intended to be limited to the particular embodiments of the process, machine, manufacture, composition of matter, means, methods, and steps described in the specification. As one of ordinary skill in the art will readily appreciate from the disclosure of the present invention, processes, machines, manufacture, compositions of matter, means, methods, or steps, presently existing or later to be developed, that perform substantially the same function or achieve substantially the same result as the corresponding embodiments described herein may be utilized according to the present invention. Accordingly, the appended claims are intended to include within their scope such processes, machines, manufacture, compositions of matter, means, methods, or steps.

Claims
  • 1. A controller for use with a power converter, comprising: an inductor-inductor-capacitor (LLC) controller configured to receive an error signal from an error amplifier and apply a correction factor dependent on a switching frequency of an LLC stage of said power converter to produce a corrected error signal to control said switching frequency of said LLC stage to regulate an output voltage thereof; anda power factor correction (PFC) controller also configured to regulate said output voltage by controlling a bus voltage produced by a PFC stage of said power converter and provided to said LLC stage so that an average switching frequency thereof is substantially maintained at a fixed switching frequency.
  • 2. The controller as recited in claim 1 wherein said PFC stage is a PFC boost stage and said LLC stage is a LLC resonant buck stage.
  • 3. The controller as recited in claim 1 wherein a control loop associated with said LLC stage has a faster response than a control loop associated with said PFC stage.
  • 4. The controller as recited in claim 1 wherein said LLC controller comprises a nonlinear function subsystem configured to apply said correction factor to said error signal to produce said corrected error signal.
  • 5. The controller as recited in claim 1 wherein said correction factor comprises a plurality of straight-line segments dependent on said switching frequency of said LLC stage.
  • 6. The controller as recited in claim 1 wherein said LLC controller comprises a voltage controlled oscillator configured to receive said corrected error signal to control said switching frequency of said LLC stage.
  • 7. The controller as recited in claim 1 wherein said PFC controller is configured to elevate said bus voltage to generate an error in said error signal to detect light-load operation of said power converter.
  • 8. The controller as recited in claim 1 wherein said error amplifier is coupled to a resistor divider configured to sense said output voltage and provide a sensed output voltage to an operational amplifier of said error amplifier to produce said error signal.
  • 9. The controller as recited in claim 1 wherein said PFC stage comprises at least one error amplifier configured to control said bus voltage as a function of said switching frequency of said LLC stage and said fixed switching frequency.
  • 10. The controller as recited in claim 1 further comprising a burst mode controller configured to cause said power converter to enter a burst mode of operation under a light load.
  • 11. The controller as recited in claim 1 further comprising a burst mode controller configured to cause said power converter to enter a burst mode of operation when said error signal crosses a burst threshold level.
  • 12. The controller as recited in claim 1 wherein a resistor divider is configured to sense said output voltage, and first and second sense switches, coupled to said resistor divider, are configured to reduce a power dissipation when said power converter enters a burst mode of operation.
  • 13. The controller as recited in claim 1 wherein said fixed switching frequency is substantially equal to a resonant frequency of said LLC stage.
  • 14. A method of operating a power converter, comprising: receiving an error signal from an error amplifier and applying a correction factor dependent on a switching frequency of an inductor-inductor-capacitor (LLC) stage of said power converter to produce a corrected error signal to control said switching frequency of said LLC stage to regulate an output voltage thereof; andcontrolling a bus voltage produced by a power factor correction (PFC) stage of said power converter to further regulate said output voltage and provided to said LLC stage so that an average switching frequency thereof is substantially maintained at a fixed switching frequency.
  • 15. The method as recited in claim 14 wherein a control loop associated with said LLC stage has a faster response than a control loop associated with said PFC stage.
  • 16. The method as recited in claim 14 wherein said correction factor comprises a plurality of straight-line segments dependent on said switching frequency of said LLC stage.
  • 17. The method as recited in claim 14 further comprising elevating said bus voltage to generate an error in said error signal to detect light-load operation of said power converter.
  • 18. The method as recited in claim 14 further comprising causing said power converter to enter a burst mode of operation under a light load.
  • 19. The method as recited in claim 14 further comprising causing said power converter to enter a burst mode of operation when said error signal crosses a burst threshold level.
  • 20. The method as recited in claim 14 further comprising sensing said output voltage, and reducing a power dissipation when said power converter enters a burst mode of operation.
US Referenced Citations (496)
Number Name Date Kind
1376978 Stoekle May 1921 A
2387943 Putman Oct 1945 A
2473662 Pohm Jun 1949 A
3007060 Guenther Oct 1961 A
3346798 Dinger Oct 1967 A
3358210 Grossoehme Dec 1967 A
3433998 Woelber Mar 1969 A
3484562 Kronfeld Dec 1969 A
3553620 Cielo et al. Jan 1971 A
3622868 Todt Nov 1971 A
3681679 Chung Aug 1972 A
3708742 Gunn Jan 1973 A
3708744 Stephens et al. Jan 1973 A
4011498 Hamstra Mar 1977 A
4019122 Ryan Apr 1977 A
4075547 Wroblewski Feb 1978 A
4202031 Hesler et al. May 1980 A
4257087 Cuk Mar 1981 A
4274071 Pfarre Jun 1981 A
4327348 Hirayama Apr 1982 A
4471423 Hase Sep 1984 A
4499481 Greene Feb 1985 A
4570174 Huang et al. Feb 1986 A
4577268 Easter et al. Mar 1986 A
4581691 Hock Apr 1986 A
4613841 Roberts Sep 1986 A
4636823 Margalit et al. Jan 1987 A
4660136 Montorefano Apr 1987 A
4672245 Majumdar et al. Jun 1987 A
4770667 Evans et al. Sep 1988 A
4770668 Skoultchi et al. Sep 1988 A
4780653 Lee et al. Oct 1988 A
4785387 Lee et al. Nov 1988 A
4799138 Chahabadi et al. Jan 1989 A
4803609 Gillett et al. Feb 1989 A
4823249 Garcia, II Apr 1989 A
4837496 Erdi Jun 1989 A
4866367 Ridley et al. Sep 1989 A
4876638 Silva et al. Oct 1989 A
4887061 Matsumura Dec 1989 A
4899271 Seiersen Feb 1990 A
4903089 Hollis et al. Feb 1990 A
4922400 Cook May 1990 A
4962354 Visser et al. Oct 1990 A
4964028 Spataro Oct 1990 A
4999759 Cavagnolo et al. Mar 1991 A
5003277 Sokai et al. Mar 1991 A
5014178 Balakrishnan May 1991 A
5027264 DeDoncker et al. Jun 1991 A
5055991 Carroll Oct 1991 A
5068756 Morris et al. Nov 1991 A
5106778 Hollis et al. Apr 1992 A
5126714 Johnson Jun 1992 A
5132888 Lo et al. Jul 1992 A
5134771 Lee et al. Aug 1992 A
5172309 DeDoncker et al. Dec 1992 A
5177460 Dhyanchand et al. Jan 1993 A
5182535 Dhyanchand Jan 1993 A
5204809 Andresen Apr 1993 A
5206621 Yerman Apr 1993 A
5208739 Sturgeon May 1993 A
5223449 Morris et al. Jun 1993 A
5225971 Spreen Jul 1993 A
5231037 Yuan et al. Jul 1993 A
5244829 Kim Sep 1993 A
5262930 Hua et al. Nov 1993 A
5291382 Cohen Mar 1994 A
5303138 Rozman Apr 1994 A
5305191 Loftus, Jr. Apr 1994 A
5335163 Seiersen Aug 1994 A
5336985 McKenzie Aug 1994 A
5342795 Yuan et al. Aug 1994 A
5343140 Gegner Aug 1994 A
5353001 Meinel et al. Oct 1994 A
5369042 Morris et al. Nov 1994 A
5374887 Drobnik Dec 1994 A
5399968 Sheppard et al. Mar 1995 A
5407842 Morris et al. Apr 1995 A
5453923 Scalais et al. Sep 1995 A
5459652 Faulk Oct 1995 A
5468661 Yuan et al. Nov 1995 A
5477175 Tisinger et al. Dec 1995 A
5508903 Alexndrov Apr 1996 A
5523673 Ratliff et al. Jun 1996 A
5539630 Pietkiewicz et al. Jul 1996 A
5554561 Plumton Sep 1996 A
5555494 Morris Sep 1996 A
5581224 Yamaguchi Dec 1996 A
5610085 Yuan et al. Mar 1997 A
5624860 Plumton et al. Apr 1997 A
5636116 Milavec et al. Jun 1997 A
5661642 Shimashita Aug 1997 A
5663876 Newton et al. Sep 1997 A
5671131 Brown Sep 1997 A
5700703 Huang et al. Dec 1997 A
5712189 Plumton et al. Jan 1998 A
5719544 Vinciarelli et al. Feb 1998 A
5734564 Brkovic Mar 1998 A
5736842 Jovanovic Apr 1998 A
5742491 Bowman et al. Apr 1998 A
5747842 Plumton May 1998 A
5756375 Celii et al. May 1998 A
5760671 Lahr et al. Jun 1998 A
5783984 Keuneke Jul 1998 A
5784266 Chen Jul 1998 A
5804943 Kollman et al. Sep 1998 A
5815386 Gordon Sep 1998 A
5864110 Moriguchi et al. Jan 1999 A
5870296 Schaffer Feb 1999 A
5870299 Rozman Feb 1999 A
5886508 Jutras Mar 1999 A
5889298 Plumton et al. Mar 1999 A
5889660 Taranowski et al. Mar 1999 A
5900822 Sand et al. May 1999 A
5907481 Svardsjo May 1999 A
5909110 Yuan et al. Jun 1999 A
5910665 Plumton et al. Jun 1999 A
5920475 Boylan et al. Jul 1999 A
5929665 Ichikawa et al. Jul 1999 A
5933338 Wallace Aug 1999 A
5940287 Brkovic Aug 1999 A
5946207 Schoofs Aug 1999 A
5956245 Rozman Sep 1999 A
5956578 Weitzel et al. Sep 1999 A
5959850 Lim Sep 1999 A
5977853 Ooi et al. Nov 1999 A
5982640 Naveed Nov 1999 A
5999066 Saito et al. Dec 1999 A
5999429 Brown Dec 1999 A
6003139 McKenzie Dec 1999 A
6008519 Yuan et al. Dec 1999 A
6011703 Boylan et al. Jan 2000 A
6038154 Boylan et al. Mar 2000 A
6046664 Weller et al. Apr 2000 A
6060943 Jansen May 2000 A
6067237 Nguyen May 2000 A
6069798 Liu May 2000 A
6069799 Bowman et al. May 2000 A
6078510 Spampinato et al. Jun 2000 A
6084792 Chen et al. Jul 2000 A
6094038 Lethellier Jul 2000 A
6097046 Plumton Aug 2000 A
6125046 Jang et al. Sep 2000 A
6144187 Bryson Nov 2000 A
6147886 Wittenbreder Nov 2000 A
6156611 Lan et al. Dec 2000 A
6160374 Hayes et al. Dec 2000 A
6160721 Kossives et al. Dec 2000 A
6163466 Davila, Jr. et al. Dec 2000 A
6181231 Bartilson Jan 2001 B1
6188586 Farrington et al. Feb 2001 B1
6191964 Boylan et al. Feb 2001 B1
6208535 Parks Mar 2001 B1
6212084 Turner Apr 2001 B1
6215290 Yang et al. Apr 2001 B1
6218891 Lotfi et al. Apr 2001 B1
6229197 Plumton et al. May 2001 B1
6262564 Kanamori Jul 2001 B1
6288501 Nakamura et al. Sep 2001 B1
6288920 Jacobs et al. Sep 2001 B1
6295217 Yang et al. Sep 2001 B1
6304460 Cuk Oct 2001 B1
6309918 Huang et al. Oct 2001 B1
6317021 Jansen Nov 2001 B1
6317337 Yasumura Nov 2001 B1
6320490 Clayton Nov 2001 B1
6323090 Zommer Nov 2001 B1
6325035 Codina et al. Dec 2001 B1
6344986 Jain et al. Feb 2002 B1
6348848 Herbert Feb 2002 B1
6351396 Jacobs Feb 2002 B1
6356462 Jang et al. Mar 2002 B1
6362986 Schultz et al. Mar 2002 B1
6373727 Hedenskog et al. Apr 2002 B1
6373734 Martinelli Apr 2002 B1
6380836 Matsumoto et al. Apr 2002 B2
6388898 Fan et al. May 2002 B1
6392902 Jang et al. May 2002 B1
6396718 Ng et al. May 2002 B1
6400579 Cuk Jun 2002 B2
6414578 Jitaru Jul 2002 B1
6418039 Lentini et al. Jul 2002 B2
6438009 Assow Aug 2002 B2
6445598 Yamada Sep 2002 B1
6462965 Uesono Oct 2002 B1
6466461 Mao et al. Oct 2002 B2
6469564 Jansen Oct 2002 B1
6477065 Parks Nov 2002 B2
6483724 Blair et al. Nov 2002 B1
6489754 Blom Dec 2002 B2
6498367 Chang et al. Dec 2002 B1
6501193 Krugly Dec 2002 B1
6504321 Giannopoulos et al. Jan 2003 B2
6512352 Qian Jan 2003 B2
6525603 Morgan Feb 2003 B1
6539299 Chatfield et al. Mar 2003 B2
6545453 Glinkowski et al. Apr 2003 B2
6548992 Alcantar et al. Apr 2003 B1
6549436 Sun Apr 2003 B1
6552917 Bourdillon Apr 2003 B1
6559689 Clark May 2003 B1
6563725 Carsten May 2003 B2
6570268 Perry et al. May 2003 B1
6580627 Toshio Jun 2003 B2
6597588 Matsumoto Jul 2003 B2
6608768 Sula Aug 2003 B2
6611132 Nakagawa et al. Aug 2003 B2
6614206 Wong et al. Sep 2003 B1
6636025 Irissou Oct 2003 B1
6654259 Koshita et al. Nov 2003 B2
6661276 Chang Dec 2003 B1
6668296 Dougherty et al. Dec 2003 B1
6674658 Mao et al. Jan 2004 B2
6683797 Zaitsu et al. Jan 2004 B2
6687137 Yasumura Feb 2004 B1
6696910 Nuytkens et al. Feb 2004 B2
6731486 Holt et al. May 2004 B2
6741099 Krugly May 2004 B1
6751106 Zhang et al. Jun 2004 B2
6753723 Zhang Jun 2004 B2
6765810 Perry Jul 2004 B2
6775159 Webb et al. Aug 2004 B2
6784644 Xu et al. Aug 2004 B2
6804125 Brkovic Oct 2004 B2
6813170 Yang Nov 2004 B2
6831847 Perry Dec 2004 B2
6839247 Yang Jan 2005 B1
6856149 Yang Feb 2005 B2
6862194 Yang et al. Mar 2005 B2
6867678 Yang Mar 2005 B2
6867986 Amei Mar 2005 B2
6873237 Chandrasekaran et al. Mar 2005 B2
6882548 Jacobs et al. Apr 2005 B1
6906934 Yang et al. Jun 2005 B2
6943553 Zimmerman Sep 2005 B2
6944033 Xu et al. Sep 2005 B1
6977824 Yang et al. Dec 2005 B1
6980077 Chandrasekaran et al. Dec 2005 B1
6982887 Batarseh et al. Jan 2006 B2
7009486 Goeke et al. Mar 2006 B1
7012414 Mehrotra et al. Mar 2006 B1
7016204 Yang et al. Mar 2006 B2
7023679 Tomiyama Apr 2006 B2
7026807 Anderson et al. Apr 2006 B2
7034586 Mehas et al. Apr 2006 B2
7034647 Yan et al. Apr 2006 B2
7046523 Sun et al. May 2006 B2
7061358 Yang Jun 2006 B1
7072189 Kim et al. Jul 2006 B2
7075799 Qu Jul 2006 B2
7076360 Ma Jul 2006 B1
7095638 Uusitalo Aug 2006 B2
7099163 Ying Aug 2006 B1
7136293 Petkov et al. Nov 2006 B2
7148669 Maksimovic et al. Dec 2006 B2
7170268 Kim Jan 2007 B2
7176662 Chandrasekaran Feb 2007 B2
7209024 Nakahori Apr 2007 B2
7269038 Shekhawat et al. Sep 2007 B2
7280026 Chandrasekaran et al. Oct 2007 B2
7285807 Brar et al. Oct 2007 B2
7298118 Chandrasekaran Nov 2007 B2
7301785 Yasumura Nov 2007 B2
7312686 Bruno Dec 2007 B2
7321283 Mehrotra et al. Jan 2008 B2
7332992 Iwai Feb 2008 B2
7339208 Brar et al. Mar 2008 B2
7339801 Yasumura Mar 2008 B2
7348612 Sriram et al. Mar 2008 B2
7362592 Yang et al. Apr 2008 B2
7362593 Yang et al. Apr 2008 B2
7375607 Lee et al. May 2008 B2
7375994 Andreycak May 2008 B2
7385375 Rozman Jun 2008 B2
7386404 Cargonja et al. Jun 2008 B2
7393247 Yu et al. Jul 2008 B1
7417875 Chandrasekaran et al. Aug 2008 B2
7427910 Mehrotra et al. Sep 2008 B2
7431862 Mehrotra et al. Oct 2008 B2
7439556 Brar et al. Oct 2008 B2
7439557 Brar et al. Oct 2008 B2
7446512 Nishihara et al. Nov 2008 B2
7447049 Garner et al. Nov 2008 B2
7453709 Park et al. Nov 2008 B2
7462891 Brar et al. Dec 2008 B2
7468649 Chandrasekaran Dec 2008 B2
7471523 Yang Dec 2008 B2
7471527 Chen Dec 2008 B2
7489225 Dadafshar Feb 2009 B2
7499295 Indika de Silva et al. Mar 2009 B2
7541640 Brar et al. Jun 2009 B2
7554430 Mehrotra et al. Jun 2009 B2
7558082 Jitaru Jul 2009 B2
7567445 Coulson et al. Jul 2009 B2
7583555 Kang et al. Sep 2009 B2
7626370 Mei et al. Dec 2009 B1
7630219 Lee Dec 2009 B2
7633369 Chandrasekaran et al. Dec 2009 B2
7663183 Brar et al. Feb 2010 B2
7667986 Artusi et al. Feb 2010 B2
7675758 Artusi et al. Mar 2010 B2
7675759 Artusi et al. Mar 2010 B2
7675764 Chandrasekaran et al. Mar 2010 B2
7715217 Manabe et al. May 2010 B2
7733679 Luger et al. Jun 2010 B2
7746041 Xu et al. Jun 2010 B2
7778050 Yamashita Aug 2010 B2
7778051 Yang Aug 2010 B2
7787264 Yang et al. Aug 2010 B2
7791903 Zhang et al. Sep 2010 B2
7795849 Sohma Sep 2010 B2
7813101 Morikawa Oct 2010 B2
7847535 Meynard et al. Dec 2010 B2
7876191 Chandrasekaran et al. Jan 2011 B2
7889517 Artusi et al. Feb 2011 B2
7889521 Hsu Feb 2011 B2
7906941 Jayaraman et al. Mar 2011 B2
7940035 Yang May 2011 B2
7965528 Yang et al. Jun 2011 B2
7983063 Lu et al. Jul 2011 B2
8004112 Koga et al. Aug 2011 B2
8125205 Chandrasekaran et al. Feb 2012 B2
8134443 Chandrasekaran et al. Mar 2012 B2
8179699 Tumminaro et al. May 2012 B2
8184456 Jain et al. May 2012 B1
8278889 Tataeishi Oct 2012 B2
8467199 Lee et al. Jun 2013 B2
8488355 Berghegger Jul 2013 B2
8520414 Garrity et al. Aug 2013 B2
8520420 Jungreis et al. Aug 2013 B2
8638578 Zhang Jan 2014 B2
8643222 Brinlee et al. Feb 2014 B2
8767418 Jungreis et al. Jul 2014 B2
8787043 Berghegger Jul 2014 B2
8976549 Berghegger Mar 2015 B2
20010020886 Matsumoto et al. Sep 2001 A1
20010024373 Cuk Sep 2001 A1
20020057080 Telefus et al. May 2002 A1
20020101741 Brkovic Aug 2002 A1
20020110005 Mao et al. Aug 2002 A1
20020114172 Webb et al. Aug 2002 A1
20020145888 Yoshinaga et al. Oct 2002 A1
20020167385 Ackermann Nov 2002 A1
20030026115 Miyazaki Feb 2003 A1
20030030422 Sula Feb 2003 A1
20030039129 Miyazaki et al. Feb 2003 A1
20030063483 Carsten Apr 2003 A1
20030063484 Carsten Apr 2003 A1
20030076079 Alcantar et al. Apr 2003 A1
20030086279 Bourdillon May 2003 A1
20030197585 Chandrasekaran et al. Oct 2003 A1
20030198067 Sun et al. Oct 2003 A1
20040032754 Yang Feb 2004 A1
20040034555 Dismukes et al. Feb 2004 A1
20040064621 Dougherty et al. Apr 2004 A1
20040148047 Dismukes et al. Jul 2004 A1
20040156220 Kim et al. Aug 2004 A1
20040174147 Vinciarelli Sep 2004 A1
20040196672 Amei Oct 2004 A1
20040200631 Chen Oct 2004 A1
20040217794 Strysko Nov 2004 A1
20040257095 Yang Dec 2004 A1
20050024179 Chandrasekaran et al. Feb 2005 A1
20050046404 Uusitalo Mar 2005 A1
20050052224 Yang et al. Mar 2005 A1
20050052886 Yang et al. Mar 2005 A1
20050245658 Mehrotra et al. Nov 2005 A1
20050254266 Jitaru Nov 2005 A1
20050254268 Reinhard et al. Nov 2005 A1
20050281058 Batarseh et al. Dec 2005 A1
20050286270 Petkov et al. Dec 2005 A1
20060006975 Jitaru et al. Jan 2006 A1
20060006976 Bruno Jan 2006 A1
20060007713 Brown Jan 2006 A1
20060018136 Takahashi Jan 2006 A1
20060038549 Mehrotra et al. Feb 2006 A1
20060038649 Mehrotra et al. Feb 2006 A1
20060038650 Mehrotra et al. Feb 2006 A1
20060091430 Sriram et al. May 2006 A1
20060109698 Qu May 2006 A1
20060187684 Chandrasekaran et al. Aug 2006 A1
20060197510 Chandrasekaran Sep 2006 A1
20060198173 Rozman Sep 2006 A1
20060226477 Brar et al. Oct 2006 A1
20060226478 Brar et al. Oct 2006 A1
20060227576 Yasumura Oct 2006 A1
20060237968 Chandrasekaran Oct 2006 A1
20060255360 Brar et al. Nov 2006 A1
20060271315 Cargonja et al. Nov 2006 A1
20060286865 Chou et al. Dec 2006 A1
20070007945 King et al. Jan 2007 A1
20070010298 Chang Jan 2007 A1
20070019356 Morikawa Jan 2007 A1
20070025124 Hansson Feb 2007 A1
20070030717 Luger et al. Feb 2007 A1
20070041224 Moyse et al. Feb 2007 A1
20070045765 Brar et al. Mar 2007 A1
20070058402 Shekhawat et al. Mar 2007 A1
20070069286 Brar et al. Mar 2007 A1
20070114979 Chandrasekaran May 2007 A1
20070120953 Koga et al. May 2007 A1
20070121351 Zhang et al. May 2007 A1
20070139984 Lo Jun 2007 A1
20070159857 Lee Jul 2007 A1
20070206523 Huynh et al. Sep 2007 A1
20070222463 Qahouq et al. Sep 2007 A1
20070241721 Weinstein et al. Oct 2007 A1
20070274106 Weinstein et al. Nov 2007 A1
20070274107 Garner et al. Nov 2007 A1
20070296028 Brar et al. Dec 2007 A1
20070296383 Xu Dec 2007 A1
20070298559 Brar et al. Dec 2007 A1
20070298564 Brar et al. Dec 2007 A1
20080012423 Mimran Jan 2008 A1
20080012802 Lin Jan 2008 A1
20080024094 Nishihara et al. Jan 2008 A1
20080024259 Chandrasekaran et al. Jan 2008 A1
20080030178 Leonard et al. Feb 2008 A1
20080031021 Ros et al. Feb 2008 A1
20080037294 Indika de Silva et al. Feb 2008 A1
20080054874 Chandrasekaran et al. Mar 2008 A1
20080061746 Kobayashi et al. Mar 2008 A1
20080080219 Sohma Apr 2008 A1
20080111657 Mehrotra et al. May 2008 A1
20080130321 Artusi et al. Jun 2008 A1
20080130322 Artusi et al. Jun 2008 A1
20080137381 Beasley Jun 2008 A1
20080150666 Chandrasekaran et al. Jun 2008 A1
20080175026 Yang Jul 2008 A1
20080198638 Reinberger et al. Aug 2008 A1
20080205104 Lev et al. Aug 2008 A1
20080224812 Chandrasekaran Sep 2008 A1
20080232141 Artusi et al. Sep 2008 A1
20080298106 Tateishi Dec 2008 A1
20080310190 Chandrasekaran et al. Dec 2008 A1
20080315852 Jayaraman et al. Dec 2008 A1
20080316779 Jayaraman et al. Dec 2008 A1
20090002054 Tsunoda et al. Jan 2009 A1
20090027926 Yang et al. Jan 2009 A1
20090037768 Adams Feb 2009 A1
20090046486 Lu et al. Feb 2009 A1
20090072626 Watanabe et al. Mar 2009 A1
20090097290 Chandrasekaran Apr 2009 A1
20090109711 Hsu Apr 2009 A1
20090257250 Liu Oct 2009 A1
20090273957 Feldtkeller Nov 2009 A1
20090284994 Lin et al. Nov 2009 A1
20090289557 Itoh et al. Nov 2009 A1
20090290385 Jungreis et al. Nov 2009 A1
20090310388 Yang Dec 2009 A1
20090315530 Baranwal Dec 2009 A1
20100020578 Ryu et al. Jan 2010 A1
20100054000 Huynh Mar 2010 A1
20100066336 Araki et al. Mar 2010 A1
20100091522 Chandrasekaran et al. Apr 2010 A1
20100123486 Berghegger May 2010 A1
20100149838 Artusi et al. Jun 2010 A1
20100164400 Adragna Jul 2010 A1
20100164443 Tumminaro et al. Jul 2010 A1
20100182806 Garrity et al. Jul 2010 A1
20100188876 Garrity et al. Jul 2010 A1
20100202165 Zheng et al. Aug 2010 A1
20100213989 Nakatake Aug 2010 A1
20100219802 Lin et al. Sep 2010 A1
20100254168 Chandrasekaran Oct 2010 A1
20100321958 Brinlee et al. Dec 2010 A1
20100321964 Brinlee et al. Dec 2010 A1
20110025289 Wang et al. Feb 2011 A1
20110038179 Zhang Feb 2011 A1
20110062926 Qiu et al. Mar 2011 A1
20110080102 Ge et al. Apr 2011 A1
20110089917 Chen et al. Apr 2011 A1
20110095730 Strijker et al. Apr 2011 A1
20110134664 Berghegger Jun 2011 A1
20110149607 Jungreis et al. Jun 2011 A1
20110157936 Huynh Jun 2011 A1
20110182089 Berghegger Jul 2011 A1
20110239008 Lam et al. Sep 2011 A1
20110241738 Tamaoka Oct 2011 A1
20110267856 Pansier Nov 2011 A1
20110291591 Shiu et al. Dec 2011 A1
20110305047 Jungreis et al. Dec 2011 A1
20120020119 Tang et al. Jan 2012 A1
20120243271 Berghegger Sep 2012 A1
20120250378 Kok et al. Oct 2012 A1
20120294048 Brinlee Nov 2012 A1
20130003430 Reddy Jan 2013 A1
20130134894 Kuang May 2013 A1
20130229829 Zhang et al. Sep 2013 A1
20130250627 Herfurth Sep 2013 A1
20140091718 Brinlee Apr 2014 A1
20140091720 Brinlee Apr 2014 A1
20140254215 Brinlee et al. Sep 2014 A1
20140301111 Jungreis et al. Oct 2014 A1
20150098254 Brinlee et al. Apr 2015 A1
20150138857 Ye et al. May 2015 A1
Foreign Referenced Citations (25)
Number Date Country
2904469 May 2007 CN
101106850 Jan 2008 CN
101123395 Feb 2008 CN
101141099 Mar 2008 CN
101202509 Jun 2008 CN
201252294 Jun 2009 CN
101834541 Sep 2010 CN
102412727 Apr 2012 CN
102695325 Sep 2012 CN
101489335 Dec 2012 CN
10112820 Oct 2002 DE
10310361 Sep 2004 DE
10352509 Jun 2005 DE
102103104899 Nov 2014 DE
0665634 Jan 1994 EP
57097361 Jun 1982 JP
3215911 Sep 1991 JP
200068132 Mar 2000 JP
2008283818 Nov 2008 JP
WO8700991 Feb 1987 WO
03088463 Oct 2003 WO
WO2010083511 Jul 2010 WO
WO2010083514 Jul 2010 WO
WO2010114914 Oct 2010 WO
WO2011116225 Sep 2011 WO
Non-Patent Literature Citations (61)
Entry
“AN100: Application Note using Lx100 Family of High Performance N-Ch JFET Transistors,” AN100.Rev 1.01, Sep. 2003, 5 pp., Lovoltech, Inc., Santa Clara, CA.
“AN101A: Gate Drive Network for a Power JFET,” AN101A.Rev 1.2, Nov. 2003, 2 pp., Lovoltech, Inc., Santa Clara, CA.
“AN108: Applications Note: How to Use Power JFETs® and MOSFETs Interchangeably in Low-Side Applications,” Rev. 1.0.1, Feb. 14, 2005, 4 pp., Lovoltech, Inc., Santa Clara, CA.
Ajram, S., et al., “Ultrahigh Frequency DC-to-DC Converters Using GaAs Power Switches,” IEEE Transactions on Power Electronics, Sep. 2001, pp. 594-602, vol. 16, No. 5, IEEE, Los Alamitos, CA.
Balogh, L., et al., “Power-Factor Correction with Interleaved Boost Converters in Continuous-Inductor-Current Mode,” IEEE Proceedings of APEC, pp. 168-174, 1993, IEEE, Los Alamitos, CA.
Biernacki, J., et al., “Radio Frequency DC-DC Flyback Converter,” Proceedings of the 43rd IEEE Midwest Symposium on Circuits and Systems, Aug. 8-11, 2000, pp. 94-97, vol. 1, IEEE, Los Alamitos, CA.
Chen, W., et al., “Design of High Efficiency, Low Profile, Low Voltage Converter with Integrated Magnetics,” Proceedings of 1997 IEEE Applied Power Electronics Conference (APEC '97), 1997, pp. 911-917, IEEE, Los Alamitos, CA.
Chen, W., et al., “Integrated Planar Inductor Scheme for Multi-module Interleaved Quasi-Square-Wave (QSW) DC/DC Converter,” 30th Annual IEEE Power Electronics Specialists Conference (PESC '99), 1999, pp. 759-762, vol. 2, IEEE, Los Alamitos, CA.
Chhawchharia, P., et al., “On the Reduction of Component Count in Switched Capacitor DC/DC Convertors,” Hong Kong Polytechnic University, IEEE, 1997, Hung Hom, Kowloon, Hong King, pp. 1395-1401.
Curtis, K., “Advances in Microcontroller Peripherals Facilitate Current-Mode for Digital Power Supplies,” Digital Power Forum '06, 4 pp., Sep. 2006, Darnell Group, Richardson, TX.
Eisenbeiser, K., et al., “Manufacturable GaAs VFET for Power Switching Applications,” IEEE Electron Device Letters, Apr. 2000, pp. 144-145, vol. 21, No. 4, IEEE.
Freescale Semiconductor, “Implementing a Digital AC/DC Switched-Mode Power Supply using a 56F8300 Digital Signal Controller,” Application Note AN3115, Aug. 2005, 24 pp., Chandler, AZ.
Freescale Semiconductor, “56F8323 Evaluation Module User Manual, 56F8300 16-bit Digital Signal Controllers”, MC56F8323EVMUM, Rev. 2, Jul. 2005 (72 pages).
Freescale Semiconductor, “56F8323/56F8123 Data Sheet Preliminary Technical Data, 56F8300 16-bit Digital Signal Controllers,” MC56F8323 Rev. 17, Apr. 2007 (140 pages).
Freescale Semiconductor, “Design of a Digital Ac/Dc SMPS using the 56F8323 Device, Designer Reference Manual, 56800E 16-bit Digital Signal Controllers”, DRM074, Rev. 0, Aug. 2005 (108 pages).
Gaye, M., et al., “A 50-100MHz 5V to -5V, 1W Cuk Converter Using Gallium Arsenide Power Switches,” ISCAS 2000—IEEE International Symposium on Circuits and Systems, May 28-31, 2000, pp. I-264-1-267, vol. 1, IEEE, Geneva, Switzerland.
Goldberg, A.F., et al., “Finite-Element Analysis of Copper Loss in 1-10-MHz Transformers,” IEEE Transactions on Power Electronics, Apr. 1989, pp. 157-167, vol. 4, No. 2, IEEE, Los Alamitos, CA.
Goldberg, A.F., et al., “Issues Related to 1-10-MHz Transformer Design,” IEEE Transactions on Power Electronics, Jan. 1989, pp. 113-123, vol. 4, No. 1, IEEE, Los Alamitos, CA.
Jitaru, I.D., et al., “Quasi-Integrated Magnetic an Avenue for Higher Power Density and Efficiency in Power Converters,” 12th Annual Applied Power Electronics Conference and Exposition, Feb. 23-27, 1997, pp. 395-402, vol. 1, IEEE, Los Alamitos, CA.
Kollman, R., et al., “10 MHz PWM Converters with GaAs VFETs,” IEEE 11th Annual Applied Power Electronics Conference and Exposition, Mar. 1996, pp. 264-269, vol. 1, IEEE.
Kuwabara, K., et al., “Switched-Capacitor DC—DC Converters,” Fujitsu Limited, IEEE, 1988, Kawasaki, Japan, pp. 213-218.
Lee, P.-W., et al., “Steady-State Analysis of an Interleaved Boost Converter with Coupled Inductors,” IEEE Transactions on Industrial Electronics, Aug. 2000, pp. 787-795, vol. 47, No. 4, IEEE, Los Alamitos, CA.
Lenk, R., “Introduction to the Tapped Buck Converter,” PCIM 2000, HFPC 2000 Proceedings, Oct. 2000, pp. 155-166.
Liu, W., “Fundamentals of III-V Devices: HBTs, MESFETs, and FIFETs/HEMTs,” §5-5: Modulation Doping, 1999, pp. 323-330, John Wiley & Sons, New York, NY.
Maksimovic, D., et al., “Switching Converters with Wide DC Conversion Range,” IEEE Transactions on Power Electronics, Jan. 1991, pp. 151-157, vol. 6, No. 1, IEEE, Los Alamitos, CA.
Maxim, Application Note 725, www.maxim-ic.com/an725, Maxim Integrated Products, Nov. 29, 2001, 8 pages.
Middlebrook, R.D., “Transformerless DC-to-DC Converters with Large Conversion Ratios,” IEEE Transactions on Power Electronics, Oct. 1988, pp. 484-488, vol. 3, No. 4, IEEE, Los Alamitos, CA.
Miwa, B.A., et al., “High Efficiency Power Factor Correction Using Interleaving Techniques,” IEEE Proceedings of APEC, 1992, pp. 557-568, IEEE, Los Alamitos, CA.
National Semiconductor Corporation, “LM2665 Switched Capacitor Voltage Converter,” www.national.com, Sep. 2005, 9 pages.
National Semiconductor Corporation, “LMC7660 Switched Capacitor Voltage Converter,” www.national.com, Apr. 1997, 12 pages.
Nguyen, L.D., et al., “Ultra-High-Speed Modulation-Doped Field-Effect Transistors: A Tutorial Review,” Proceedings of the IEEE, Apr. 1992, pp. 494-518, vol. 80, No. 4, IEEE.
Niemela, V.A., et al., “Comparison of GaAs and Silicon Synchronous Rectifiers in a 3.3V Out, 50W DC-DC Converter,” 27th Annual IEEE Power Electronics Specialists Conference, Jun. 1996, pp. 861-867, vol. 1, IEEE.
Ninomiya, T., et al., “Static and Dynamic Analysis of Zero-Voltage-Switched Half-Bridge Converter with PWM Control,” Proceedings of 1991 IEEE Power Electronics Specialists Conference (PESC '91), 1991, pp. 230-237, IEEE, Los Alamitos, CA.
O'Meara, K., “A New Output Rectifier Configuration Optimized for High Frequency Operation,” Proceedings of 1991 High Frequency Power Conversion (HFPC '91) Conference, Jun. 1991, pp. 219-225, Toronto, CA.
Peng, C., et al., “A New Efficient High Frequency Rectifier Circuit,” Proceedings of 1991 High Frequency Power Conversion (HFPC '91) Conference, Jun. 1991, pp. 236-243, Toronto, CA.
Pietkiewicz, A., et al. “Coupled-Inductor Current-Doubler Topology in Phase-Shifted Full-Bridge DC-DC Converter,” 20th International Telecommunications Energy Conference (INTELEC), Oct. 1998, pp. 41-48, IEEE, Los Alamitos, CA.
Plumton, D.L., et al., “A Low On-Resistance High-Current GaAs Power VFET,” IEEE Electron Device Letters, Apr. 1995, pp. 142-144, vol. 16, No. 4, IEEE.
Rajeev, M., “An Input Current Shaper with Boost and Flyback Converter Using Integrated Magnetics,” Power Electronics and Drive Systems, 5th International Conference on Power Electronics and Drive Systems 2003, Nov. 17-20, 2003, pp. 327-331, vol. 1, IEEE, Los Alamitos, CA.
Rico, M., et al., “Static and Dynamic Modeling of Tapped-Inductor DC-to-DC Converters,” 1987, pp. 281-288, IEEE, Los Alamitos, CA.
Severns, R., “Circuit Reinvention in Power Electronics and Identification of Prior Work,” Proceedings of 1997 IEEE Applied Power Electronics Conference (APEC '97), 1997, pp. 3-9, IEEE, Los Alamitos, CA.
Severns, R., “Circuit Reinvention in Power Electronics and Identification of Prior Work,” IEEE Transactions on Power Electronics, Jan. 2001, pp. 1-7, vol. 16, No. 1, IEEE, Los Alamitos, CA.
Sun, J., et al., “Unified Analysis of Half-Bridge Converters with Current-Doubler Rectifier,” Proceedings of 2001 IEEE Applied Power Electronics Conference, 2001, pp. 514-520, IEEE, Los Alamitos, CA.
Sun, J., et al., “An Improved Current-Doubler Rectifier with Integrated Magnetics,” 17th Annual Applied Power Electronics Conference and Exposition (APEC), 2002, pp. 831-837, vol. 2, IEEE, Dallas, TX.
Texas Instruments Incorporated, “LT1054, LT1054Y Switched-Capacitor Voltage Converters With Regulators,” SLVS033C, Feb. 1990—Revised Jul. 1998, 25 pages.
Thaker, M., et al., “Adaptive/Intelligent Control and Power Management Reduce Power Dissipation and Consumption,” Digital Power Forum '06, 11 pp., Sep. 2006, Darnell Group, Richardson, TX.
Vallamkonda, S., “Limitations of Switching Voltage Regulators,” A Thesis in Electrical Engineering, Texas Tech University, May 2004, 89 pages.
Wei, J., et al., “Comparison of Three Topology Candidates for 12V VRM,” IEEE APEC, 2001, pp. 245-251, IEEE, Los Alamitos, CA.
Weitzel, C.E., “RF Power Devices for Wireless Communications,” 2002 IEEE MTT-S CDROM, 2002, pp. 285-288, paper TU4B-1, IEEE, Los Alamitos, CA.
Williams, R., “Modern GaAs Processing Methods,” 1990, pp. 66-67, Artech House, Inc., Norwood, MA.
Wong, P.-L., et al., “Investigating Coupling Inductors in the Interleaving QSW VRM,” 15th Annual Applied Power Electronics Conference and Exposition (APEC 2000), Feb. 2000, pp. 973-978, vol. 2, IEEE, Los Alamitos, CA.
Xu, M., et al., “Voltage Divider and its Application in the Two-stage Power Architecture,” Center for Power Electronics Systems, Virginia Polytechnic Institute and State University, IEEE, 2006, Blacksburg, Virginia, pp. 499-505.
Xu, P., et al., “Design of 48 V Voltage Regulator Modules with a Novel Integrated Magnetics,” IEEE Transactions On Power Electronics, Nov. 2002, pp. 990-998, vol. 17, No. 6, IEEE, Los Alamitos, CA.
Xu, P., et al., “A Family of Novel Interleaved DC/DC Converters for Low-Voltage High-Current Voltage Regulator Module Applications,” IEEE Power Electronics Specialists Conference, Jun. 2001, pp. 1507-1511, IEEE, Los Alamitos, CA.
Xu, P., et al., “A Novel Integrated Current Doubler Rectifier,” IEEE 2000 Applied Power Electronics Conference, Mar. 2000, pp. 735-740, IEEE, Los Alamitos, CA.
Xu, P., et al., “Design and Performance Evaluation of Multi-Channel Interleaved Quasi-Square-Wave Buck Voltage Regulator Module,” HFPC 2000 Proceedings, Oct. 2000, pp. 82-88.
Yan, L., et al., “Integrated Magnetic Full Wave Converter with Flexible Output Inductor,” 17th Annual Applied Power Electronics Conference and Exposition (APEC), 2002, pp. 824-830, vol. 2, IEEE, Dallas, TX.
Yan, L., et al., “Integrated Magnetic Full Wave Converter with Flexible Output Inductor,” IEEE Transactions on Power Electronics, Mar. 2003, pp. 670-678, vol. 18, No. 2, IEEE, Los Alamitos, CA.
Zhou, X., et al., “A High Power Density, High Efficiency and Fast Transient Voltage Regulator Module with a Novel Current Sensing and Current Sharing Technique,” IEEE Applied Power Electronics Conference, Mar. 1999, pp. 289-294, IEEE, Los Alamitos, CA.
Zhou, X., et al., “Investigation of Candidate VRM Topologies for Future Microprocessors,” IEEE Applied Power Electronics Conference, Mar. 1998, pp. 145-150, IEEE, Los Alamitos, CA.
Ridley, R., Designing with the TL431, Switching Power Magazine, Designer Series XV, pp. 1-5, 2005.
Bill Andreycak, Active Clamp and Reset Technique Enhances Forward Converter Performance, Oct. 1994, Texas Instruments, 19 pages.
Related Publications (1)
Number Date Country
20140009978 A1 Jan 2014 US