Controller for a synchronous rectifier switch

Information

  • Patent Grant
  • 9088216
  • Patent Number
    9,088,216
  • Date Filed
    Tuesday, January 19, 2010
    14 years ago
  • Date Issued
    Tuesday, July 21, 2015
    8 years ago
Abstract
A controller for a power converter and method of operating the same employable with a bridge rectifier having first and second synchronous rectifier switches. In one embodiment, the controller includes an amplifier configured to enable a turn-on delay for the first synchronous rectifier switch. The controller also includes a discharge switch having first and second switched terminals coupled to gate and source terminals, respectively, of the first synchronous rectifier switch and configured to discharge a gate-to-source capacitance of the first synchronous rectifier switch to enable a turn off thereof.
Description
TECHNICAL FIELD

The present invention is directed, in general, to power electronics and, more specifically, to controller for a power converter and method of operating the same.


BACKGROUND

A switched-mode power converter (also referred to as a “power converter” or “regulator”) is a power supply or power processing circuit that converts an input voltage waveform into a specified output voltage waveform. AC-DC power converters convert an alternating current (“ac”) input voltage into a direct current (“dc”) output voltage. Controllers associated with the power converters manage an operation thereof by controlling the conduction periods of power switches employed therein. Generally, the controllers are coupled between an input and output of the power converter in a feedback loop configuration (also referred to as a “control loop” or “closed control loop”).


To produce a dc output voltage, power converters often employ diodes to rectify an ac voltage. The rectifying devices can introduce a power loss component in a power converter due to the forward voltage drop across the diode, particularly in a power converter that produces an output voltage of five volts or less. Schottky diodes, which have a relatively low forward voltage drop, are often employed in low-voltage power converter applications to reduce a diode forward voltage drop. However, passive rectifying devices such as Schottky diodes typically cannot achieve forward voltage drops of less than about 0.35 volts (“V”), and typically cannot sustain a reverse voltage greater than about 60 volts, thereby limiting a conversion efficiency of the power converter.


To achieve an acceptable level of efficiency, power converters often employ rectifying devices that may have forward voltage drops less than about 0.1 volts. To provide such reduction of power loss, an active switch or active semiconductor switch such as a metal-oxide semiconductor field-effect transistor (“MOSFET”), which provides a resistive voltage drop, is often employed to replace a diode. An active semiconductor switch, however, must be periodically driven into conduction and non-conduction modes or states in synchronism with a periodic waveform of an ac voltage (e.g., an ac voltage produced across an input to the power converter). The active semiconductor switches may thereby avoid the higher forward voltage drops inherent in the passive rectifying devices.


A design issue introduced by substituting an active semiconductor switch for a diode is the need to provide a drive signal therefor that is accurately synchronized with the operation of the power converter to control the conduction and non-conduction modes or states of the active semiconductor switches, and that avoids conduction overlap with other semiconductor switches including diodes. An active semiconductor switch substituted for a diode in a power converter is generally referred to as a “synchronous rectifier” or “synchronous rectifier switch.”


A conventional ac-to-dc power converter employs a bridge rectifier to transform an ac sinusoidal input voltage waveform, such as an input voltage waveform produced by an ac mains, into a rectified sinusoidal waveform. Following the bridge rectifier, a power factor correction (“PFC”) circuit converts the rectified sinusoidal waveform into a dc waveform with a dc voltage level higher than the peak voltage of the sinusoidal input voltage. The bridge rectifier is usually constructed with four diodes. Due to the forward voltage drop of the diodes, significant power losses are produced by the diodes.


A bridgeless boost PFC circuit may be employed to address the power loss problem associated with the forward voltage drop of the diodes. As a result, conduction losses of the diodes are reduced. However, a bridgeless boost PFC circuit has several significant remaining problems that limit its application in low-cost, high-volume circuits. On the ac side of the circuit, a two-inductor structure introduced by the circuit causes the output voltage to float with respect to the input line voltage. As a result, the circuit produces a high level of electromagnetic interference (“EMI”) noise. The location of the boost inductor on the ac side makes it difficult to sense the ac line voltage and the inductor current and the control is a more complicated process compared with control schemes used for a simpler boost PFC circuit or boost power converter coupled to a bridge rectifier. As a result, the bridgeless boost PFC circuit has found limited application.


U.S. Pat. No. 6,060,943, entitled “Circuit Simulating a Diode” to Jansen, issued May 9, 2000 and U.S. Pat. No. 6,469,564, entitled “Circuit Simulating a Diode” to Jansen, issued Oct. 22, 2002, which are both incorporated herein by reference, are directed to a circuit that performs the function of a diode to conduct current in one direction with a low forward voltage drop, but block current in the other direction to produce an improved rectification function. When the voltage at a designated anode terminal of the circuit is higher than the voltage at a designated cathode terminal, a forward current flows. When the polarity of the voltage at these designated terminals is reversed, the current is interrupted.


Each of these approaches, however, provides an efficiency and/or a cost limitation that limits or otherwise penalizes the use of a synchronous rectifier in many applications. Accordingly, what is needed in the art is a controller employable with a synchronous rectifier in a power converter and related method that avoid the deficiencies in the prior art.


SUMMARY OF THE INVENTION

These and other problems are generally solved or circumvented, and technical advantages are generally achieved, by advantageous embodiments of the present invention, including a controller for a power converter and method of operating the same employable with a bridge rectifier having first and second synchronous rectifier switches. In one embodiment, the controller includes an amplifier configured to enable a turn-on delay for the first synchronous rectifier switch. The controller also includes a discharge switch having first and second switched terminals coupled to gate and source terminals, respectively, of the first synchronous rectifier switch and configured to discharge a gate-to-source capacitance of the first synchronous rectifier switch to enable a turn off thereof.


The foregoing has outlined rather broadly the features and technical advantages of the present invention in order that the detailed description of the invention that follows may be better understood. Additional features and advantages of the invention will be described hereinafter, which form the subject of the claims of the invention. It should be appreciated by those skilled in the art that the conception and specific embodiment disclosed may be readily utilized as a basis for modifying or designing other structures or processes for carrying out the same purposes of the present invention. It should also be realized by those skilled in the art that such equivalent constructions do not depart from the spirit and scope of the invention as set forth in the appended claims.





BRIEF DESCRIPTION OF THE DRAWINGS

For a more complete understanding of the present invention, reference is now made to the following descriptions taken in conjunction with the accompanying drawings, in which:



FIG. 1 illustrates a schematic diagram of an embodiment of a power converter including a bridge rectifier coupled to a boost power converter that provides an environment for application of the principles of the present invention;



FIG. 2 illustrates a schematic diagram of an embodiment of a power converter including two synchronous rectifier switches in a bridge rectifier constructed according to the principles of the present invention;



FIG. 3 illustrates a graphical representation of waveforms produced with overlapping gate drive signals for first and second synchronous rectifier switches;



FIG. 4 illustrates a graphical representation of waveforms produced with gate drive signals for first and second synchronous rectifier switches;



FIG. 5 illustrates a schematic diagram of an embodiment of a controller for a switch constructed according to the principles of the present invention;



FIG. 6 illustrates a schematic diagram of an embodiment of a power converter including a bridge rectifier formed with first and second synchronous rectifier switches constructed in accordance with the principles of the present invention;



FIG. 7 illustrates a graphical representation of waveforms produced with non-overlapping gate drive signals for first and second synchronous rectifier switches in accordance with the principles of the present invention;



FIG. 8 illustrates a graphical representation demonstrating dead time between the first and second synchronous rectifier switches introduced with respect to FIG. 6; and



FIG. 9 illustrates a schematic diagram of an embodiment of a controller for first and second synchronous rectifier switches constructed according to the principles of the present invention.





Corresponding numerals and symbols in the different FIGUREs generally refer to corresponding parts unless otherwise indicated, and may not be redescribed in the interest of brevity after the first instance. The FIGUREs are drawn to illustrate the relevant aspects of exemplary embodiments.


DETAILED DESCRIPTION OF ILLUSTRATIVE EMBODIMENTS

The making and using of the present exemplary embodiments are discussed in detail below. It should be appreciated, however, that the present invention provides many applicable inventive concepts that can be embodied in a wide variety of specific contexts. The specific embodiments discussed are merely illustrative of specific ways to make and use the invention, and do not limit the scope of the invention.


The present invention will be described with respect to exemplary embodiments in a specific context, namely, a controller for a switch such as a synchronous rectifier switch with a delay turn on thereof, and a method of operating the same. While the principles of the present invention will be described in the environment of a power converter, any application that may benefit from a controller such as a power amplifier or a motor controller is well within the broad scope of the present invention. Additionally, while the principles of the present invention will be described with respect to field-effect transistors including gate, source and drain terminals, the principles are equally applicable to any types of switches having control and switched terminals.


Turning now to FIG. 1, illustrated is a schematic diagram of an embodiment of a power converter (e.g., an ac-to-dc power converter) including a bridge rectifier 110 coupled to a boost power converter 120 (also referred to as a “boost power train”) that provides an environment for application of the principles of the present invention. The bridge rectifier 110 includes a plurality of bridge diodes D1, D2, D3, D4 configured as a four-diode bridge rectifier coupled to an ac input voltage source (designated “V1”) to produce a rectified waveform that is operative as an input voltage for the boost power converter 120. The boost power converter 120 includes boost inductor L1 and boost power switch Q1. The boost power switch Q1, illustrated in FIG. 1 as an n-channel MOSFET, is controlled to conduct intermittently with a duty cycle D to produce a current in the boost inductor L1 that is intermittently conducted to a boost diode D5 with a complementary duty cycle 1-D. The boost diode D5 rectifies the inductor current to produce a dc voltage across an output filter capacitor C1. The resistor RLOAD represents a load connected to the output of the ac-to-dc power converter.


A significant source of power loss in the power converter illustrated in FIG. 1 is the forward voltage drop of the bridge diodes D1, D2, D3, D4. To address this power loss problem, the bridge diodes D1, D2, D3, D4 may be replaced with active switches or active semiconductor switches functioning as synchronous rectifiers or synchronous rectifier switches with a substantially smaller forward voltage drop than passive diodes. An issue in the design of synchronous rectifiers formed with active switches is cross conduction between a pair of synchronous rectifiers, thereby presenting a further power loss problem.


Turning now to FIG. 2, illustrated is a schematic diagram of an embodiment of a power converter (e.g., an ac-dc power converter) including first and second synchronous rectifier switches SR1, SR2 in a bridge rectifier constructed according to the principles of the present invention. A conventional synchronous rectifier arrangement cannot be employed to replace the diodes in the bridge rectifier because a conventional synchronous rectifier arrangement (see, e.g., U.S. Pat. No. 6,469,564 to Jansen) uses a diode and a transistor base-emitter p-n junction as two voltage-sensing inputs to determine when the active switch employed as the synchronous rectifier is enabled to conduct. As a result, a conventional synchronous rectifier arrangement is principally used when a single diode is employed, but suffers degradation of power converter efficiency when coupled to another active switch. When a conventional synchronous rectifier arrangement is used to replace two or more diodes in a bridge rectifier (top two diodes, bottom two diodes, or upper and lower branch diodes as illustrated in FIG. 1), cross conduction between the two diodes occurs during a brief period of time when both diodes are enabled to conduct. When one synchronous rectifier switch operative as a diode turns on and another turns off, a mismatch of the diode and base emitter p-n junction of the synchronous rectifier switch and the reverse recovery charge of the diode result in overlapping control terminal signals (e.g., gate drive signals), or at least not separated gate drive signals, for the two active switches (e.g., MOSFETs) employed as the synchronous rectifier switches.


Turning now to FIG. 3, illustrated is a graphical representation of waveforms produced with overlapping gate drive signals for first and second synchronous rectifier switches SR1, SR2. The first and second synchronous rectifier switches SR1, SR2 are coupled in a series arrangement wherein a shoot-through current is produced when both synchronous rectifier switches SR1, SR2 are simultaneously enabled to conduct. In the top portion of FIG. 3, input current spikes 310 are illustrated every 10 milliseconds (“ms”) for a 50 hertz (“Hz”) input ac voltage due to diode cross conduction. In the middle and lower portions of FIG. 3, gate drive waveforms are illustrated that enable conduction of the first and second synchronous rectifier switches SR1, SR2 without a period of separation between their high gate drive voltage levels (also referred to as gate drive signal overlap 320). As a consequence, the input voltage source is briefly coupled to a short circuit every half line cycle that produces a spike in current from the input voltage source. Such circuit operation generally results in a high level of electromagnetic interference (“EMI”), and increases conduction losses for the bridge rectifier.


Turning now to FIG. 4, illustrated is a graphical representation of waveforms produced with gate drive signals for first and second synchronous rectifier switches SR1, SR2. As illustrated in FIG. 4, a period of overlap is shown for conventional synchronous rectifier designs during which both synchronous rectifier switches SR1, SR2 are enabled to conduct (first synchronous rectifier gate drive signal 410 and second synchronous rectifier gate drive signal 420 provide an overlap 430), producing thereby a spike in input current from the input voltage source. By replacing the diodes D2, D4 of the bridge rectifier of FIG. 1 with the first and second synchronous rectifier switches SR1, SR2 in accordance with the principles of the present invention, cross conduction therebetween may be substantially reduced.


Turning now to FIG. 5, illustrated is a schematic diagram of an embodiment of a controller for a switch (e.g., a synchronous rectifier switch SR) constructed according to the principles of the present invention. The controller illustrated in FIG. 5 includes elements that charge or discharge a gate-to-source capacitance of the synchronous rectifier switch SR. Charging and discharging gate-to-source capacitance is generally an obstacle for quickly enabling or disabling conductivity of an active switch such as a MOSFET employed as the synchronous rectifier switch SR. Quickly disabling conductivity of the synchronous rectifier switch SR is important for eliminating (or substantially eliminating) cross conduction thereof with another active switch in a power converter.


A controller for the synchronous rectifier switch SR includes an amplifier 510 with a threshold voltage produced in accordance with a plurality of series-coupled diodes D6, D15. The controller further includes a discharge switch Q3 (e.g., a pnp transistor) with switched terminals coupled between the source and gate terminals of the synchronous rectifier switch SR and a control terminal coupled to an output of the amplifier 510. The discharge switch Q3 is formed with emitter (designated “e”), base (designated “b”), and collector (designated “c”) terminals. The synchronous rectifier switch SR is formed with source (designated “s”), gate (designated “g”), and drain (designated “d”) terminals. The emitter of the discharge switch Q3 is connected to the gate of the synchronous rectifier switch SR, and the collector of discharge switch Q3 is connected to the source of synchronous rectifier switch SR. As a result, when a body diode D30 of synchronous rectifier switch SR is back biased, voltage of a node K is higher than voltage of a node A, and an amplifier switch (e.g., a npn transistor) Q12 turns on due to current flowing into its base from a bias voltage source VCC through a resistor R16. A charge switch (e.g., transistor) Q11 is turned off and the discharge switch Q3 is turned on. Turning on the discharge switch Q3, which has its emitter and collector terminals connected to the gate and source terminals, respectively, of the synchronous rectifier switch SR, causes the gate charge of the synchronous rectifier switch SR to be quickly discharged, enabling thereby fast turn off of the synchronous rectifier switch SR. Thus, a discharge switch Q3 coupled to terminals of a synchronous rectifier switch SR is configured to enable the quick discharge of a gate-to-source capacitance thereof in response to a back biased condition of the body diode D30 of the synchronous rectifier switch SR.


When the body diode D30 of synchronous rectifier power switch SR is forward biased, and voltage of the node K becomes sufficiently lower than voltage of the node A, the amplifier switch Q12 turns off. The diodes D6, D15 provide a threshold for the voltage of the node K being lower than the voltage of the node A to turn off the amplifier switch Q12, thereby introducing a turn-on delay for the synchronous rectifier switch SR. Turning off the amplifier switch Q12 enables a resistor R14 to provide a bias current from the bias voltage source VCC to the base of the charge switch Q11 that is thereby turned on. Turning on the charge switch Q11 provides a positive bias voltage from the bias voltage source VCC through a diode D12 to the gate of synchronous rectifier switch SR, enabling it to conduct. Note that voltage of the node A should be higher than voltage of the node K plus a threshold voltage Vthreshold to induce the synchronous rectifier switch SR turn on. A turn-on delay is produced by causing voltage of the node A to be higher than voltage of the node K plus a threshold voltage Vthreshold. Thus, a charge switch Q11 coupled to terminals of a synchronous rectifier switch SR is configured to charge a gate-to-source capacitance thereof after a delay in response to a forward biased condition of the synchronous rectifier switch SR. The remaining circuit elements illustrated in FIG. 5 such as resistors R12, R15, R17 are included to provide proper levels of voltages and currents for reliable operation of the controller, applying considerations for specific devices such as required voltage and current levels for proper controller operation.


For the controller illustrated in FIG. 5, the voltage VA of node A is equal to the voltage VM of node M minus the base-emitter p-n junction forward voltage drop of the amplifier switch Q12. The voltage VK of node K is the voltage VM of node M minus the sum of the p-n junction forward voltage drops of series-coupled diodes D15, D6. The voltage Vthreshold is the threshold voltage of the synchronous rectifier switch SR. The voltage VbeQ12 is the base-emitter voltage of the amplifier switch Q12. The voltage VfD15 is the forward-diode voltage of diode D15. The voltage VfD6 is the forward-diode voltage of diode D6.

VA=VM−VbeQ12  (1)
VK=VM−VfD15−VfD6  (2)
VA=VK+Vthreshold  (3)
Vthreshold=VfD15+VfD6−VbeQ12  (4)


As opposed to the circuits described by Jansen in U.S. Pat. No. 6,060,943 and U.S. Pat. No. 6,469,564, the controller for the synchronous rectifier switch SR introduced herein has a turn-on delay generated by the series-coupled diodes D6, D15, preferably in the range of one microsecond (“μs”) to four milliseconds (“ms”). In the circuits described by Jansen, when voltage of node A is higher than voltage of node K, a current flows from node A to node K. However, in FIG. 5, the voltage of node A should be sufficiently higher than voltage of node K plus the threshold voltage Vthreshold to make the synchronous rectifier switch SR turn on, thus generating a turn-on delay.


Turning now to FIG. 6, illustrated is a schematic diagram of an embodiment of a power converter including a bridge rectifier formed with first and second synchronous rectifier switches SR1, SR2 constructed in accordance with the principles of the present invention. In the bridge rectifier illustrated in FIG. 6, the bottom two diodes of the bridge rectifier illustrated in FIG. 1 are replaced with the first and second synchronous rectifier switches SR1, SR2 and associated controller coupled to a bias voltage source VCC. The first and second synchronous rectifier switches SR1, SR2 and the associated controller coupled to the bias voltage source VCC are each illustrated and described hereinabove with reference to the synchronous rectifier switch SR illustrated in FIG. 5. The turn on of each of the first and second synchronous rectifier switches SR1, SR2 is delayed, but a turn off thereof is accelerated by rapid discharge of the respective gate-to-source capacitances. A dead time between the gates of the first and second synchronous rectifier switches SR1, SR2 is thereby produced, and cross conduction is substantially eliminated. As a result, the input current spikes illustrated in FIG. 3 are substantially attenuated.


Turning now to FIG. 7, illustrated is a graphical representation of waveforms produced with non-overlapping gate drive signals for first and a second synchronous rectifier switches SR1, SR2 in accordance with the principles of the present invention. The first and second synchronous rectifier switches SR1, SR2 are coupled in a circuit arrangement wherein a shoot-through current would be produced if both synchronous rectifier switches SR1, SR2 were simultaneously enabled to conduct. In the top portion of FIG. 7, input current spikes due to diode cross conduction are no longer visible (see waveform 710). In the middle and lower portions of FIG. 7, gate drive waveforms are illustrated without overlap (see, e.g., region 720) between their high voltage states. As a consequence, the input voltage source is not presented with brief periodic short circuits, thereby eliminating an unnecessarily high level of electromagnetic interference, and decreasing conduction losses for the bridge rectifier.


Turning now to FIG. 8, illustrated is a graphical representation demonstrating dead time between the first and second synchronous rectifier switches SR1, SR2, introduced with respect to FIG. 6. The graphical representation illustrates gate drive waveforms 810, 820 for gate drive signals for the first and second synchronous rectifier switches SR1, SR2, respectively, that demonstrate a fast turn off of the first synchronous rectifier switch SR1 and a turn on with a delay for the second synchronous rectifier switch SR2. Thus, in the controller introduced herein, a second diode (diode D15 in series with the diode D6) is included therein that detects a forward voltage drop across a switch (e.g., the first synchronous rectifier switch SR1). A discharge switch Q3, diode D12, and resistors R12, R15 are included in controller for the switch (e.g., the first synchronous rectifier switch SR1) to quickly discharge a gate charge thereof, enabling thereby fast turn off of the switch.


Turning now to FIG. 9, illustrated is a schematic diagram of an embodiment of a controller for first and second synchronous rectifier switches SR1, SR2 constructed according to the principles of the present invention. The controller includes first and second lock switches Q24, Q25 coupled to gate terminals of the first and second synchronous rectifier switches SR1, SR2, respectively, to provide a further mechanism to prevent cross conduction of the first and second synchronous rectifier switches SR1, SR2. The first and second lock switches Q24, Q25 form a mutual lock circuit for the first and second synchronous rectifier switches SR1, SR2, wherein a switched terminal of one of the lock switches (e.g., the first lock switch Q24) is coupled to a control terminal of the other lock switch (e.g., the second lock switch Q25). Accordingly, the gate terminal of the first lock switch Q24 is cross-coupled to the drain terminal of the second lock switch Q25, and the gate terminal of the second lock switch Q25 is cross-coupled to the drain terminal of first lock switch Q24. By cross-coupling the gate and drain terminals of the first and second lock switches Q24, Q25, only one can be switched on at the same time (i.e., only one can sustain a substantial positive voltage at its drain terminal). However, cross coupling the gate and drain terminals of the first and second lock switches Q24, Q25, still allows both switches to be off at the same time. The remainder of the controller illustrated in FIG. 9 is formed with analogous components illustrated and described with reference to FIG. 5.


Thus, a controller for a switch has been introduced herein. In one embodiment, the controller for the switch (e.g., a synchronous rectifier switch) includes an amplifier (e.g., coupled to a bias voltage source) including a plurality of series-coupled diodes configured to produce an input offset voltage therefor and a discharge switch having first and second switched terminals coupled to gate and source terminals, respectively, of the switch and a control terminal coupled to an output of the amplifier. The discharge switch is configured to discharge a gate-to-source capacitance of the switch. In related embodiments, the gate terminal of the switch is coupled to a bias voltage source through a resistor, and/or the gate terminal of the switch is coupled to a bias voltage source through a charge switch with a control terminal coupled to the output of the amplifier. The amplifier may also include an amplifier switch having a base terminal coupled to an input of the amplifier and through the plurality of series-coupled diodes to a drain terminal of the switch, an emitter terminal coupled to the source terminal of the switch, and a collector terminal coupled to the output of the amplifier. The input offset voltage produced by the plurality of series-coupled diodes is configured to cause a turn-on delay (e.g., in a range of one microsecond to four milliseconds) for the switch. When employed with multiples switches, the controller may further include a mutual lock circuit including a first lock switch and a second lock switch coupled to a gate terminal of a switch and a gate terminal of another switch, respectively, wherein a switched terminal (e.g., drain terminal) of the first lock switch is coupled to a control terminal (e.g., gate terminal) of the second lock switch.


In a related embodiment, a controller for a power converter and method of operating the same employable with a bridge rectifier having first and second synchronous rectifier switches has been introduced herein. The controller includes an amplifier including an amplifier switch and a plurality of series-coupled diodes configured to produce a threshold voltage to enable a turn-on delay for the first synchronous rectifier switch. The turn-on delay is a function of a voltage at a source terminal of the first synchronous rectifier switch being higher than a voltage at a drain terminal of the first synchronous rectifier switch by the threshold voltage. Also, the amplifier switch is configured to be turned off when a voltage at the source terminal is higher than a voltage at the drain terminal of the first synchronous rectifier switch by the threshold voltage and a body diode of the first synchronous rectifier switch is forward biased, thereby causing a charge switch to provide a positive bias voltage to the gate terminal of the first synchronous rectifier switch to enable a conductivity thereof.


The controller also includes a discharge switch having first and second switched terminals coupled to gate and source terminals, respectively, of the first synchronous rectifier switch and a control terminal coupled to an output of the amplifier. The discharge switch is configured to discharge a gate-to-source capacitance of the first synchronous rectifier switch to enable a turn off thereof. The discharge switch is configured to be turned on and discharge the gate-to-source capacitance of the first synchronous rectifier switch when a body diode of the first synchronous rectifier switch is back biased. Additionally, the amplifier is configured to enable the turn-on delay for the first synchronous rectifier switch and the discharge switch is configured to enable the turn off of the first synchronous rectifier switch to substantially eliminate cross conduction with the second synchronous rectifier switch. Also, the gate terminal of the first synchronous rectifier switch is coupled to a bias voltage source through a charge switch with a control terminal coupled to the output of the amplifier, and the gate terminal of the first synchronous rectifier switch is coupled to a bias voltage source through a resistor. In accordance with the first and second synchronous rectifier switches, a mutual lock circuit includes a first lock switch and a second lock switch coupled to a gate terminal of the first and second synchronous rectifier switches, respectively, wherein a switched terminal (e.g., drain terminal) of the first lock switch is coupled to a control terminal (e.g., gate terminal) of the second lock switch.


Those skilled in the art should understand that the previously described embodiments of a synchronous rectifier power switch and related methods of operating the same are submitted for illustrative purposes only. In addition, various power converter topologies are well within the broad scope of the present invention. While the synchronous rectifier power switch has been described in the environment of a flyback power converter, it may also be applied to other systems such as, without limitation, a power amplifier and a motor controller.


For a better understanding of power converters, see “Modern DC-to-DC Power Switch-mode Power Converter Circuits,” by Rudolph P. Severns and Gordon Bloom, Van Nostrand Reinhold Company, New York, N.Y. (1985) and “Principles of Power Electronics,” by J. G. Kassakian, M. F. Schlecht and G. C. Verghese, Addison-Wesley (1991). The aforementioned references are incorporated herein by reference in their entirety.


Also, although the present invention and its advantages have been described in detail, it should be understood that various changes, substitutions and alterations can be made herein without departing from the spirit and scope of the invention as defined by the appended claims. For example, many of the processes discussed above can be implemented in different methodologies and replaced by other processes, or a combination thereof.


Moreover, the scope of the present application is not intended to be limited to the particular embodiments of the process, machine, manufacture, composition of matter, means, methods, and steps described in the specification. As one of ordinary skill in the art will readily appreciate from the disclosure of the present invention, processes, machines, manufacture, compositions of matter, means, methods, or steps, presently existing or later to be developed, that perform substantially the same function or achieve substantially the same result as the corresponding embodiments described herein may be utilized according to the present invention. Accordingly, the appended claims are intended to include within their scope such processes, machines, manufacture, compositions of matter, means, methods, or steps.

Claims
  • 1. A controller employable with a bridge rectifier having first and second synchronous rectifier switches, comprising: an amplifier configured to enable a turn-on delay with a plurality of series-coupled diodes for said first synchronous rectifier switch;a discharge switch having a control terminal coupled to an output of said amplifier via a charge switch, and first and second switched terminals coupled to gate and source terminals, respectively, of said first synchronous rectifier switch and configured to discharge a gate-to-source capacitance of said first synchronous rectifier switch to enable a turn off thereof; anda mutual lock circuit including a first lock switch and a second lock switch coupled to said gate terminal of said first synchronous rectifier switch and a gate terminal of said second synchronous rectifier switch, respectively, wherein a switched terminal of said first lock switch is cross-coupled to a control terminal of said second lock switch, a switched terminal of said second lock switch is cross-coupled to a control terminal of said first lock switch, and said first lock switch is parallel-coupled to said discharge switch.
  • 2. The controller as recited in claim 1 wherein said amplifier is configured to produce a threshold voltage to enable said turn-on delay for said first synchronous rectifier switch.
  • 3. The controller as recited in claim 1 wherein said amplifier is configured to produce a threshold voltage in accordance with said plurality of series-coupled diodes to enable said turn-on delay for said first synchronous rectifier switch.
  • 4. The controller as recited in claim 1 wherein said turn-on delay is a function of a voltage at said source terminal being higher than a voltage at a drain terminal of said first synchronous rectifier switch by a threshold voltage.
  • 5. The controller as recited in claim 1 wherein an amplifier switch is configured to be turned off when a voltage at said source terminal is higher than a voltage at a drain terminal of said first synchronous rectifier switch by a threshold voltage and a body diode of said first synchronous rectifier switch is forward biased, thereby causing said charge switch to provide a positive bias voltage to said gate terminal of said first synchronous rectifier switch to enable a conductivity thereof.
  • 6. The controller as recited in claim 1, further comprising: another amplifier configured to enable a turn-on delay with another plurality of series-coupled diodes for said second synchronous rectifier switch; andanother discharge switch having a control terminal coupled to an output of said another amplifier via another charge switch, and first and second switched terminals coupled to gate and source terminals, respectively, of said second synchronous rectifier switch and configured to discharge a gate-to-source capacitance of said second synchronous rectifier switch to enable a turn off thereof.
  • 7. The controller as recited in claim 1 wherein said discharge switch is configured to be turned on and discharge said gate-to-source capacitance of said first synchronous rectifier switch when a body diode of said first synchronous rectifier switch is back biased.
  • 8. The controller as recited in claim 1 wherein said amplifier is configured to enable said turn-on delay for said first synchronous rectifier switch and said discharge switch is configured to enable said turn off of said first synchronous rectifier switch to substantially eliminate cross conduction with said second synchronous rectifier switch.
  • 9. The controller as recited in claim 1 wherein said charge switch is configured to provide a positive bias voltage from a bias voltage source through a diode to said gate terminal of said first synchronous rectifier switch to enable a conductivity thereof.
  • 10. The controller as recited in claim 1 wherein said discharge switch is a bipolar transistor.
  • 11. A method of operating a controller employable with a bridge rectifier having first and second synchronous rectifier switches, comprising: enabling a turn-on delay for said first synchronous rectifier switch with a plurality of series-coupled diodes of an amplifier;discharging a gate-to-source capacitance of said first synchronous rectifier switch with a discharge switch having a control terminal coupled to an output of said amplifier via a charge switch, and first and second switched terminals coupled to gate and source terminals, respectively, of said first synchronous rectifier switch to enable a turn off of said first synchronous rectifier switch; andreducing cross conduction between said first and second synchronous rectifier switches with a mutual lock circuit including a first lock switch and a second lock switch coupled to said gate terminal of said first synchronous rectifier switch and a gate terminal of said second synchronous rectifier switch, respectively, wherein a switched terminal of said first lock switch is cross-coupled to a control terminal of said second lock switch, a switched terminal of said second lock switch is cross-coupled to a control terminal of said first lock switch, and said first lock switch is parallel-coupled to said discharge switch.
  • 12. The method as recited in claim 11 wherein said enabling comprises producing a threshold voltage in accordance with said plurality of series-coupled diodes.
  • 13. The method as recited in claim 11 wherein said enabling comprises turning off an amplifier switch when a voltage at said source terminal is higher than a voltage at a drain terminal of said first synchronous rectifier switch by a threshold voltage and a body diode of said first synchronous rectifier switch is forward biased, thereby causing said charge switch to provide a positive bias voltage to said gate terminal of said first synchronous rectifier switch to enable a conductivity thereof.
  • 14. The method as recited in claim 11 wherein discharging comprises turning on said discharge switch and discharging said gate-to-source capacitance of said first synchronous rectifier switch when a body diode of said first synchronous rectifier switch is back biased.
  • 15. A power converter, comprising: a bridge rectifier having first and second synchronous rectifier switches; anda controller, including: an amplifier configured to enable a turn-on delay with a plurality of series-coupled diodes for said first synchronous rectifier switch,a discharge switch having a control terminal coupled to an output of said amplifier via a charge switch, and first and second switched terminals coupled to gate and source terminals, respectively, of said first synchronous rectifier switch and configured to discharge a gate-to-source capacitance of said first synchronous rectifier switch to enable a turn off thereof, anda mutual lock circuit including a first lock switch and a second lock switch coupled to said gate terminal of said first synchronous rectifier switch and a gate terminal of said second synchronous rectifier switch, respectively, wherein a switched terminal of said first lock switch is cross-coupled to a control terminal of said second lock switch, a switched terminal of said second lock switch is cross-coupled to a control terminal of said first lock switch, and said first lock switch is parallel-coupled to said discharge switch.
  • 16. The power converter as recited in claim 15 wherein said amplifier is configured to produce a threshold voltage in accordance with said plurality of series-coupled diodes to enable said turn-on delay for said first synchronous rectifier switch.
  • 17. The power converter as recited in claim 15 wherein an amplifier switch is configured to be turned off when a voltage at said source terminal is higher than a voltage at a drain terminal of said first synchronous rectifier switch by a threshold voltage and a body diode of said first synchronous rectifier switch is forward biased, thereby causing said charge switch to provide a positive bias voltage to said gate terminal of said first synchronous rectifier switch to enable a conductivity thereof.
  • 18. The power converter as recited in claim 15 wherein said discharge switch is configured to be turned on and discharge said gate-to-source capacitance of said first synchronous rectifier switch when a body diode of said first synchronous rectifier switch is back biased.
  • 19. The power converter as recited in claim 15 wherein said amplifier is configured to enable said turn-on delay for said first synchronous rectifier switch and said discharge switch is configured to enable said turn off of said first synchronous rectifier switch to substantially eliminate cross conduction with said second synchronous rectifier switch.
  • 20. The power converter as recited in claim 15 wherein said charge switch is configured to provide a positive bias voltage from a bias voltage source through a diode to said gate terminal of said first synchronous rectifier switch to enable a conductivity thereof.
Parent Case Info

This application claims the benefit of U.S. Provisional Application No. 61/145,657, entitled “Controller for a Synchronous Rectifier Switch and Power Converter Employing the Same,” filed on Jan. 19, 2009, which application is incorporated herein by reference.

US Referenced Citations (497)
Number Name Date Kind
1376978 Stoekle May 1921 A
2387943 Putman Oct 1945 A
2473662 Pohm Jun 1949 A
3007060 Guenther Oct 1961 A
3346798 Dinger Oct 1967 A
3358210 Grossoehme Dec 1967 A
3433998 Woelber Mar 1969 A
3484562 Kronfeld Dec 1969 A
3553620 Cielo et al. Jan 1971 A
3622868 Todt Nov 1971 A
3681679 Chung Aug 1972 A
3708742 Gunn Jan 1973 A
3708744 Stephens et al. Jan 1973 A
4011498 Hamsra Mar 1977 A
4019122 Ryan Apr 1977 A
4075547 Wroblewski Feb 1978 A
4202031 Hesler et al. May 1980 A
4257087 Cuk Mar 1981 A
4274071 Pfarre Jun 1981 A
4327348 Hirayama Apr 1982 A
4471423 Hase Sep 1984 A
4499481 Greene Feb 1985 A
4570174 Huang et al. Feb 1986 A
4577268 Easter et al. Mar 1986 A
4581691 Hock Apr 1986 A
4613841 Roberts Sep 1986 A
4636823 Margalit et al. Jan 1987 A
4660136 Montorefano Apr 1987 A
4672245 Majumdar et al. Jun 1987 A
4770667 Evans et al. Sep 1988 A
4770668 Skoultchi et al. Sep 1988 A
4780653 Bezos et al. Oct 1988 A
4785387 Lee et al. Nov 1988 A
4799138 Chahabadi et al. Jan 1989 A
4803609 Gillett et al. Feb 1989 A
4823249 Garcia, II Apr 1989 A
4837496 Erdi Jun 1989 A
4866367 Ridley et al. Sep 1989 A
4887061 Matsumura Dec 1989 A
4899271 Seiersen Feb 1990 A
4903089 Hollis et al. Feb 1990 A
4922400 Cook May 1990 A
4962354 Visser et al. Oct 1990 A
4964028 Spataro Oct 1990 A
4999759 Cavagnolo et al. Mar 1991 A
5003277 Sokai et al. Mar 1991 A
5014178 Balakrishnan May 1991 A
5027264 DeDoncker et al. Jun 1991 A
5055991 Carroll et al. Oct 1991 A
5068756 Morris et al. Nov 1991 A
5106778 Hollis et al. Apr 1992 A
5126714 Johnson Jun 1992 A
5132888 Lo et al. Jul 1992 A
5134771 Lee et al. Aug 1992 A
5172309 DeDoncker et al. Dec 1992 A
5177460 Dhyanchand et al. Jan 1993 A
5182535 Dhyanchand Jan 1993 A
5204809 Andresen Apr 1993 A
5206621 Yerman Apr 1993 A
5208739 Sturgeon May 1993 A
5223449 Morris et al. Jun 1993 A
5225971 Spreen Jul 1993 A
5231037 Yuan et al. Jul 1993 A
5244829 Kim Sep 1993 A
5262930 Hua et al. Nov 1993 A
5282126 Husgen Jan 1994 A
5291382 Cohen Mar 1994 A
5303138 Rozman Apr 1994 A
5305191 Loftus, Jr. Apr 1994 A
5335163 Seiersen Aug 1994 A
5336985 McKenzie Aug 1994 A
5342795 Yuan et al. Aug 1994 A
5343140 Gegner Aug 1994 A
5353001 Meinel et al. Oct 1994 A
5369042 Morris et al. Nov 1994 A
5374887 Drobnik Dec 1994 A
5399968 Sheppard et al. Mar 1995 A
5407842 Morris et al. Apr 1995 A
5453923 Scalais et al. Sep 1995 A
5459652 Faulk Oct 1995 A
5468661 Yuan et al. Nov 1995 A
5477175 Tisinger et al. Dec 1995 A
5508903 Alexndrov Apr 1996 A
5523673 Ratliff et al. Jun 1996 A
5539630 Pietkiewicz et al. Jul 1996 A
5554561 Plumton Sep 1996 A
5555494 Morris Sep 1996 A
5581224 Yamaguchi Dec 1996 A
5610085 Yuan et al. Mar 1997 A
5624860 Plumton et al. Apr 1997 A
5636116 Milavec et al. Jun 1997 A
5661642 Shimashita Aug 1997 A
5663876 Newton et al. Sep 1997 A
5671131 Brown Sep 1997 A
5700703 Huang et al. Dec 1997 A
5712189 Plumton et al. Jan 1998 A
5719544 Vinciarelli et al. Feb 1998 A
5734564 Brkovic Mar 1998 A
5736842 Jovanovic Apr 1998 A
5742491 Bowman et al. Apr 1998 A
5747842 Plumton May 1998 A
5756375 Celii et al. May 1998 A
5760671 Lahr et al. Jun 1998 A
5783984 Keuneke Jul 1998 A
5784266 Chen Jul 1998 A
5804943 Kollman et al. Sep 1998 A
5815383 Lei Sep 1998 A
5815386 Gordon Sep 1998 A
5864110 Moriguchi et al. Jan 1999 A
5870296 Schaffer Feb 1999 A
5870299 Rozman Feb 1999 A
5880942 Leu Mar 1999 A
5886508 Jutras Mar 1999 A
5889298 Plumton et al. Mar 1999 A
5889660 Taranowski et al. Mar 1999 A
5900822 Sand et al. May 1999 A
5907481 Svardsjo May 1999 A
5909110 Yuan et al. Jun 1999 A
5910665 Plumton et al. Jun 1999 A
5920475 Boylan et al. Jul 1999 A
5925088 Nasu Jul 1999 A
5929665 Ichikawa et al. Jul 1999 A
5933338 Wallace Aug 1999 A
5940287 Brkovic Aug 1999 A
5946207 Schoofs Aug 1999 A
5956245 Rozman Sep 1999 A
5956578 Weitzel et al. Sep 1999 A
5959850 Lim Sep 1999 A
5977853 Ooi et al. Nov 1999 A
5982640 Naveed et al. Nov 1999 A
5999066 Saito et al. Dec 1999 A
5999429 Brown Dec 1999 A
6003139 McKenzie Dec 1999 A
6008519 Yuan et al. Dec 1999 A
6011703 Boylan et al. Jan 2000 A
6038154 Boylan et al. Mar 2000 A
6046664 Weller et al. Apr 2000 A
6055166 Jacobs Apr 2000 A
6060943 Jansen May 2000 A
6067237 Nguyen May 2000 A
6069798 Liu May 2000 A
6069799 Bowman et al. May 2000 A
6078510 Spampinato et al. Jun 2000 A
6084792 Chen et al. Jul 2000 A
6094038 Lethellier Jul 2000 A
6097046 Plumton Aug 2000 A
6125046 Jang et al. Sep 2000 A
6144187 Bryson Nov 2000 A
6147886 Wittenbreder Nov 2000 A
6156611 Lan et al. Dec 2000 A
6160374 Hayes et al. Dec 2000 A
6160721 Kossives et al. Dec 2000 A
6163466 Davila, Jr. et al. Dec 2000 A
6181231 Bartilson Jan 2001 B1
6188586 Farrington et al. Feb 2001 B1
6191964 Boylan et al. Feb 2001 B1
6208535 Parks Mar 2001 B1
6212084 Turner Apr 2001 B1
6215290 Yang et al. Apr 2001 B1
6218891 Lotfi et al. Apr 2001 B1
6229197 Plumton et al. May 2001 B1
6262564 Kanamori Jul 2001 B1
6288501 Nakamura et al. Sep 2001 B1
6288920 Jacobs et al. Sep 2001 B1
6295217 Yang et al. Sep 2001 B1
6304460 Cuk Oct 2001 B1
6309918 Huang et al. Oct 2001 B1
6317021 Jansen Nov 2001 B1
6317337 Yasumura Nov 2001 B1
6320490 Clayton Nov 2001 B1
6323090 Zommer Nov 2001 B1
6325035 Codina et al. Dec 2001 B1
6344986 Jain et al. Feb 2002 B1
6345364 Lee Feb 2002 B1
6348848 Herbert Feb 2002 B1
6351396 Jacobs Feb 2002 B1
6356462 Jang et al. Mar 2002 B1
6362986 Schultz et al. Mar 2002 B1
6373727 Hedenskog et al. Apr 2002 B1
6373734 Martinelli Apr 2002 B1
6380836 Matsumoto et al. Apr 2002 B2
6388898 Fan et al. May 2002 B1
6392902 Jang et al. May 2002 B1
6396718 Ng et al. May 2002 B1
6400579 Cuk Jun 2002 B2
6414578 Jitaru Jul 2002 B1
6418039 Lentini et al. Jul 2002 B2
6438009 Assow Aug 2002 B2
6445598 Yamada Sep 2002 B1
6462965 Uesono Oct 2002 B1
6466461 Mao et al. Oct 2002 B2
6469564 Jansen Oct 2002 B1
6477065 Parks Nov 2002 B2
6483724 Blair et al. Nov 2002 B1
6489754 Blom Dec 2002 B2
6498367 Chang et al. Dec 2002 B1
6501193 Krugly Dec 2002 B1
6504321 Giannopoulos et al. Jan 2003 B2
6512352 Qian Jan 2003 B2
6525603 Morgan Feb 2003 B1
6539299 Chatfield et al. Mar 2003 B2
6545453 Glinkowski et al. Apr 2003 B2
6548992 Alcantar et al. Apr 2003 B1
6549436 Sun Apr 2003 B1
6552917 Bourdillon Apr 2003 B1
6559689 Clark May 2003 B1
6563725 Carsten May 2003 B2
6570268 Perry et al. May 2003 B1
6580627 Toshio Jun 2003 B2
6597588 Matsumoto Jul 2003 B2
6597592 Carsten Jul 2003 B2
6608768 Sula Aug 2003 B2
6611132 Nakagawa et al. Aug 2003 B2
6614206 Wong et al. Sep 2003 B1
6636025 Irissou Oct 2003 B1
6654259 Koshita et al. Nov 2003 B2
6661276 Chang Dec 2003 B1
6668296 Dougherty et al. Dec 2003 B1
6674658 Mao et al. Jan 2004 B2
6683797 Zaitsu et al. Jan 2004 B2
6687137 Yasumura Feb 2004 B1
6696910 Nuytkens et al. Feb 2004 B2
6731486 Holt et al. May 2004 B2
6741099 Krugly May 2004 B1
6751106 Zhang et al. Jun 2004 B2
6753723 Zhang Jun 2004 B2
6765810 Perry Jul 2004 B2
6775159 Webb et al. Aug 2004 B2
6784644 Xu et al. Aug 2004 B2
6804125 Brkovic Oct 2004 B2
6813170 Yang Nov 2004 B2
6831847 Perry Dec 2004 B2
6856149 Yang Feb 2005 B2
6862194 Yang et al. Mar 2005 B2
6867678 Yang Mar 2005 B2
6867986 Amei Mar 2005 B2
6873237 Chandrasekaran et al. Mar 2005 B2
6882548 Jacobs et al. Apr 2005 B1
6906934 Yang et al. Jun 2005 B2
6943553 Zimermann et al. Sep 2005 B2
6944033 Xu et al. Sep 2005 B1
6977824 Yang et al. Dec 2005 B1
6980077 Chandrasekaran et al. Dec 2005 B1
6982887 Batarseh et al. Jan 2006 B2
7009486 Goeke et al. Mar 2006 B1
7012414 Mehrotra et al. Mar 2006 B1
7016204 Yang et al. Mar 2006 B2
7026807 Anderson et al. Apr 2006 B2
7034586 Mehas et al. Apr 2006 B2
7034647 Yan et al. Apr 2006 B2
7046523 Sun et al. May 2006 B2
7061358 Yang Jun 2006 B1
7072189 Kim Jul 2006 B2
7075799 Qu Jul 2006 B2
7076360 Ma Jul 2006 B1
7095638 Uusitalo Aug 2006 B2
7098640 Brown Aug 2006 B2
7099163 Ying Aug 2006 B1
7148669 Maksimovic et al. Dec 2006 B2
7170268 Kim Jan 2007 B2
7176662 Chandrasekaran Feb 2007 B2
7209024 Nakahori Apr 2007 B2
7280026 Chandrasekaran et al. Oct 2007 B2
7285807 Brar et al. Oct 2007 B2
7298118 Chandrasekaran Nov 2007 B2
7301785 Yasumura Nov 2007 B2
7312686 Bruno Dec 2007 B2
7321283 Mehrotra et al. Jan 2008 B2
7332992 Iwai Feb 2008 B2
7339208 Brar et al. Mar 2008 B2
7339801 Yasumura Mar 2008 B2
7348612 Sriram et al. Mar 2008 B2
7360004 Dougherty et al. Apr 2008 B2
7362592 Yang et al. Apr 2008 B2
7362593 Yang et al. Apr 2008 B2
7375607 Lee et al. May 2008 B2
7375994 Andreycak May 2008 B2
7385375 Rozman Jun 2008 B2
7386404 Cargonja et al. Jun 2008 B2
7417875 Chandrasekaran et al. Aug 2008 B2
7427910 Mehrotra et al. Sep 2008 B2
7431862 Mehrotra et al. Oct 2008 B2
7439556 Brar et al. Oct 2008 B2
7439557 Brar et al. Oct 2008 B2
7446512 Nishihara et al. Nov 2008 B2
7447049 Garner et al. Nov 2008 B2
7462891 Brar et al. Dec 2008 B2
7468649 Chandrasekaran Dec 2008 B2
7471523 Yang Dec 2008 B2
7471527 Chen Dec 2008 B2
7489225 Dadafshar Feb 2009 B2
7499295 de Silva et al. Mar 2009 B2
7541640 Brar et al. Jun 2009 B2
7554430 Mehrotra et al. Jun 2009 B2
7558037 Gong et al. Jul 2009 B1
7558082 Jitaru Jul 2009 B2
7567445 Coulson et al. Jul 2009 B2
7583555 Kang Sep 2009 B2
7626370 Mei et al. Dec 2009 B1
7630219 Lee Dec 2009 B2
7633369 Chandrasekaran et al. Dec 2009 B2
7663183 Brar et al. Feb 2010 B2
7667986 Artusi et al. Feb 2010 B2
7675758 Artusi et al. Mar 2010 B2
7675759 Artusi et al. Mar 2010 B2
7675764 Chandrasekaran et al. Mar 2010 B2
7715217 Manabe et al. May 2010 B2
7733679 Luger et al. Jun 2010 B2
7746041 Xu et al. Jun 2010 B2
7778050 Yamashita Aug 2010 B2
7778051 Yang Aug 2010 B2
7787264 Yang et al. Aug 2010 B2
7791903 Zhang et al. Sep 2010 B2
7795849 Sohma Sep 2010 B2
7813101 Morikawa Oct 2010 B2
7847535 Meynard et al. Dec 2010 B2
7889517 Artusi et al. Feb 2011 B2
7889521 Hsu Feb 2011 B2
7906941 Jayaraman et al. Mar 2011 B2
7940035 Yang May 2011 B2
7965528 Yang et al. Jun 2011 B2
7983063 Lu et al. Jul 2011 B2
8004112 Koga et al. Aug 2011 B2
8134443 Chandrasekaran et al. Mar 2012 B2
8179699 Tumminaro et al. May 2012 B2
8184456 Jain et al. May 2012 B1
8278889 Tataeishi Oct 2012 B2
8467199 Lee et al. Jun 2013 B2
8488355 Berghegger Jul 2013 B2
8520414 Garrity et al. Aug 2013 B2
8520420 Jungreis et al. Aug 2013 B2
8638578 Zhang Jan 2014 B2
8643222 Brinlee et al. Feb 2014 B2
8767418 Jungreis et al. Jul 2014 B2
8787043 Berghegger Jul 2014 B2
8792256 Berghegger Jul 2014 B2
8792257 Berghegger Jul 2014 B2
20010020886 Matsumoto et al. Sep 2001 A1
20010024373 Cuk Sep 2001 A1
20010055216 Shirato Dec 2001 A1
20020044463 Bontempo et al. Apr 2002 A1
20020057080 Telefus et al. May 2002 A1
20020071295 Nishikawa Jun 2002 A1
20020101741 Brkovic Aug 2002 A1
20020110005 Mao et al. Aug 2002 A1
20020114172 Webb et al. Aug 2002 A1
20020121647 Taylor Sep 2002 A1
20020126512 Nakagawa et al. Sep 2002 A1
20020167385 Ackermann Nov 2002 A1
20020176262 Tripathi et al. Nov 2002 A1
20030026115 Miyazaki Feb 2003 A1
20030030422 Sula Feb 2003 A1
20030039129 Miyazaki et al. Feb 2003 A1
20030063483 Carsten Apr 2003 A1
20030063484 Carsten Apr 2003 A1
20030076079 Alcantar et al. Apr 2003 A1
20030086279 Bourdillon May 2003 A1
20030197585 Chandrasekaran et al. Oct 2003 A1
20030198067 Sun et al. Oct 2003 A1
20040017689 Zhang et al. Jan 2004 A1
20040032754 Yang Feb 2004 A1
20040034555 Dismukes et al. Feb 2004 A1
20040064621 Dougherty et al. Apr 2004 A1
20040148047 Dismukes et al. Jul 2004 A1
20040156220 Kim et al. Aug 2004 A1
20040174147 Vinciarelli Sep 2004 A1
20040196672 Amei Oct 2004 A1
20040200631 Chen Oct 2004 A1
20040201380 Zimmermann et al. Oct 2004 A1
20040217794 Strysko Nov 2004 A1
20040257095 Yang Dec 2004 A1
20050024179 Chandrasekaran et al. Feb 2005 A1
20050046404 Uusitalo Mar 2005 A1
20050052224 Yang et al. Mar 2005 A1
20050052886 Yang et al. Mar 2005 A1
20050207189 Chen Sep 2005 A1
20050245658 Mehrotra et al. Nov 2005 A1
20050254266 Jitaru Nov 2005 A1
20050254268 Reinhard et al. Nov 2005 A1
20050281058 Batarseh et al. Dec 2005 A1
20050286270 Petkov et al. Dec 2005 A1
20060006975 Jitaru et al. Jan 2006 A1
20060006976 Bruno Jan 2006 A1
20060007713 Brown Jan 2006 A1
20060038549 Mehrotra et al. Feb 2006 A1
20060038649 Mehrotra et al. Feb 2006 A1
20060038650 Mehrotra et al. Feb 2006 A1
20060044845 Fahlenkamp Mar 2006 A1
20060091430 Sriram et al. May 2006 A1
20060109698 Qu May 2006 A1
20060187684 Chandrasekaran et al. Aug 2006 A1
20060197510 Chandrasekaran Sep 2006 A1
20060198173 Rozman Sep 2006 A1
20060226477 Brar et al. Oct 2006 A1
20060226478 Brar et al. Oct 2006 A1
20060227576 Yasumuar Oct 2006 A1
20060237968 Chandrasekaran Oct 2006 A1
20060255360 Brar et al. Nov 2006 A1
20060271315 Cargonja et al. Nov 2006 A1
20060286865 Chou et al. Dec 2006 A1
20070007945 King et al. Jan 2007 A1
20070019356 Morikawa Jan 2007 A1
20070025124 Hansson Feb 2007 A1
20070030717 Luger et al. Feb 2007 A1
20070041224 Moyse et al. Feb 2007 A1
20070045765 Brar et al. Mar 2007 A1
20070058402 Shekhawat et al. Mar 2007 A1
20070069286 Brar et al. Mar 2007 A1
20070114979 Chandrasekaran May 2007 A1
20070120953 Koga et al. May 2007 A1
20070121351 Zhang et al. May 2007 A1
20070139984 Lo Jun 2007 A1
20070159857 Lee Jul 2007 A1
20070206523 Huynh et al. Sep 2007 A1
20070222463 Qahouq et al. Sep 2007 A1
20070241721 Weinstein et al. Oct 2007 A1
20070274106 Coulson et al. Nov 2007 A1
20070274107 Garner et al. Nov 2007 A1
20070296028 Brar et al. Dec 2007 A1
20070296383 Xu Dec 2007 A1
20070298559 Brar et al. Dec 2007 A1
20070298564 Brar et al. Dec 2007 A1
20080012423 Mimran Jan 2008 A1
20080024094 Nishihara et al. Jan 2008 A1
20080024259 Chandrasekaran et al. Jan 2008 A1
20080030178 Leonard et al. Feb 2008 A1
20080031021 Ros et al. Feb 2008 A1
20080037294 de Silva et al. Feb 2008 A1
20080043503 Yang Feb 2008 A1
20080054874 Chandrasekaran et al. Mar 2008 A1
20080061746 Kobayashi et al. Mar 2008 A1
20080080219 Sohma Apr 2008 A1
20080111657 Mehrotra et al. May 2008 A1
20080130321 Artusi et al. Jun 2008 A1
20080130322 Artusi et al. Jun 2008 A1
20080137381 Beasley Jun 2008 A1
20080150666 Chandrasekaran et al. Jun 2008 A1
20080198638 Reinberger et al. Aug 2008 A1
20080205104 Lev et al. Aug 2008 A1
20080224812 Chandrasekaran Sep 2008 A1
20080232141 Artusi et al. Sep 2008 A1
20080298106 Tataeishi Dec 2008 A1
20080310190 Chandrasekaran et al. Dec 2008 A1
20080315852 Jayaraman et al. Dec 2008 A1
20080316779 Jayaraman et al. Dec 2008 A1
20090002054 Tsunoda et al. Jan 2009 A1
20090027926 Yang et al. Jan 2009 A1
20090037768 Adams Feb 2009 A1
20090046486 Lu et al. Feb 2009 A1
20090072626 Watanabe et al. Mar 2009 A1
20090097290 Chandrasekaran Apr 2009 A1
20090109711 Hsu Apr 2009 A1
20090257250 Liu Oct 2009 A1
20090273957 Feldtkeller Nov 2009 A1
20090284994 Lin et al. Nov 2009 A1
20090289557 Itoh et al. Nov 2009 A1
20090290385 Jungreis et al. Nov 2009 A1
20090302986 Bedea Dec 2009 A1
20090310388 Yang Dec 2009 A1
20090315530 Baranwal Dec 2009 A1
20100020578 Ryu et al. Jan 2010 A1
20100054000 Huynh Mar 2010 A1
20100066336 Araki et al. Mar 2010 A1
20100091522 Chandrasekaran et al. Apr 2010 A1
20100123486 Berghegger May 2010 A1
20100149838 Artusi et al. Jun 2010 A1
20100164400 Adragna Jul 2010 A1
20100164443 Tumminaro et al. Jul 2010 A1
20100182806 Garrity et al. Jul 2010 A1
20100188876 Garrity et al. Jul 2010 A1
20100202165 Zheng et al. Aug 2010 A1
20100213989 Nakatake Aug 2010 A1
20100219802 Lin et al. Sep 2010 A1
20100254168 Chandrasekaran Oct 2010 A1
20100321958 Brinlee et al. Dec 2010 A1
20100321964 Brinlee et al. Dec 2010 A1
20110025289 Wang et al. Feb 2011 A1
20110038179 Zhang Feb 2011 A1
20110062926 Qiu et al. Mar 2011 A1
20110080102 Ge et al. Apr 2011 A1
20110089917 Chen et al. Apr 2011 A1
20110095730 Strijker et al. Apr 2011 A1
20110134664 Berghegger Jun 2011 A1
20110149607 Jungreis et al. Jun 2011 A1
20110182089 Berghegger Jul 2011 A1
20110239008 Lam et al. Sep 2011 A1
20110241738 Tamaoka Oct 2011 A1
20110305047 Jungreis et al. Dec 2011 A1
20120020119 Tang et al. Jan 2012 A1
20120243271 Berghegger Sep 2012 A1
20120250378 Kok et al. Oct 2012 A1
20130003430 Reddy Jan 2013 A1
20130229829 Zhang et al. Sep 2013 A1
20130250627 Herfurth Sep 2013 A1
20140091720 Brinlee Apr 2014 A1
20140254215 Brinlee et al. Sep 2014 A1
20140301111 Jungreis et al. Oct 2014 A1
Foreign Referenced Citations (19)
Number Date Country
101141099 Mar 2008 CM
2904469 May 2007 CN
101202509 Jun 2008 CN
201252294 Jun 2009 CN
10112820 Oct 2002 DE
10310361 Sep 2004 DE
10352509 Jun 2005 DE
102013104899 Nov 2014 DE
0665634 Aug 1995 EP
57097361 Jun 1982 JP
3-215911 JP Sep 1991 JP
2000-68132 Mar 2000 JP
2008283818 Nov 2008 JP
8700991 Feb 1987 WO
03088463 Oct 2003 WO
WO2010083511 Jul 2010 WO
WO2010083514 Jul 2010 WO
WO2010114914 Oct 2010 WO
WO2011116225 Sep 2011 WO
Non-Patent Literature Citations (61)
Entry
Ajram, S., et al., “Ultrahigh Frequency DC-to-DC Converters Using GaAs Power Switches,” IEEE Transactions on Power Electronics, Sep. 2001, pp. 594-602, vol. 16, No. 5, IEEE, Los Alamitos, CA.
“AN100: Application Note using Lx100 Family of High Performance N-Ch JFET Transistors,” AN100.Rev 1.01, Sep. 2003, 5 pp., Lovoltech, Inc., Santa Clara, CA.
“AN101A: Gate Drive Network for a Power JFET,” AN101A.Rev 1.2, Nov. 2003, 2 pp., Lovoltech, Inc., Santa Clara, CA.
“AN108: Applications Note: How to Use Power JFETs® and MOSFETs Interchangeably in Low-Side Applications,” Rev. 1.0.1, Feb. 14, 2005, 4 pp., Lovoltech, Inc., Santa Clara, CA.
Balogh, L., et al., “Power-Factor Correction with Interleaved Boost Converters in Continuous-Inductor-Current Mode,”IEEE Proceedings of APEC, pp. 168-174, IEEE, Los Alamitos, CA.
Biernacki, J., et al., “Radio Frequency DC-DC Flyback Converter,” Proceedings of the 43rd IEEE Midwest Symposium on Circuits and Systems, Aug. 8-11, 2000, pp. 94-97, vol. 1, IEEE, Los Alamitos, CA.
Chen, W., et al., “Design of High Efficiency, Low Profile, Low Voltage Converter with Integrated Magnetics,”Proceedings of 1997 IEEE Applied Power Electronics Conference (APEC '97), 1997, pp. 911-917, IEEE, Los Alamitos, CA.
Chen, W., et al., “Integrated Planar Inductor Scheme for Multi-module Interleaved Quasi-Square-Wave (QSW) DC/DC Converter,” 30th Annual IEEE Power Electronics Specialists Conference (PESC '99), 1999, pp. 759-762, vol. 2, IEEE, Los Alamitos, CA.
Chhawchharia, P., et al., “On the Reduction of Component Count in Switched Capacitor DC/DC Convertors,” Hong Kong Polytechnic University, IEEE, 1997, Hung Horn, Kowloon, Hong King, pp. 1395-1401.
Curtis, K., “Advances in Microcontroller Peripherals Facilitate Current-Mode for Digital Power Supplies,” Digital Power Forum '06, 4 pp., Sep. 2006, Darnell Group, Richardson, TX.
Eisenbeiser, K., et al., “Manufacturable GaAs VFET for Power Switching Applications,” IEEE Electron Device Letters, Apr. 2000, pp. 144-145, vol. 21, No. 4, IEEE.
Gaye, M., et al., “A 50-100MHz 5V to -5V, 1W Cuk Converter Using Gallium Arsenide Power Switches,” ISCAS 2000—IEEE International Symposium on Circuits and Systems, May 28-31,2000, pp. I-264-I-267, vol. 1, IEEE, Geneva, Switzerland.
Goldberg, A.F., et al., “Issues Related to 1-10-MHz Transformer Design,” IEEE Transactions on Power Electronics, Jan. 1989, pp. 113-123, vol. 4, No. 1, IEEE, Los Alamitos, CA.
Goldberg, A.F., et al., “Finite-Element Analysis of Copper Loss in 1-10-MHz Transformers,” IEEE Transactions on Power Electronics, Apr. 1989, pp. 157-167, vol. 4, No. 2, IEEE, Los Alamitos, CA.
Jitaru, I.D., et al., “Quasi-Integrated Magnetic an Avenue for Higher Power Density and Efficiency in Power Converters,” 12th Annual Applied Power Electronics Conference and Exposition, Feb. 23-27, 1997, pp. 395-402, vol. 1, IEEE, Los Alamitos, CA.
Kollman, R., et al., “10 MHz PWM Converters with GaAs VFETs,” IEEE 11th Annual Applied Power Electronics Conference and Exposition, Mar. 1996, pp. 264-269, vol. 1, IEEE.
Kuwabara, K., et al., “Switched-Capacitor DC-DC Converters,” Fujitsu Limited, IEEE, 1988, Kawasaki, Japan, pp. 213-218.
Lee, P.-W., et al., “Steady-State Analysis of an Interleaved Boost Converter with Coupled Inductors,” IEEE Transactions on Industrial Electronics, Aug. 2000, pp. 787-795, vol. 47, No. 4, IEEE, Los Alamitos, CA.
Lenk, R., “Introduction to the Tapped Buck Converter,” PCIM 2000, HFPC 2000 Proceedings, Oct. 2000, pp. 155-166.
Liu, W., “Fundamentals of III-V Devices: HBTs, MESFETs, and HFETs/HEMTs,” §5-5: Modulation Doping, 1999, pp. 323-330, John Wiley & Sons, New York, NY.
Maksimović, D., et al., “Switching Converters with Wide DC Conversion Range,” IEEE Transactions on Power Electronics, Jan. 1991, pp. 151-157, vol. 6, No. 1, IEEE, Los Alamitos, CA.
Maxim, Application Note 725, www.maxim-ic.com/an725, Maxim Integrated Products, Nov. 29, 2001, 8 pages.
Middlebrook, R.D., “Transformerless DC-to-DC Converters with Large Conversion Ratios,” IEEE Transactions on Power Electronics, Oct. 1988, pp. 484-488, vol. 3, No. 4, IEEE, Los Alamitos, CA.
Miwa, B.A., et al., “High Efficiency Power Factor Correction Using Interleaving Techniques,” IEEE Proceedings of APEC, 1992, pp. 557-568, IEEE, Los Alamitos, CA.
National Semiconductor Corporation, “LMC7660 Switched Capacitor Voltage Converter,” www.national.com, Apr. 1997, 12 pages.
National Semiconductor Corporation, “LM2665 Switched Capacitor Voltage Converter,” www.national.com, Sep. 2005, 9 pages.
Nguyen, L.D., at al., “Ultra-High-Speed Modulation-Doped Field-Effect Transistors: A Tutorial Review,” Proceedings of the IEEE, Apr. 1992, pp. 494-518, vol. 80, No. 4, IEEE.
Niemela, V.A., et al., “Comparison of GaAs and Silicon Synchronous Rectifiers in a 3.3V Out, 50W DC-DC Converter,” 27th Annual IEEE Power Electronics Specialists Conference, Jun. 1996, pp. 861-867, vol. 1, IEEE.
Ninomiya, T., et al., “Static and Dynamic Analysis of Zero-Voltage-Switched Half-Bridge Converter with PWM Control,” Proceedings of 1991 IEEE Power Electronics Specialists Conference (PESC '91), 1991, pp. 230-237, IEEE, Los Alamitos, CA.
O'Meara, K., “A New Output Rectifier Configuration Optimized for High Frequency Operation,” Proceedings of 1991 High Frequency Power Conversion (HFPC '91) Conference, Jun. 1991, pp. 219-225, Toronto, CA.
Peng, C., et al., “A New Efficient High Frequency Rectifier Circuit,” Proceedings of 1991 High Frequency Power Conversion (HFPC '91) Conference, Jun. 1991, pp. 236-243, Toronto, CA.
Pietkiewicz, A., et al. “Coupled-Inductor Current-Doubler Topology in Phase-Shifted Full-Bridge DC-DC Converter,” 20th International Telecommunications Energy Conference (INTELEC), Oct. 1998, pp. 41-48, IEEE, Los Alamitos, CA.
Plumton, D.L., et al., “A Low On-Resistance High-Current GaAs Power VFET,” IEEE Electron Device Letters, Apr. 1995, pp. 142-144, vol. 16, No. 4, IEEE.
Rajeev, M., “An Input Current Shaper with Boost and Flyback Converter Using Integrated Magnetics,” Power Electronics and Drive Systems, 5th International Conference on Power Electronics and Drive Systems 2003, Nov. 17-20, 2003, pp. 327-331, vol. 1, IEEE, Los Alamitos, CA.
Rico, M., et al., “Static and Dynamic Modeling of Tapped-Inductor DC-to-DC Converters,” 1987, pp. 281-288, IEEE, Los Alamitos, CA.
Severns, R., “Circuit Reinvention in Power Electronics and Identification of Prior Work,” Proceedings of 1997 IEEE Applied Power Electronics Conference (APEC '97), 1997, pp. 3-9, IEEE, Los Alamitos, CA.
Severns, R., “Circuit Reinvention in Power Electronics and Identification of Prior Work,” IEEE Transactions on Power Electronics, Jan. 2001, pp. 1-7, vol. 16, No. 1, IEEE, Los Alamitos, CA.
Sun, J., et al., “Unified Analysis of Half-Bridge Converters with Current-Doubler Rectifier,” Proceedings of 2001 IEEE Applied Power Electronics Conference, 2001, pp. 514-520, IEEE, Los Alamitos, CA.
Sun, J., et al., “An Improved Current-Doubler Rectifier with Integrated Magnetics,” 17th Annual Applied Power Electronics Conference and Exposition (APEC), 2002, pp. 831-837, vol. 2, IEEE, Dallas, TX.
Texas Instruments Incorporated, “LT1054, LT1054Y Switched-Capacitor Voltage Converters With Regulators,” SLVS033C, Feb. 1990—Revised Jul. 1998, 25 pages.
Thaker, M., et al., “Adaptive/Intelligent Control and Power Management Reduce Power Dissipation and Consumption,” Digital Power Forum '06, 11 pp., Sep. 2006, Darnell Group, Richardson, TX.
Vallamkonda, S., “Limitations of Switching Voltage Regulators,” A Thesis in Electrical Engineering, Texas Tech University, May 2004, 89 pages.
Wei, J., et al., “Comparison of Three Topology Candidates for 12V VRM,” IEEE APEC, 2001, pp. 245-251, IEEE, Los Alamitos, CA.
Weitzel, C.E., “RF Power Devices for Wireless Communications,” 2002 IEEE MTT-S CDROM, 2002, pp. 285-288, paper TU4B-1, IEEE, Los Alamitos, CA.
Williams, R., “Modern GaAs Processing Methods,” 1990, pp. 66-67, Artech House, Inc., Norwood, MA.
Wong, P.-L., et al., “Investigating Coupling Inductors in the Interleaving QSW VRM,” 15th Annual Applied Power Electronics Conference and Exposition (APEC 2000), Feb. 2000, pp. 973-978, vol. 2, IEEE, Los Alamitos, CA.
Xu, M., et al., “Voltage Divider and its Application in the Two-stage Power Architecture,” Center for Power Electronics Systems, Virginia Polytechnic Institute and State University, IEEE, 2006, Blacksburg, Virginia, pp. 499-505.
Xu, P., et al., “Design and Performance Evaluation of Multi-Channel Interleaved Quasi-Square-Wave Buck Voltage Regulator Module,” HFPC 2000 Proceedings, Oct. 2000, pp. 82-88.
Xu, P., et al., “Design of 48 V Voltage Regulator Modules with a Novel Integrated Magnetics,” IEEE Transactions on Power Electronics, Nov. 2002, pp. 990-998, vol. 17, No. 6, IEEE, Los Alamitos, CA.
Xu, P., et al., “A Family of Novel Interleaved DC/DC Converters for Low-Voltage High-Current Voltage Regulator Module Applications,” IEEE Power Electronics Specialists Conference, Jun. 2001, pp. 1507-1511, IEEE, Los Alamitos, CA.
Xu, P., et al., “A Novel Integrated Current Doubler Rectifier,” IEEE 2000 Applied Power Electronics Conference, Mar. 2000, pp. 735-740, IEEE, Los Alamitos, CA.
Yan, L., et al., “Integrated Magnetic Full Wave Converter with Flexible Output Inductor,” 17th Annual Applied Power Electronics Conference and Exposition (APEC), 2002, pp. 824-830, vol. 2, IEEE, Dallas, TX.
Yan, L., et al., “Integrated Magnetic Wave Converter with Flexible Output Inductor,” IEEE Transactions on Power Electronics, Mar. 2003, pp. 670-678, vol. 18, No. 2, IEEE, Los Alamitos, CA.
Zhou, X., et al., “A High Power Density, High Efficiency and Fast Transient Voltage Regulator Module with a Novel Current Sensing and Current Sharing Technique,” IEEE Applied Power Electronics Conference, Mar. 1999, pp. 289-294, IEEE, Los Alamitos, CA.
Freescale Semiconductor, “56F8323 Evaluation Module User Manual, 56F8300 16-bit Digital Signal Controllers”, MC56F8323EVMUM, Rev. 2, Jul. 2005 (72 pages).
Freescale Semiconductor, “56F8323/56F8123 Data Sheet Preliminary Technical Data, 56F8300 16-bit Digital Signal Controllers,” MC56F8323 Rev. 17, Apr. 2007 (140 pages).
Freescale Semiconductor, “Design of a Digital AC/DC SMPS using the 56F8323 Device, Designer Reference Manual, 56800E 16-bit Digital Signal Controllers”, DRM074, Rev. 0, Aug. 2005 (108 pages).
Power Integrations, Inc., “TOP200-4/14 TOPSwitch® Family Three-terminal Off-line PWM Switch,” Internet Citation http://www.datasheet4u.com/.download.php?id=311769, Jul. 1996, XP002524650, pp. 1-16.
Freescale Semiconductor, “Implementing a Digital AC/DC Switched-Mode Power Supply using a 56F8300 Digital Signal Controller,” Application Note AN3115, Aug. 2005, 24 pp., Chandler, AZ.
Bill Andreycak, Active Clamp and Reset Technique Enhances Forward Converter Performance, Oct. 1994, Texas Instruments, 19 pages.
Ridley, R., Designing with the TL431, Switching Power Magazine, Designer Series XV, pp. 1-5, 2005.
Related Publications (1)
Number Date Country
20100188876 A1 Jul 2010 US
Provisional Applications (1)
Number Date Country
61145657 Jan 2009 US