The present invention is directed, in general, to power electronics and, more specifically, to a controller for a switch and method of operating the same.
A switched-mode power converter (also referred to as a “power converter”) is a power supply or power processing circuit that converts an input voltage waveform into a specified output voltage waveform. DC-DC power converters convert a direct current (“DC”) input voltage into a DC output voltage. Controllers associated with the power converters manage an operation thereof by controlling conduction periods of power switches employed therein. Generally, the controllers are coupled between an input and output of the power converter in a feedback loop configuration (also referred to as a “control loop” or “closed control loop”).
Typically, the controller measures an output characteristic (e.g., an output voltage, an output current, or a combination of an output voltage and an output current) of the power converter, and based thereon modifies a duty cycle of a power switch of the power converter. The duty cycle “D” is a ratio represented by a conduction period of a power switch to a switching period thereof. In other words, the switching period includes the conduction period of the power switch (represented by the duty cycle “D”) and a non-conduction period of the power switch (represented by the complementary duty cycle (“1-D”). Thus, if a power switch conducts for half of the switching period, the duty cycle for the power switch would be 0.5 (or 50 percent).
The switched-mode power converters can be constructed with different types of power switches such as bipolar transistors, metal-oxide semiconductor field-effect transistors (“MOSFETs”) or insulated gate bipolar transistors (“IGBTs”). At low power levels, for example, an output power less than 100 watts (“W”), the MOSFETs and bipolar transistors are most commonly used for power switches. While MOSFETs can work at higher switching frequency, which enables smaller designs, bipolar transistors are available at lower cost. Additionally, the different switches employ different drivers for their respective control terminals. As a result, separate driver integrated circuits are inventoried to accommodate the use of different switches in a design of a circuit (e.g., a power converter) employing the same.
Accordingly, what is needed in the art is a circuit and related method for a switch that enables a driver to be used for different types of switches such as MOSFETs and bipolar transistors that can be adapted to high-volume manufacturing techniques for a power converter or the like employing the same.
These and other problems are generally solved or circumvented, and technical advantages are generally achieved, by advantageous embodiments of the present invention, including a controller for a switch and a method of operating the same. In one embodiment, the controller is configured to measure a voltage of a control terminal of the switch and select a first mode of operation if the voltage of the control terminal is greater than a threshold voltage, and a second mode of operation if the voltage of the control terminal is less than the threshold voltage.
The foregoing has outlined rather broadly the features and technical advantages of the present invention in order that the detailed description of the invention that follows may be better understood. Additional features and advantages of the invention will be described hereinafter, which form the subject of the claims of the invention. It should be appreciated by those skilled in the art that the conception and specific embodiment disclosed may be readily utilized as a basis for modifying or designing other structures or processes for carrying out the same purposes of the present invention. It should also be realized by those skilled in the art that such equivalent constructions do not depart from the spirit and scope of the invention as set forth in the appended claims.
For a more complete understanding of the present invention, reference is now made to the following descriptions taken in conjunction with the accompanying drawings, in which:
Corresponding numerals and symbols in the different figures generally refer to corresponding parts unless otherwise indicated, and may not be redescribed in the interest of brevity after the first instance. The FIGUREs are drawn to illustrate the relevant aspects of exemplary embodiments.
The making and using of the present exemplary embodiments are discussed in detail below. It should be appreciated, however, that the present invention provides many applicable inventive concepts that can be embodied in a wide variety of specific contexts. The specific embodiments discussed are merely illustrative of specific ways to make and use the invention, and do not limit the scope of the invention.
The present invention will be described with respect to exemplary embodiments in a specific context, namely, a controller operable with different types of switches such as a MOSFET or bipolar transistor. While the principles of the present invention will be described in the environment of a power converter, any application that may benefit from the controller as described herein including a power amplifier or a motor controller is well within the broad scope of the present invention.
Turning now to
The power switch Q1 (e.g., a MOSFET) is controlled by a controller (e.g., an application specific integrated circuit (“ASIC”)) 120 that controls the power switch Q1 to be conducting for a duty cycle. The power switch Q1 conducts in response to drive signal such as a gate drive voltage dry produced by the controller 120 with a switching frequency (often designated as “fs”). The duty cycle is controlled (e.g., adjusted) by the controller 120 to regulate an output characteristic of the power converter such as an output voltage Vout, an output current lout, or a combination thereof. A feedback signal FB traverses a feedback path (a portion of which is identified as 130) emanating from a bias winding P2 of the transformer TX1 to enable the controller 120 to control the duty cycle to regulate the output characteristic of the power converter proportional to a bias voltage VP from the bias winding P2. A series circuit arrangement of resistors R14, R23 provides a voltage divider function to scale the voltage produced for the feedback signal FB by the bias winding P2 of the transformer TX1. The bias voltage VP is substantially proportional to a voltage across the secondary winding S1 depending on a turns ratio between the primary winding P1 and the secondary winding S1.
The voltage produced across the winding P2 is rectified by a diode D6 and charges a capacitor C4 to provide an bias voltage VP for the controller 120. A resistor R25 provides a current-limit function to limit a charging current into the capacitor C4. A resistor R8 provides a start-up charge for the capacitor C4. The AC voltage or alternating voltage appearing on the secondary winding S1 of the transformer TX1 is rectified by an auxiliary power switch (e.g., diode D7 or, alternatively, by a synchronous rectifier, not shown), and the DC component of the resulting waveform is coupled to the output through the low-pass output filter including an output filter capacitor C9 to produce the output voltage Vout. A resistor R18 is included in the circuit to ensure that there is still power consumption when a load is disconnected from the output terminals out+, out− of the power converter. This ensures that the switching frequency at no load is high enough to react sufficiently to a change in the load. A current sensor R15 is coupled to the power switch Q1 and provides a voltage that is proportional to a current in the primary switch (Ip≅Ipri, wherein Ipri is a primary current flowing through the primary winding P1 of the transformer TX1) for the controller 120. This voltage is used to determine the duration of the conduction period of the power switch Q1.
During a first portion of the duty cycle, a primary current Ipri (e.g., an inductor current) flowing through the primary winding P1 of the transformer TX1 increases as current flows from the input through the power switch Q1. During a complementary portion of the duty cycle (generally co-existent with a complementary duty cycle 1-D of the power switch Q1), the power switch Q1 is transitioned to a non-conducting state. Residual magnetic energy stored in the transformer TX1 causes conduction of a secondary current Isec through the diode D7 when the power switch Q1 is off. The diode D7, which is coupled to the output filter capacitor C9, provides a path to maintain continuity of a magnetizing current of the transformer TX1. During the complementary portion of the duty cycle, the magnetizing current flowing through the secondary winding S1 of the transformer TX1 decreases. In general, the duty cycle of the power switch Q1 may be controlled (e.g., adjusted) to maintain a regulation of or regulate the output voltage Vout of the power converter.
In order to regulate the output voltage Vout, a value or a scaled value of the feedback signal FB is compared with a reference voltage within the controller 120 to control the duty cycle D. A larger duty cycle implies that the power switch Q1 is closed for a longer fraction of the switching period of the power converter. Thus, the power converter is operable with a switching cycle wherein an input voltage Vin is coupled to the transformer TX1 for a fraction of a switching period by the power switch Q1 controlled by controller 120.
In a switch-mode power converter constructed with a flyback power train, a voltage produced by the bias winding P2 during a flyback portion of a switching cycle can be related to the output voltage Vout by accounting for a turns ratio of the transformer TX1 and voltage drops in diodes and other circuit elements. The voltage produced across the bias winding P2 is employed to produce an estimate of the output voltage Vout, which in turn is used to regulate the same without crossing the isolation boundary of the transformer TX1.
Turning now to
Turning now to
Turning now to
In addition to the drive voltage dry vs. time,
Turning now to
The controller includes a sample and hold circuit SundH that estimates the output voltage by sampling a voltage of a bias winding of a transformer (e.g., the bias winding P2 of the transformer TX1 in
A timing circuit SuHclk provides timing when sampling is being performed. The timing circuit SuHclk uses the output of the timer “Timer” to control the timing when a feedback signal FB (e.g., the feedback signal FB produced by the bias winding P2 of the transformer Tx1 of
In the controller, the longer of the off times calculated by the timing circuit SuHclk and the current control circuit CC_control is taken as controlling for the off time of the drive voltage dry for a switch. In a voltage-control mode, the calculation of the off time is longer in the timing circuit SuHclk. In a constant-current mode, the timing of the current control circuit CC_control is longer. Thus, the comparator circuit Comp, timing circuit SuHclk and the current control circuit CC_control operate to determine the timing of the drive voltage dry for the switch. An overvoltage protection circuit OVP of the controller provides overvoltage protection for the power converter, and transitions the controller to a safe mode (i.e., the drive voltage dry is switched off), when an abnormal condition of the bias voltage VP is detected. The controller also includes a startup circuit (designated “startup”), a switch detector (designated “switch_detector”) and driver (designated “driver”) that will be described in more detail below.
Turning now to
The circuitry 710 provides a level shifting function to set the under-voltage lockout level lower when a bipolar transistor is detected. The circuitry 710 includes comparator U2, inverter U3, 5-volt voltage-reference V1 and resistors R2, R3, R4, R5, R6, R7. A MOSFET frequently requires a higher drive voltage at its gate terminal then the base terminal of a bipolar transistor to completely turn the MOSFET on. Accordingly, the under-voltage lockout level at which the controller is enabled to operate is set higher when a MOSFET is detected. The circuit illustrated in
Turning now to
Inversely, the output Q of latch 2 is left or can be set high to indicate a MOSFET if the drive voltage dry of the driver becomes greater than the threshold level when the pulse-width modulated signal GIN is high. Timing for these operations is controlled by a comparator U1 with 3-volt reference Vref coupled to its inverting input. The output of the comparator U1 is coupled to the “set” input of latch 1, the output of which is coupled to an OR gate U2 to signal when the drive voltage dry is greater than three volts. The output of the OR gate U2 is coupled to a D flip-flop U5. The output of the D flip-flop U5 is coupled to the “reset” input of latch 2. Further timing for these operations is controlled by the pulse-width modulated signal GIN that is coupled through the high-pass network formed with the capacitor C2 and the resistor R2, the output of which is coupled to the “reset” input of latch 1. The pulse-width modulated signal GIN is also coupled to the reset input of the D flip-flop U5.
Turning now to
In operation, when the switch detect signal FET is high, a switch S6 is off and a switch S5 is on. An inverter U2 provides signal inversion to control the switches S5, S6. Accordingly, a current limiter “current_limiter” or the voltage limiter “voltage_limiter” is selected by the switch detect signal FET to control a characteristic of the drive voltage drv. When the controller initiates operation at startup, the switch detect signal FET is set high, thereby representing the first mode of operation (i.e., the driven switch is assumed to be a MOSFET). A switch S4 is switched on when the start signal “start” is high to enable operation of the driver. The switch S4 is configured to connect or disconnect the bias voltage VP from the current limiter current_limiter or the voltage limiter voltage_limiter. A switch S3 is to ensure the drive voltage dry is low when the start signal “start” is low, and a switch S1 pulls the drive voltage dry low when the complement pulse-width modulated signal GinN is high. Thus, the driver produces the drive voltage dry for the switch based on the pulse-width modulated signal Gin.
Turning now to
Turning now to
Turning now to
Thus, a controller for a switch and a method of operating the same has been introduced herein. In one embodiment, the controller is configured to measure a voltage of a control terminal of the switch and select a first mode of operation (e.g., indicating that the switch is a MOSFET) if the voltage of the control terminal is greater than a threshold voltage, and a second mode of operation (e.g., indicating that the switch is a bipolar transistor) if the voltage of the control terminal is less than the threshold voltage. The controller may include a voltage limiter configured to limit a voltage for the control terminal of the switch to a voltage limit during the first mode of operation. The controller may include a current limiter configured to limit a current for the control terminal of the switch to a current limit during the second mode of operation. An under-voltage lockout level of the controller may be set to a higher level during the first mode of operation than during the second mode of operation. The controller may include a timer configured to produce a pulse-width modulated signal. The controller is configured to control a duty cycle of the switch to regulate an output voltage of a power converter. The controller may initiate operation in the first mode of operation at startup.
Those skilled in the art should understand that the previously described embodiments of a switched-capacitor power converter and related methods of operating the same are submitted for illustrative purposes only. While the principles of the present invention have been described in the environment of a power converter, these principles may also be applied to other systems such as, without limitation, a power amplifier or a motor controller. For a better understanding of power converters, see “Modern DC-to-DC Power Switch-mode Power Converter Circuits,” by Rudolph P. Severns and Gordon Bloom, Van Nostrand Reinhold Company, New York, N.Y. (1985) and “Principles of Power Electronics,” by J. G. Kassakian, M. F. Schlecht and G. C. Verghese, Addison-Wesley (1991).
Also, although the present invention and its advantages have been described in detail, it should be understood that various changes, substitutions and alterations can be made herein without departing from the spirit and scope of the invention as defined by the appended claims. For example, many of the processes discussed above can be implemented in different methodologies and replaced by other processes, or a combination thereof.
Moreover, the scope of the present application is not intended to be limited to the particular embodiments of the process, machine, manufacture, composition of matter, means, methods, and steps described in the specification. As one of ordinary skill in the art will readily appreciate from the disclosure of the present invention, processes, machines, manufacture, compositions of matter, means, methods, or steps, presently existing or later to be developed, that perform substantially the same function or achieve substantially the same result as the corresponding embodiments described herein may be utilized according to the present invention. Accordingly, the appended claims are intended to include within their scope such processes, machines, manufacture, compositions of matter, means, methods, or steps.
Number | Name | Date | Kind |
---|---|---|---|
1376978 | Stoekle | May 1921 | A |
3007060 | Guenther | Oct 1961 | A |
3346798 | Dinger | Oct 1967 | A |
3358210 | Grossoehme | Dec 1967 | A |
3433998 | Woelber | Mar 1969 | A |
3484562 | Kronfeld | Dec 1969 | A |
3553620 | Cielo et al. | Jan 1971 | A |
3622868 | Todt | Nov 1971 | A |
3681679 | Chung | Aug 1972 | A |
3708742 | Gunn | Jan 1973 | A |
3708744 | Stephens et al. | Jan 1973 | A |
4011498 | Hamsra | Mar 1977 | A |
4019122 | Ryan | Apr 1977 | A |
4075547 | Wroblewski | Feb 1978 | A |
4202031 | Hesler et al. | May 1980 | A |
4257087 | Cuk | Mar 1981 | A |
4274071 | Pfarre | Jun 1981 | A |
4327348 | Hirayama | Apr 1982 | A |
4471423 | Hase | Sep 1984 | A |
4499481 | Greene | Feb 1985 | A |
4570174 | Huang et al. | Feb 1986 | A |
4577268 | Easter et al. | Mar 1986 | A |
4581691 | Hock | Apr 1986 | A |
4613841 | Roberts | Sep 1986 | A |
4636823 | Margalit et al. | Jan 1987 | A |
4660136 | Montorefano | Apr 1987 | A |
4672245 | Majumdar et al. | Jun 1987 | A |
4770667 | Evans et al. | Sep 1988 | A |
4770668 | Skoultchi et al. | Sep 1988 | A |
4780653 | Bezos et al. | Oct 1988 | A |
4785387 | Lee et al. | Nov 1988 | A |
4799138 | Chahabadi et al. | Jan 1989 | A |
4803609 | Gillett et al. | Feb 1989 | A |
4823249 | Garcia, II | Apr 1989 | A |
4837496 | Erdi | Jun 1989 | A |
4866367 | Ridley et al. | Sep 1989 | A |
4876638 | Silva et al. | Oct 1989 | A |
4887061 | Matsumura | Dec 1989 | A |
4899271 | Seiersen | Feb 1990 | A |
4903089 | Hollis et al. | Feb 1990 | A |
4922400 | Cook | May 1990 | A |
4962354 | Visser et al. | Oct 1990 | A |
4964028 | Spataro | Oct 1990 | A |
4999759 | Cavagnolo et al. | Mar 1991 | A |
5003277 | Sokai et al. | Mar 1991 | A |
5014178 | Balakrishnan | May 1991 | A |
5027264 | DeDoncker et al. | Jun 1991 | A |
5055991 | Carroll | Oct 1991 | A |
5068756 | Morris et al. | Nov 1991 | A |
5106778 | Hollis et al. | Apr 1992 | A |
5126714 | Johnson | Jun 1992 | A |
5132888 | Lo et al. | Jul 1992 | A |
5134771 | Lee et al. | Aug 1992 | A |
5172309 | DeDoncker et al. | Dec 1992 | A |
5177460 | Dhyanchand et al. | Jan 1993 | A |
5182535 | Dhyanchand | Jan 1993 | A |
5204809 | Andresen | Apr 1993 | A |
5206621 | Yerman | Apr 1993 | A |
5208739 | Sturgeon | May 1993 | A |
5223449 | Morris et al. | Jun 1993 | A |
5225971 | Spreen | Jul 1993 | A |
5231037 | Yuan et al. | Jul 1993 | A |
5244829 | Kim | Sep 1993 | A |
5262930 | Hua et al. | Nov 1993 | A |
5291382 | Cohen | Mar 1994 | A |
5303138 | Rozman | Apr 1994 | A |
5305191 | Loftus, Jr. | Apr 1994 | A |
5335163 | Seiersen | Aug 1994 | A |
5336985 | McKenzie | Aug 1994 | A |
5342795 | Yuan et al. | Aug 1994 | A |
5343140 | Gegner | Aug 1994 | A |
5353001 | Meinel et al. | Oct 1994 | A |
5369042 | Morris et al. | Nov 1994 | A |
5374887 | Drobnik | Dec 1994 | A |
5399968 | Sheppard et al. | Mar 1995 | A |
5407842 | Morris et al. | Apr 1995 | A |
5453923 | Scalais et al. | Sep 1995 | A |
5459652 | Faulk | Oct 1995 | A |
5468661 | Yuan et al. | Nov 1995 | A |
5477175 | Tisinger et al. | Dec 1995 | A |
5508903 | Alexndrov | Apr 1996 | A |
5523673 | Ratliff et al. | Jun 1996 | A |
5539630 | Pietkiewicz et al. | Jul 1996 | A |
5554561 | Plumton | Sep 1996 | A |
5555494 | Morris | Sep 1996 | A |
5581224 | Yamamguchi | Dec 1996 | A |
5610085 | Yuan et al. | Mar 1997 | A |
5624860 | Plumton et al. | Apr 1997 | A |
5661642 | Shimashita | Aug 1997 | A |
5663876 | Newton et al. | Sep 1997 | A |
5671131 | Brown | Sep 1997 | A |
5700703 | Huang et al. | Dec 1997 | A |
5712189 | Plumton et al. | Jan 1998 | A |
5719544 | Vinciarelli et al. | Feb 1998 | A |
5734564 | Brkovic | Mar 1998 | A |
5736842 | Jovanovic | Apr 1998 | A |
5742491 | Bowman et al. | Apr 1998 | A |
5747842 | Plumton | May 1998 | A |
5756375 | Celii et al. | May 1998 | A |
5760671 | Lahr et al. | Jun 1998 | A |
5783984 | Keuneke | Jul 1998 | A |
5784266 | Chen | Jul 1998 | A |
5804943 | Kollman et al. | Sep 1998 | A |
5815386 | Gordon | Sep 1998 | A |
5864110 | Moriguchi et al. | Jan 1999 | A |
5870299 | Rozman | Feb 1999 | A |
5886508 | Jutras | Mar 1999 | A |
5889298 | Plumton et al. | Mar 1999 | A |
5889660 | Taranowski et al. | Mar 1999 | A |
5900822 | Sand et al. | May 1999 | A |
5907481 | Svardsjo | May 1999 | A |
5909110 | Yuan et al. | Jun 1999 | A |
5910665 | Plumton et al. | Jun 1999 | A |
5920475 | Boylan et al. | Jul 1999 | A |
5925088 | Nasu | Jul 1999 | A |
5929665 | Ichikawa et al. | Jul 1999 | A |
5933338 | Wallace | Aug 1999 | A |
5940287 | Brkovic | Aug 1999 | A |
5946207 | Schoofs | Aug 1999 | A |
5956245 | Rozman | Sep 1999 | A |
5956578 | Weitzel et al. | Sep 1999 | A |
5959850 | Lim | Sep 1999 | A |
5977853 | Ooi et al. | Nov 1999 | A |
5982640 | Naveed | Nov 1999 | A |
5999066 | Saito et al. | Dec 1999 | A |
5999429 | Brown | Dec 1999 | A |
6003139 | McKenzie | Dec 1999 | A |
6008519 | Yuan et al. | Dec 1999 | A |
6011703 | Boylan et al. | Jan 2000 | A |
6038154 | Boylan et al. | Mar 2000 | A |
6046664 | Weller et al. | Apr 2000 | A |
6060943 | Jansen | May 2000 | A |
6067237 | Nguyen | May 2000 | A |
6069798 | Liu | May 2000 | A |
6069799 | Bowman et al. | May 2000 | A |
6078510 | Spampinato et al. | Jun 2000 | A |
6084792 | Chen et al. | Jul 2000 | A |
6094038 | Lethellier | Jul 2000 | A |
6097046 | Plumton | Aug 2000 | A |
6125046 | Jang et al. | Sep 2000 | A |
6144187 | Bryson | Nov 2000 | A |
6147886 | Wittenbreder | Nov 2000 | A |
6156611 | Lan et al. | Dec 2000 | A |
6160721 | Kossives et al. | Dec 2000 | A |
6163466 | Davila, Jr. et al. | Dec 2000 | A |
6181231 | Bartilson | Jan 2001 | B1 |
6188586 | Farrington et al. | Feb 2001 | B1 |
6191964 | Boylan et al. | Feb 2001 | B1 |
6208535 | Parks | Mar 2001 | B1 |
6212084 | Turner | Apr 2001 | B1 |
6215290 | Yang et al. | Apr 2001 | B1 |
6218891 | Lotfi et al. | Apr 2001 | B1 |
6229197 | Plumton et al. | May 2001 | B1 |
6262564 | Kanamori | Jul 2001 | B1 |
6288501 | Nakamura et al. | Sep 2001 | B1 |
6288920 | Jacobs et al. | Sep 2001 | B1 |
6295217 | Yang et al. | Sep 2001 | B1 |
6304460 | Cuk | Oct 2001 | B1 |
6309918 | Huang et al. | Oct 2001 | B1 |
6317021 | Jansen | Nov 2001 | B1 |
6317337 | Yasumura | Nov 2001 | B1 |
6320490 | Clayton | Nov 2001 | B1 |
6323090 | Zommer | Nov 2001 | B1 |
6325035 | Codina et al. | Dec 2001 | B1 |
6344986 | Jain et al. | Feb 2002 | B1 |
6348848 | Herbert | Feb 2002 | B1 |
6351396 | Jacobs | Feb 2002 | B1 |
6356462 | Jang et al. | Mar 2002 | B1 |
6362986 | Schultz et al. | Mar 2002 | B1 |
6373727 | Hedenskog et al. | Apr 2002 | B1 |
6373734 | Martinelli | Apr 2002 | B1 |
6380836 | Matsumoto et al. | Apr 2002 | B2 |
6388898 | Fan et al. | May 2002 | B1 |
6392902 | Jang et al. | May 2002 | B1 |
6396718 | Ng et al. | May 2002 | B1 |
6400579 | Cuk | Jun 2002 | B2 |
6414578 | Jitaru | Jul 2002 | B1 |
6418039 | Lentini et al. | Jul 2002 | B2 |
6438009 | Assow | Aug 2002 | B2 |
6445598 | Yamada | Sep 2002 | B1 |
6462965 | Uesono | Oct 2002 | B1 |
6466461 | Mao et al. | Oct 2002 | B2 |
6469564 | Jansen | Oct 2002 | B1 |
6477065 | Parks | Nov 2002 | B2 |
6483724 | Blair et al. | Nov 2002 | B1 |
6489754 | Blom | Dec 2002 | B2 |
6498367 | Chang et al. | Dec 2002 | B1 |
6501193 | Krugly | Dec 2002 | B1 |
6504321 | Giannopoulos et al. | Jan 2003 | B2 |
6512352 | Qian | Jan 2003 | B2 |
6525603 | Morgan | Feb 2003 | B1 |
6539299 | Chatfield et al. | Mar 2003 | B2 |
6545453 | Glinkowski et al. | Apr 2003 | B2 |
6548992 | Alcantar et al. | Apr 2003 | B1 |
6549436 | Sun | Apr 2003 | B1 |
6552917 | Bourdillon | Apr 2003 | B1 |
6559689 | Clark | May 2003 | B1 |
6563725 | Carsten | May 2003 | B2 |
6570268 | Perry et al. | May 2003 | B1 |
6580627 | Toshio | Jun 2003 | B2 |
6608768 | Sula | Aug 2003 | B2 |
6611132 | Nakagawa et al. | Aug 2003 | B2 |
6614206 | Wong et al. | Sep 2003 | B1 |
6654259 | Koshita et al. | Nov 2003 | B2 |
6661276 | Chang | Dec 2003 | B1 |
6674658 | Mao et al. | Jan 2004 | B2 |
6683797 | Zaitsu et al. | Jan 2004 | B2 |
6687137 | Yasumura | Feb 2004 | B1 |
6696910 | Nuytkens et al. | Feb 2004 | B2 |
6731486 | Holt et al. | May 2004 | B2 |
6741099 | Krugly | May 2004 | B1 |
6751106 | Zhang et al. | Jun 2004 | B2 |
6753723 | Zhang | Jun 2004 | B2 |
6765810 | Perry | Jul 2004 | B2 |
6775159 | Webb et al. | Aug 2004 | B2 |
6784644 | Xu et al. | Aug 2004 | B2 |
6804125 | Brkovic | Oct 2004 | B2 |
6813170 | Yang | Nov 2004 | B2 |
6831847 | Perry | Dec 2004 | B2 |
6839247 | Yang et al. | Jan 2005 | B1 |
6856149 | Yang | Feb 2005 | B2 |
6862194 | Yang et al. | Mar 2005 | B2 |
6867678 | Yang | Mar 2005 | B2 |
6867986 | Amei | Mar 2005 | B2 |
6873237 | Chandrasekaran et al. | Mar 2005 | B2 |
6882548 | Jacobs et al. | Apr 2005 | B1 |
6906934 | Yang et al. | Jun 2005 | B2 |
6943553 | Zimmermann | Sep 2005 | B2 |
6944033 | Xu et al. | Sep 2005 | B1 |
6977824 | Yang et al. | Dec 2005 | B1 |
6980077 | Chandrasekaran et al. | Dec 2005 | B1 |
6982887 | Batarseh et al. | Jan 2006 | B2 |
7009486 | Goeke et al. | Mar 2006 | B1 |
7012414 | Mehrotra et al. | Mar 2006 | B1 |
7016204 | Yang et al. | Mar 2006 | B2 |
7026807 | Anderson et al. | Apr 2006 | B2 |
7034586 | Mehas et al. | Apr 2006 | B2 |
7034647 | Yan et al. | Apr 2006 | B2 |
7046523 | Sun et al. | May 2006 | B2 |
7061358 | Yang | Jun 2006 | B1 |
7072189 | Kim | Jul 2006 | B2 |
7075799 | Qu | Jul 2006 | B2 |
7076360 | Ma | Jul 2006 | B1 |
7095638 | Uusitalo | Aug 2006 | B2 |
7099163 | Ying | Aug 2006 | B1 |
7136293 | Petkov et al. | Nov 2006 | B2 |
7148669 | Maksimovic et al. | Dec 2006 | B2 |
7170268 | Kim | Jan 2007 | B2 |
7176662 | Chandrasekaran | Feb 2007 | B2 |
7209024 | Nakahori | Apr 2007 | B2 |
7269038 | Shekhawat et al. | Sep 2007 | B2 |
7280026 | Chandrasekaran et al. | Oct 2007 | B2 |
7285807 | Brar et al. | Oct 2007 | B2 |
7298118 | Chandrasekaran | Nov 2007 | B2 |
7301785 | Yasumura | Nov 2007 | B2 |
7312686 | Bruno | Dec 2007 | B2 |
7321283 | Mehrotra et al. | Jan 2008 | B2 |
7332992 | Iwai | Feb 2008 | B2 |
7339208 | Brar et al. | Mar 2008 | B2 |
7339801 | Yasumura | Mar 2008 | B2 |
7348612 | Sriram et al. | Mar 2008 | B2 |
7362592 | Yang et al. | Apr 2008 | B2 |
7362593 | Yang et al. | Apr 2008 | B2 |
7375607 | Lee et al. | May 2008 | B2 |
7385375 | Rozman | Jun 2008 | B2 |
7386404 | Cargonja et al. | Jun 2008 | B2 |
7393247 | Yu et al. | Jul 2008 | B1 |
7417875 | Chandrasekaran et al. | Aug 2008 | B2 |
7427910 | Mehrotra et al. | Sep 2008 | B2 |
7431862 | Mehrotra et al. | Oct 2008 | B2 |
7439556 | Brar et al. | Oct 2008 | B2 |
7439557 | Brar et al. | Oct 2008 | B2 |
7446512 | Nishihara et al. | Nov 2008 | B2 |
7447049 | Garner et al. | Nov 2008 | B2 |
7453709 | Park et al. | Nov 2008 | B2 |
7462891 | Brar et al. | Dec 2008 | B2 |
7468649 | Chandrasekaran | Dec 2008 | B2 |
7471523 | Yang | Dec 2008 | B2 |
7489225 | Dadafshar | Feb 2009 | B2 |
7499295 | Indika de Silva et al. | Mar 2009 | B2 |
7504673 | Brar et al. | Mar 2009 | B2 |
7554430 | Mehrotra et al. | Jun 2009 | B2 |
7558082 | Jitaru | Jul 2009 | B2 |
7567445 | Coulson et al. | Jul 2009 | B2 |
7626370 | Mei et al. | Dec 2009 | B1 |
7630219 | Lee | Dec 2009 | B2 |
7633369 | Chandrasekaran et al. | Dec 2009 | B2 |
7663183 | Brar et al. | Feb 2010 | B2 |
7667986 | Artusi et al. | Feb 2010 | B2 |
7675758 | Artusi et al. | Mar 2010 | B2 |
7675759 | Artusi et al. | Mar 2010 | B2 |
7675764 | Chandrasekaran et al. | Mar 2010 | B2 |
7715217 | Manabe et al. | May 2010 | B2 |
7733679 | Luger et al. | Jun 2010 | B2 |
7746041 | Xu et al. | Jun 2010 | B2 |
7778050 | Yamashita | Aug 2010 | B2 |
7778051 | Yang | Aug 2010 | B2 |
7787264 | Yang et al. | Aug 2010 | B2 |
7791903 | Zhang et al. | Sep 2010 | B2 |
7795849 | Sohma | Sep 2010 | B2 |
7813101 | Morikawa | Oct 2010 | B2 |
7847535 | Meynard et al. | Dec 2010 | B2 |
7876191 | Chandrasekaran et al. | Jan 2011 | B2 |
7889517 | Artusi et al. | Feb 2011 | B2 |
7889521 | Hsu | Feb 2011 | B2 |
7906941 | Jayaraman et al. | Mar 2011 | B2 |
7940035 | Yang | May 2011 | B2 |
7965528 | Yang et al. | Jun 2011 | B2 |
7983063 | Lu et al. | Jul 2011 | B2 |
8004112 | Koga et al. | Aug 2011 | B2 |
8125205 | Chandrasekaran et al. | Feb 2012 | B2 |
8134443 | Chandrasekaran et al. | Mar 2012 | B2 |
8179699 | Tumminaro et al. | May 2012 | B2 |
8278889 | Tataeishi | Oct 2012 | B2 |
8638578 | Zhang | Jan 2014 | B2 |
8643222 | Brinlee et al. | Feb 2014 | B2 |
20010020886 | Matsumoto et al. | Sep 2001 | A1 |
20010024373 | Cuk | Sep 2001 | A1 |
20010055216 | Shirato | Dec 2001 | A1 |
20020044463 | Bontempo et al. | Apr 2002 | A1 |
20020057080 | Telefus et al. | May 2002 | A1 |
20020071295 | Nishikawa | Jun 2002 | A1 |
20020101741 | Brkovic | Aug 2002 | A1 |
20020110005 | Mao et al. | Aug 2002 | A1 |
20020114172 | Webb et al. | Aug 2002 | A1 |
20020145888 | Yoshinaga et al. | Oct 2002 | A1 |
20020167385 | Ackermann | Nov 2002 | A1 |
20020176262 | Tripathi et al. | Nov 2002 | A1 |
20030026115 | Miyazaki | Feb 2003 | A1 |
20030030422 | Sula | Feb 2003 | A1 |
20030063483 | Carsten | Apr 2003 | A1 |
20030063484 | Carsten | Apr 2003 | A1 |
20030086279 | Bourdillon | May 2003 | A1 |
20030197585 | Chandrasekaran et al. | Oct 2003 | A1 |
20030198067 | Sun et al. | Oct 2003 | A1 |
20040017689 | Zhang et al. | Jan 2004 | A1 |
20040032754 | Yang | Feb 2004 | A1 |
20040034555 | Dismukes et al. | Feb 2004 | A1 |
20040064621 | Dougherty et al. | Apr 2004 | A1 |
20040148047 | Dismukes et al. | Jul 2004 | A1 |
20040156220 | Kim et al. | Aug 2004 | A1 |
20040196672 | Amei | Oct 2004 | A1 |
20040200631 | Chen | Oct 2004 | A1 |
20040217794 | Strysko | Nov 2004 | A1 |
20040257095 | Yang | Dec 2004 | A1 |
20050024179 | Chandrasekaran et al. | Feb 2005 | A1 |
20050046404 | Uusitalo | Mar 2005 | A1 |
20050052224 | Yang et al. | Mar 2005 | A1 |
20050052886 | Yang et al. | Mar 2005 | A1 |
20050207189 | Chen | Sep 2005 | A1 |
20050245658 | Mehrotra et al. | Nov 2005 | A1 |
20050254266 | Jitaru | Nov 2005 | A1 |
20050254268 | Reinhard et al. | Nov 2005 | A1 |
20050281058 | Batarseh et al. | Dec 2005 | A1 |
20050286270 | Petkov et al. | Dec 2005 | A1 |
20060006975 | Jitaru et al. | Jan 2006 | A1 |
20060006976 | Bruno | Jan 2006 | A1 |
20060007713 | Brown | Jan 2006 | A1 |
20060018136 | Takahashi | Jan 2006 | A1 |
20060038549 | Mehrotra et al. | Feb 2006 | A1 |
20060038649 | Mehrotra et al. | Feb 2006 | A1 |
20060038650 | Mehrotra et al. | Feb 2006 | A1 |
20060044845 | Fahlenkamp | Mar 2006 | A1 |
20060091430 | Sriram et al. | May 2006 | A1 |
20060109698 | Qu | May 2006 | A1 |
20060187684 | Chandrasekaran et al. | Aug 2006 | A1 |
20060197510 | Chandrasekaran | Sep 2006 | A1 |
20060198173 | Rozman | Sep 2006 | A1 |
20060226477 | Brar et al. | Oct 2006 | A1 |
20060226478 | Brar et al. | Oct 2006 | A1 |
20060227576 | Yasumura | Oct 2006 | A1 |
20060237968 | Chandrasekaran | Oct 2006 | A1 |
20060255360 | Brar et al. | Nov 2006 | A1 |
20060271315 | Cargonja et al. | Nov 2006 | A1 |
20070007945 | King et al. | Jan 2007 | A1 |
20070010298 | Chang | Jan 2007 | A1 |
20070019356 | Morikawa | Jan 2007 | A1 |
20070030717 | Luger et al. | Feb 2007 | A1 |
20070041224 | Moyse et al. | Feb 2007 | A1 |
20070045765 | Brar et al. | Mar 2007 | A1 |
20070058402 | Shekhawat et al. | Mar 2007 | A1 |
20070069286 | Brar et al. | Mar 2007 | A1 |
20070114979 | Chandrasekaran | May 2007 | A1 |
20070120953 | Koga et al. | May 2007 | A1 |
20070121351 | Zhang et al. | May 2007 | A1 |
20070159857 | Lee | Jul 2007 | A1 |
20070206523 | Huynh et al. | Sep 2007 | A1 |
20070222463 | Qahouq et al. | Sep 2007 | A1 |
20070241721 | Weinstein et al. | Oct 2007 | A1 |
20070274106 | Coulson et al. | Nov 2007 | A1 |
20070274107 | Garner et al. | Nov 2007 | A1 |
20070296028 | Brar et al. | Dec 2007 | A1 |
20070296383 | Xu | Dec 2007 | A1 |
20070298559 | Brar et al. | Dec 2007 | A1 |
20070298564 | Brar et al. | Dec 2007 | A1 |
20080012423 | Mimran | Jan 2008 | A1 |
20080024094 | Nishihara et al. | Jan 2008 | A1 |
20080024259 | Chandrasekaran et al. | Jan 2008 | A1 |
20080031021 | Ros et al. | Feb 2008 | A1 |
20080037294 | Indika de Silva et al. | Feb 2008 | A1 |
20080043503 | Yang | Feb 2008 | A1 |
20080054874 | Chandrasekaran et al. | Mar 2008 | A1 |
20080080219 | Sohma | Apr 2008 | A1 |
20080111657 | Mehrotra et al. | May 2008 | A1 |
20080130321 | Artusi et al. | Jun 2008 | A1 |
20080130322 | Artusi et al. | Jun 2008 | A1 |
20080137381 | Beasley | Jun 2008 | A1 |
20080150666 | Chandrasekaran et al. | Jun 2008 | A1 |
20080175026 | Yang | Jul 2008 | A1 |
20080205104 | Lev et al. | Aug 2008 | A1 |
20080224812 | Chandrasekaran | Sep 2008 | A1 |
20080232141 | Artusi et al. | Sep 2008 | A1 |
20080298106 | Tateishi | Dec 2008 | A1 |
20080310190 | Chandrasekaran et al. | Dec 2008 | A1 |
20080315852 | Jayaraman et al. | Dec 2008 | A1 |
20080316779 | Jayaraman et al. | Dec 2008 | A1 |
20090002054 | Tsunoda et al. | Jan 2009 | A1 |
20090027926 | Yang et al. | Jan 2009 | A1 |
20090046486 | Lu et al. | Feb 2009 | A1 |
20090097290 | Chandrasekaran | Apr 2009 | A1 |
20090109711 | Hsu | Apr 2009 | A1 |
20090257250 | Liu | Oct 2009 | A1 |
20090273957 | Feldtkeller | Nov 2009 | A1 |
20090284994 | Lin et al. | Nov 2009 | A1 |
20090289557 | Itoh et al. | Nov 2009 | A1 |
20090310388 | Yang | Dec 2009 | A1 |
20090315530 | Baranwal | Dec 2009 | A1 |
20100091522 | Chandrasekaran et al. | Apr 2010 | A1 |
20100123486 | Berghegger | May 2010 | A1 |
20100149838 | Artusi et al. | Jun 2010 | A1 |
20100164443 | Tumminaro et al. | Jul 2010 | A1 |
20100182806 | Garrity et al. | Jul 2010 | A1 |
20100188876 | Garrity et al. | Jul 2010 | A1 |
20100202165 | Zheng et al. | Aug 2010 | A1 |
20100213989 | Nakatake et al. | Aug 2010 | A1 |
20100254168 | Chandrasekaran | Oct 2010 | A1 |
20100321958 | Brinlee et al. | Dec 2010 | A1 |
20100321964 | Brinlee et al. | Dec 2010 | A1 |
20110038179 | Zhang | Feb 2011 | A1 |
20110089917 | Chen et al. | Apr 2011 | A1 |
20110134664 | Berghegger | Jun 2011 | A1 |
20110149607 | Jungreis et al. | Jun 2011 | A1 |
20110182089 | Berghegger | Jul 2011 | A1 |
20110239008 | Lam et al. | Sep 2011 | A1 |
20110241738 | Tamaoka | Oct 2011 | A1 |
20113050407 | Jungreis et al. | Dec 2011 | |
20120243271 | Berghegger | Sep 2012 | A1 |
20120294048 | Brinlee | Nov 2012 | A1 |
Number | Date | Country |
---|---|---|
101141099 | Mar 2008 | CN |
101202509 | Jun 2008 | CN |
201252294 | Jun 2009 | CN |
10310361 | Sep 2004 | DE |
0665634 | Jan 1994 | EP |
57097361 | Jun 1982 | JP |
3215911 | Sep 1991 | JP |
200068132 | Mar 2000 | JP |
8700991 | Feb 1987 | WO |
WO2010083511 | Jul 2010 | WO |
WO2010083514 | Jul 2010 | WO |
WO2010114914 | Oct 2010 | WO |
WO2011116225 | Sep 2011 | WO |
Entry |
---|
Bill Andreycak, Active Clamp and Reset Technique Enhances Forward Converter Performance, Oct. 1994, Texas Instruments, 19 pages. |
U.S. Appl. No. 11/211,964, filed Aug. 25, 2005, Brar, et al. |
U.S. Appl. No. 11/236,376, filed Sep. 27, 2005, Brar, et al. |
“AN100: Application Note using Lx100 Family of High Performance N-Ch JFET Transistors,” AN100.Rev 1.01, Sep. 2003, 5 pp., Lovoltech, Inc., Santa Clara, CA. |
“AN101A: Gate Drive Network for a Power JFET,” AN101A.Rev 1.2, Nov. 2003, 2 pp., Lovoltech, Inc., Santa Clara, CA. |
“AN108: Applications Note: How to Use Power JFETs® and MOSFETs Interchangeably in Low-Side Applications,” Rev. 1.0.1, Feb. 14, 2005, 4 pp., Lovoltech, Inc., Santa Clara, CA. |
Ajram, S., et al., “Ultrahigh Frequency DC-to-DC Converters Using GaAs Power Switches,” IEEE Transactions on Power Electronics, Sep. 2001, pp. 594-602, vol. 16, No. 5, IEEE, Los Alamitos, CA. |
Balogh, L., et al., “Power-Factor Correction with Interleaved Boost Converters in Continuous-Inductor-Current Mode,” IEEE Proceedings of APEC, pp. 168-174, 1993, IEEE, Los Alamitos, CA. |
Biernacki, J., et al., “Radio Frequency DC-DC Flyback Converter,” Proceedings of the 43rd IEEE Midwest Symposium on Circuits and Systems, Aug. 8-11, 2000, pp. 94-97, vol. 1, IEEE, Los Alamitos, CA. |
Chen, W., et al., “Design of High Efficiency, Low Profile, Low Voltage Converter with Integrated Magnetics,” Proceedings of 1997 IEEE Applied Power Electronics Conference (APEC '97), 1997, pp. 911-917, IEEE, Los Alamitos, CA. |
Chen, W., et al., “Integrated Planar Inductor Scheme for Multi-module Interleaved Quasi-Square-Wave (QSW) DC/DC Converter,” 30th Annual IEEE Power Electronics Specialists Conference (PESC '99), 1999, pp. 759-762, vol. 2, IEEE, Los Alamitos, CA. |
Chhawchharia, P., et al., “On the Reduction of Component Count in Switched Capacitor DC/DC Convertors,” Hong Kong Polytechnic University, IEEE, 1997, Hung Hom, Kowloon, Hong King, pp. 1395-1401. |
Curtis, K., “Advances in Microcontroller Peripherals Facilitate Current-Mode for Digital Power Supplies,” Digital Power Forum '06, 4 pp., Sep. 2006, Darnell Group, Richardson, TX. |
Eisenbeiser, K., et al., “Manufacturable GaAs VFET for Power Switching Applications,” IEEE Electron Device Letters, Apr. 2000, pp. 144-145, vol. 21, No. 4, IEEE. |
Freescale Semiconductor, “Implementing a Digital AC/DC Switched-Mode Power Supply using a 56F8300 Digital Signal Controller,” Application Note AN3115, Aug. 2005, 24 pp., Chandler, AZ. |
Freescale Semiconductor, “56F8323 Evaluation Module User Manual, 56F8300 16-bit Digital Signal Controllers”, MC56F8323EVMUM, Rev. 2, Jul. 2005 (72 pages). |
Freescale Semiconductor, “56F8323/56F8123 Data Sheet Preliminary Technical Data, 56F8300 16-bit Digital Signal Controllers,” MC56F8323 Rev. 17, Apr. 2007 (140 pages). |
Freescale Semiconductor, “Design of a Digital AC/DC SMPS using the 56F8323 Device, Designer Reference Manual, 56800E 16-bit Digital Signal Controllers”, DRM074, Rev. 0, Aug. 2005 (108 pages). |
Gaye, M., et al., “A 50-100MHz 5V to −5V, 1W Cuk Converter Using Gallium Arsenide Power Switches,” ISCAS 2000—IEEE International Symposium on Circuits and Systems, May 28-31, 2000, pp. I-264-I-267, vol. 1, IEEE, Geneva, Switzerland. |
Goldberg, A.F., et al., “Finite-Element Analysis of Copper Loss in 1-10-MHz Transformers,” IEEE Transactions on Power Electronics, Apr. 1989, pp. 157-167, vol. 4, No. 2, IEEE, Los Alamitos, CA. |
Goldberg, A.F., et al., “Issues Related to 1-10-MHz Transformer Design,” IEEE Transactions on Power Electronics, Jan. 1989, pp. 113-123, vol. 4, No. 1, IEEE, Los Alamitos, CA. |
Jitaru, I.D., et al., “Quasi-Integrated Magnetic an Avenue for Higher Power Density and Efficiency in Power Converters,” 12th Annual Applied Power Electronics Conference and Exposition, Feb. 23-27, 1997, pp. 395-402, vol. 1, IEEE, Los Alamitos, CA. |
Kollman, R., et al., “10 MHz PWM Converters with GaAs VFETs,” IEEE 11th Annual Applied Power Electronics Conference and Exposition, Mar. 1996, pp. 264-269, vol. 1, IEEE. |
Kuwabara, K., et al., “Switched-Capacitor DC-DC Converters,” Fujitsu Limited, IEEE, 1988, Kawasaki, Japan, pp. 213-218. |
Lee, P.-W., et al., “Steady-State Analysis of an Interleaved Boost Converter with Coupled Inductors,” IEEE Transactions on Industrial Electronics, Aug. 2000, pp. 787-795, vol. 47, No. 4, IEEE, Los Alamitos, CA. |
Lenk, R., “Introduction to the Tapped Buck Converter,” PCIM 2000, HFPC 2000 Proceedings, Oct. 2000, pp. 155-166. |
Liu, W., “Fundamentals of III-V Devices: HBTs, MESFETs, and HFETs/HEMTs,” §5-5: Modulation Doping, 1999, pp. 323-330, John Wiley & Sons, New York, NY. |
Maksimović, D., et al., “Switching Converters with Wide DC Conversion Range,” IEEE Transactions on Power Electronics, Jan. 1991, pp. 151-157, vol. 6, No. 1, IEEE, Los Alamitos, CA. |
Maxim, Application Note 725, www.maxim-ic.com/an725, Maxim Integrated Products, Nov. 29, 2001, 8 pages. |
Middlebrook, R.D., “Transformerless DC-to-DC Converters with Large Conversion Ratios,” IEEE Transactions on Power Electronics, Oct. 1988, pp. 484-488, vol. 3, No. 4, IEEE, Los Alamitos, CA. |
Miwa, B.A., et al., “High Efficiency Power Factor Correction Using Interleaving Techniques,” IEEE Proceedings of APEC, 1992, pp. 557-568, IEEE, Los Alamitos, CA. |
National Semiconductor Corporation, “LM2665 Switched Capacitor Voltage Converter,” www.national.com, Sep. 2005, 9 pages. |
National Semiconductor Corporation, “LMC7660 Switched Capacitor Voltage Converter,” www.national.com, Apr. 1997, 12 pages. |
Nguyen, L.D., et al., “Ultra-High-Speed Modulation-Doped Field-Effect Transistors: A Tutorial Review,” Proceedings of the IEEE, Apr. 1992, pp. 494-518, vol. 80, No. 4, IEEE. |
Niemela, V.A., et al., “Comparison of GaAs and Silicon Synchronous Rectifiers in a 3.3V Out, 50W DC-DC Converter,” 27th Annual IEEE Power Electronics Specialists Conference, Jun. 1996, pp. 861-867, vol. 1, IEEE. |
Ninomiya, T., et al., “Static and Dynamic Analysis of Zero-Voltage-Switched Half-Bridge Converter with PWM Control,” Proceedings of 1991 IEEE Power Electronics Specialists Conference (PESC '91), 1991, pp. 230-237, IEEE, Los Alamitos, CA. |
O'Meara, K., “A New Output Rectifier Configuration Optimized for High Frequency Operation,” Proceedings of 1991 High Frequency Power Conversion (HFPC '91) Conference, Jun. 1991, pp. 219-225, Toronto, CA. |
Peng, C., et al., “A New Efficient High Frequency Rectifier Circuit,” Proceedings of 1991 High Frequency Power Conversion (HFPC '91) Conference, Jun. 1991, pp. 236-243, Toronto, CA. |
Pietkiewicz, A., et al. “Coupled-Inductor Current-Doubler Topology in Phase-Shifted Full-Bridge DC-DC Converter,” 20th International Telecommunications Energy Conference (INTELEC), Oct. 1998, pp. 41-48, IEEE, Los Alamitos, CA. |
Plumton, D.L., et al., “A Low On-Resistance High-Current GaAs Power VFET,” IEEE Electron Device Letters, Apr. 1995, pp. 142-144, vol. 16, No. 4, IEEE. |
Rajeev, M., “An Input Current Shaper with Boost and Flyback Converter Using Integrated Magnetics,” Power Electronics and Drive Systems, 5th International Conference on Power Electronics and Drive Systems 2003, Nov. 17-20, 2003, pp. 327-331, vol. 1, IEEE, Los Alamitos, CA. |
Rico, M., et al., “Static and Dynamic Modeling of Tapped-Inductor DC-to-DC Converters,” 1987, pp. 281-288, IEEE, Los Alamitos, CA. |
Severns, R., “Circuit Reinvention in Power Electronics and Identification of Prior Work,” Proceedings of 1997 IEEE Applied Power Electronics Conference (APEC '97), 1997, pp. 3-9, IEEE, Los Alamitos, CA. |
Severns, R., “Circuit Reinvention in Power Electronics and Identification of Prior Work,” IEEE Transactions on Power Electronics, Jan. 2001, pp. 1-7, vol. 16, No. 1, IEEE, Los Alamitos, CA. |
Sun, J., et al., “Unified Analysis of Half-Bridge Converters with Current-Doubler Rectifier,” Proceedings of 2001 IEEE Applied Power Electronics Conference, 2001, pp. 514-520, IEEE, Los Alamitos, CA. |
Sun, J., et al., “An Improved Current-Doubler Rectifier with Integrated Magnetics,” 17th Annual Applied Power Electronics Conference and Exposition (APEC), 2002, pp. 831-837, vol. 2, IEEE, Dallas, TX. |
Texas Instruments Incorporated, “LT1054, LT1054Y Switched-Capacitor Voltage Converters With Regulators,” SLVS033C, Feb. 1990—Revised Jul. 1998, 25 pages. |
Thaker, M., et al., “Adaptive/Intelligent Control and Power Management Reduce Power Dissipation and Consumption,” Digital Power Forum '06, 11 pp., Sep. 2006, Darnell Group, Richardson, TX. |
Vallamkonda, S., “Limitations of Switching Voltage Regulators,” A Thesis in Electrical Engineering, Texas Tech University, May 2004, 89 pages. |
Wei, J., et al., “Comparison of Three Topology Candidates for 12V VRM,” IEEE APEC, 2001, pp. 245-251, IEEE, Los Alamitos, CA. |
Weitzel, C.E., “RF Power Devices for Wireless Communications,” 2002 IEEE MTT-S CDROM, 2002, pp. 285-288, paper TU4B-1, IEEE, Los Alamitos, CA. |
Williams, R., “Modern GaAs Processing Methods,” 1990, pp. 66-67, Artech House, Inc., Norwood, MA. |
Wong, P.-L., et al., “Investigating Coupling Inductors in the Interleaving QSW VRM,” 15th Annual Applied Power Electronics Conference and Exposition (APEC 2000), Feb. 2000, pp. 973-978, vol. 2, IEEE, Los Alamitos, CA. |
Xu, M., et al., “Voltage Divider and its Application in the Two-stage Power Architecture,” Center for Power Electronics Systems, Virginia Polytechnic Institute and State University, IEEE, 2006, Blacksburg, Virginia, pp. 499-505. |
Xu, P., et al., “Design of 48 V Voltage Regulator Modules with a Novel Integrated Magnetics,” IEEE Transactions on Power Electronics, Nov. 2002, pp. 990-998, vol. 17, No. 6, IEEE, Los Alamitos, CA. |
Xu, P., et al., “A Family of Novel Interleaved DC/DC Converters for Low-Voltage High-Current Voltage Regulator Module Applications,” IEEE Power Electronics Specialists Conference, Jun. 2001, pp. 1507-1511, IEEE, Los Alamitos, CA. |
Xu, P., et al., “A Novel Integrated Current Doubler Rectifier,” IEEE 2000 Applied Power Electronics Conference, Mar. 2000, pp. 735-740, IEEE, Los Alamitos, CA. |
Xu, P., et al “Design and Performance Evaluation of Multi-Channel Interleaved Quasi-Square-Wave Buck Voltage Regulator Module,” HFPC 2000 Proceedings, Oct. 2000, pp. 82-88. |
Yan, L., et al., “Integrated Magnetic Full Wave Converter with Flexible Output Inductor,” 17th Annual Applied Power Electronics Conference and Exposition (APEC), 2002, pp. 824-830, vol. 2, IEEE, Dallas, TX. |
Yan, L., et al., “Integrated Magnetic Full Wave Converter with Flexible Output Inductor,” IEEE Transactions on Power Electronics, Mar. 2003, pp. 670-678, vol. 18, No. 2, IEEE, Los Alamitos, CA. |
Zhou, X., et al., “A High Power Density, High Efficiency and Fast Transient Voltage Regulator Module with a Novel Current Sensing and Current Sharing Technique,” IEEE Applied Power Electronics Conference, Mar. 1999, pp. 289-294, IEEE, Los Alamitos, CA. |
Zhou, X., et al., “Investigation of Candidate VRM Topologies for Future Microprocessors,” IEEE Applied Power Electronics Conference, Mar. 1998, pp. 145-150, IEEE, Los Alamitos, CA. |
Ridley, R., Designing with the TL431, Switching Power Magazine, Designer Series XV, pp. 1-5, 2005. |
Number | Date | Country | |
---|---|---|---|
20130194826 A1 | Aug 2013 | US |