1. Technical Field
The present disclosure relates to electrosurgical apparatuses, systems and methods. More particularly, the present disclosure is directed to an electrosurgical system employing a controller configured for monopolar and/or bipolar ablation procedures utilizing an arbitrary number and/or combination of electrodes.
2. Background of Related Art
Energy-based tissue treatment is well known in the art. Various types of energy (e.g., electrical, ultrasonic, microwave, cryo, heat, laser, etc.) are applied to tissue to achieve a desired result. Electrosurgery involves application of high radio frequency electrical current to a surgical site to cut, ablate, coagulate or seal tissue. In monopolar electrosurgery, a source or active electrode delivers radio frequency energy from the electrosurgical generator to the tissue and a return electrode carries the current back to the generator. In monopolar electrosurgery, the source electrode is typically part of the surgical instrument held by the surgeon and applied to the tissue to be treated. A patient return electrode is placed remotely from the active electrode to carry the current back to the generator.
The use of radiofrequency electrodes for ablation of tissue in a patient's body is known. In a typical situation, a radiofrequency electrode comprising an elongated, cylindrical shaft with a portion of its external surface insulated is inserted into the patient's body. The electrode typically has an exposed conductive tip, which is used to contact body tissue in the region where the heat lesion or ablation is desired. The electrode is connected to a radiofrequency power source, which provides radiofrequency voltage to the electrode, which transmits the radiofrequency current into the tissue near its exposed conductive tip. This current usually returns to the power source through a reference electrode, e.g., a return electrode, which may comprise a large area conductive contact connected to an external portion of the patient's body.
Conventional electrode systems are limited by the practical size of the lesion volumes they produce, typically due to the use of a single large electrode. An advantage of a multiplicity of smaller electrodes versus insertion of a single large electrode is that the smaller electrodes will produce less chance of hemorrhage. The arrangement of their geometry may also be tailored to the clinical application. Further, a configuration of radiofrequency electrodes that allows for the tailoring of the shape and size of the lesion obtained is desirable.
Additionally, electrosurgical generators used to energize conventional electrode systems require multiple RF amplifiers, each adapted for different operational modes (e.g., monopolar, bipolar, etc.). Each RF amplifier energizes an electrode based on the procedure for which it is configured to be used. This limitation makes electrosurgical generators costly, heavy, and overly complex.
The present disclosure relates to a radiofrequency (RF) electrosurgical system configured for monopolar and/or bipolar procedures by utilizing an arbitrary number of active and return electrodes for producing large ablation volumes in tissue or producing multiple ablation volumes during a single procedure. A method for using the electrosurgical system is also provided. The electrosurgical system includes an RF source, such as an electrosurgical generator, and a controller to direct RF energy delivery from a single generator output to a plurality of electrodes. By employing multiple electrodes in a single procedure, the electrosurgical system can create large lesions or can ablate two or more separate lesions simultaneously. The electrosurgical system of the present disclosure allows for the use of an arbitrary number of electrodes which allows the electrosurgical system to ablate volumes of various shapes and sizes.
The present disclosure also relates to a system for heat ablation of tissue in a patient and includes an RF source for supplying RF energy, at least two electrodes configured to apply RF energy to tissue, at least one return electrode for returning the RF energy to the RF source, and a controller configured to control the flow of RF energy between an arbitrary number of electrodes which may be energized either sequentially, in parallel, or in a bipolar activation between multiple electrodes. The controller utilizes switching components to divert RF current to any one or more selected electrodes depending on the method of procedure being performed (e.g., bipolar, monopolar, footswitch operation, etc.).
Various embodiments of the present disclosure are described herein with reference to the drawings wherein:
Particular embodiments of the present disclosure are described hereinbelow with reference to the accompanying drawings. In the following description, well-known functions or constructions are not described in detail to avoid obscuring the present disclosure in unnecessary detail.
The present disclosure provides for a controller adapted to selectively divert treatment energy through and between an arbitrary number of electrodes in an electrosurgical system. The use of a multiplicity of N electrodes increases the overall conductive exposed tip area by which to send RF current for heating into the tissue. This increases the heating power that may be delivered and thus increases the size of the ablation volume possible. Further, the cooling capacity of a multiplicity of N electrodes also increases as the number N increases. Increasing the number of electrodes increases the cooling surface area near the electrodes. Thus, the heat sinking effect from a plurality of electrodes is greater than the heat sinking effect from a single electrode element. This enables the lesion size to be expanded accordingly.
An advantage of a multiplicity of smaller electrodes versus insertion of a single large electrode is that the smaller electrodes will produce less chance of hemorrhage. The arrangement of their geometry may also be tailored to the clinical application. Insertion of several small gauge electrodes is less painful, uncomfortable, and risk-inducing than insertion of one large, equivalent radiofrequency electrode. For example, insertion of a cluster of several 18 gauge or 1.25 mm diameter pointed radiofrequency electrodes into the liver produces very low risk of hemorrhage and low discomfort. Insertion of an equivalent, but much larger single electrode, which may have a diameter of, for example, 0.25″ or 6.4 mm, would have a higher risk of hemorrhage and would be very uncomfortable for the patient if the electrode were inserted percutaneously.
A generator according to the present disclosure can perform monopolar and bipolar electrosurgical procedures, including vessel sealing procedures. The generator may include a plurality of outputs for interfacing with various electrosurgical instruments (e.g., a monopolar active electrode, return electrode, bipolar electrosurgical forceps, footswitch, etc.). Further, the generator includes electronic circuitry configured for generating radio frequency power specifically suited for various electrosurgical modes (e.g., cutting, blending, division, etc.) and procedures (e.g., monopolar, bipolar, vessel sealing, tissue ablation).
The system may include a plurality of return electrodes 6 that are arranged to minimize the chances of tissue damage by maximizing the overall contact area with the patient P. In addition, the generator 20 and the return electrode 6 may be configured for monitoring so-called “tissue-to-patient” contact to insure that sufficient contact exists therebetween to further minimize chances of tissue damage.
The present disclosure may be adapted for use with either monopolar or bipolar electrosurgical systems.
Those skilled in the art will understand that embodiments of the present disclosure may be adapted for use with either an endoscopic instrument or an open instrument. More particularly, forceps 10 generally includes a housing 60, a handle assembly 62, which mutually cooperate with the end effector assembly 100 to grasp and treat tissue. The forceps 10 also includes a shaft 64 which has a distal end 68 that mechanically engages the end effector assembly 100 and a proximal end 69 which mechanically engages the housing 60 proximate the rotating assembly 80. Handle assembly 62 includes a fixed handle 72 and a movable handle 74. Handle 74 moves relative to the fixed handle 72 to actuate the end effector assembly 100 and enable a user to grasp and manipulate tissue. More particularly, the jaw members 110 and 120 move in response to movement of the handle 74 from an open position to a closed position. Further details relating to one envisioned endoscopic forceps is disclosed in commonly-owned U.S. Pat. No. 7,090,673 entitled “Vessel Sealer and Divider.”
With reference to
In particular, the RF output stage 28 generates sinusoidal waveforms of high RF energy. The RF output stage 28 is configured to generate a plurality of waveforms having various duty cycles, peak voltages, crest factors, and other suitable parameters. Certain types of waveforms are suitable for specific electrosurgical modes. For instance, the RF output stage 28 generates a 100% duty cycle sinusoidal waveform in cut mode, which is best suited for ablating, fusing and dissecting tissue and a 1-25% duty cycle waveform in coagulation mode, which is best used for cauterizing tissue to stop bleeding.
The generator 20 may include a plurality of connectors to accommodate various types of electrosurgical instruments (e.g., instrument 2, electrosurgical forceps 10, etc.). Further, the generator 20 may be configured to operate in a variety of modes such as ablation, monopolar and bipolar cutting coagulation, etc. It is envisioned that the generator 20 may include a switching mechanism (e.g., relays) to switch the supply of RF energy between the connectors, such that, for instance, when the instrument 2 is connected to the generator 20, only the monopolar plug receives RF energy.
The control component 24 includes a microprocessor 25 operably connected to a memory 26, which may be volatile type memory (e.g., RAM) and/or non-volatile type memory (e.g., flash media, disk media, etc.). The microprocessor 25 includes an output port that is operably connected to the HVPS 27 and/or RF output stage 28 allowing the microprocessor 25 to control the output of the generator 20 according to either open and/or closed control loop schemes. Those skilled in the art will appreciate that the microprocessor 25 may be substituted by any logic processor (e.g., control circuit) adapted to perform the calculations discussed herein.
A closed loop control scheme is a feedback control loop wherein sensor circuit 22, which may include a plurality of sensors measuring a variety of tissue and energy properties (e.g., tissue impedance, tissue temperature, output current and/or voltage, etc.), provides feedback to the control component 24. Such sensors are within the purview of those skilled in the art. The control component 24 then signals the HVPS 27 and/or RF output stage 28, which then adjust DC and/or RF power supply, respectively. The control component 24 also receives input signals from the input controls of the generator 20 or the instrument 2. The control component 24 utilizes the input signals to adjust power outputted by the generator 20 and/or performs other control functions thereon.
According to one embodiment of the present disclosure, electrodes E1 and E2 may be placed in a single target, e.g., a tumor. The heating effect of the multiple electrodes is similar to that accomplished by one large single electrode. The individual electrodes E1 and E2 cause less trauma and are less likely to induce hemorrhaging when they penetrate an organ because of their smaller size. Yet, when they are connected to a radiofrequency voltage source, they represent an effectively much larger electrode. In this way, larger heat volumes, and therefore ablation sizes, may be achieved.
Controller 300 is connected to the active output of the generator 20 (
A pair of bipolar switching components BS1 and BS2 are also shown, which are configured to control the flow of RF current returning from at least one of the active electrodes E1 and/or E2 to the generator 20 (
Controller 300 is merely illustrative of a “unit” controller in accordance with the present disclosure and may be scaled up to accommodate an arbitrary number of electrodes, as shown in
Although the present example illustrates a procedure utilizing a specific set of active electrodes (E42 and E46) and a specific return electrode (E43), it should be appreciated that the present example is illustrative only and an arbitrary number of electrodes and/or combination of active and return electrodes may be employed as is warranted or desired by the user. For example, any one or more of electrodes E41-E46 may be employed as an active electrode. Likewise, any one or more of electrodes E41-E46 may alternatively be employed as a return electrode.
While several embodiments of the disclosure have been shown in the drawings and/or discussed herein, it is not intended that the disclosure be limited thereto, as it is intended that the disclosure be as broad in scope as the art will allow and that the specification be read likewise. Therefore, the above description should not be construed as limiting, but merely as exemplifications of particular embodiments. Those skilled in the art will envision other modifications within the scope and spirit of the claims appended hereto.