The present invention is directed, in general, to power electronics and, more specifically, to a power converter employing a controller configured to control a dead time between conduction periods of power switches and method of operating the same.
A switched-mode power converter (also referred to as a “power converter” or “regulator”) is a power supply or power processing circuit that converts an input voltage waveform into a specified output voltage waveform. Dc-dc power converters convert a direct current (“dc”) input voltage into a dc output voltage. Controllers associated with the power converters manage an operation thereof by controlling conduction periods of power switches employed therein. Some power converters include a controller coupled between an input and output of the power converter in a feedback loop configuration (also referred to as a “control loop” or “closed control loop”) to regulate an output characteristic of the power converter. Typically, the controller measures the output characteristic (e.g., an output voltage, an output current, or a combination of an output voltage and an output current) of the power converter, and based thereon modifies a duty cycle, an on time or a switching frequency of a power switch of the power converter to regulate the output characteristic. Other power converters operate in an open-loop manner wherein an output voltage is produced substantially proportional to an input voltage.
A power converter with a low power rating designed to convert an alternating current (“ac”) mains voltage to a dc output voltage to power a load such as an electronic device (e.g., a printer, a modem, or a personal computer) is generally referred to as an “ac power adapter” or a “power adapter,” or, herein succinctly, as an “adapter.” Industry standards and market needs have required continual reductions in no load and low-load power supply loss to reduce power consumed by millions of power converters that may remain plugged in, but are not in use, or that may supply a light load level to an electronic device that is not operating at its full capacity. Efficiency requirements at low output power levels have become important in view of the typical load presented by an electronic device in an idle or sleep mode, or an electronic device not operating at full capacity, which are common operational states for a large fraction of the time for electronic devices such as personal computers and printers in a home or office environment.
Power loss of a power converter is dependent on gate drive voltages for the power switches and other continuing power losses that generally do not vary substantially with the load. These power losses are commonly addressed at very low power levels by using a burst mode of operation wherein the controller is disabled for a period of time (e.g., one second) followed by a short period of high power operation (e.g., 10 milliseconds (“ms”)) to provide a low average output power with low dissipation.
Light load power losses, while relatively small, have now become substantial hindrances to improving power converter efficiency as industry requirements become stricter. Thus, despite the development of numerous strategies to reduce power losses of power converters, no satisfactory strategy has emerged to provide substantial reduction of power dissipation while the power converter provides minimal or no power to a load. Accordingly, what is needed in the art is a design approach and related method for a power converter that enables further reduction of power converter losses without compromising product performance, and that can be advantageously adapted to high-volume manufacturing techniques.
These and other problems are generally solved or circumvented, and technical advantages are generally achieved, by advantageous embodiments of the present invention, including a power converter employing a controller configured to control a dead time between conduction periods of power switches and method of operating the same. In one embodiment, the power converter includes first and second power switches coupled to an input thereof, and a sensor configured to provide a sensed signal representative of at least one of a current level and a power level of the power converter. The power converter also includes a controller configured to increase a dead time between conduction periods of the first and second power switches when the sensed signal indicates a decrease of at least one of the current level and the power level of the power converter.
The foregoing has outlined rather broadly the features and technical advantages of the present invention in order that the detailed description of the invention that follows may be better understood. Additional features and advantages of the invention will be described hereinafter, which form the subject of the claims of the invention. It should be appreciated by those skilled in the art that the conception and specific embodiment disclosed may be readily utilized as a basis for modifying or designing other structures or processes for carrying out the same purposes of the present invention. It should also be realized by those skilled in the art that such equivalent constructions do not depart from the spirit and scope of the invention as set forth in the appended claims.
For a more complete understanding of the present invention, reference is now made to the following descriptions taken in conjunction with the accompanying drawings, in which:
Corresponding numerals and symbols in the different figures generally refer to corresponding parts unless otherwise indicated, and may not be redescribed in the interest of brevity after the first instance. The FIGUREs are drawn to illustrate the relevant aspects of exemplary embodiments.
The making and using of the present exemplary embodiments are discussed in detail below. It should be appreciated, however, that the present invention provides many applicable inventive concepts that can be embodied in a wide variety of specific contexts. The specific embodiments discussed are merely illustrative of specific ways to make and use the invention, and do not limit the scope of the invention.
The present invention will be described with respect to exemplary embodiments in a specific context, namely, a power converter configured to provide reduced power dissipation at no load or at light load. While the principles of the present invention will be described in the environment of a power converter, any application that may benefit from a power converter with reduced power dissipation including a bias supply, a power amplifier, or a motor controller is well within the broad scope of the present invention.
A resonant full-bridge or half-bridge power converter, or other resonant power converter topology with a substantially symmetric input current waveform, may be employed in low power and other applications such as in a power adapter for a printer because of its low cost and high power conversion efficiency at power levels of interest for these applications. Power converters are typically designed to operate continuously at their full rated output power level. Recall that loads coupled to power converters such as a load provided by a printer and personal computer are generally variable and usually do not operate for an extended period of time at a rated power level. A consideration for the design of power converters for such applications is power conversion efficiency at no load and at light loads.
A conventionally designed power converter may employ a burst mode of operation to reduce no load or light load losses of a power converter by using a short duration of operation (i.e., by employing a high power “burst” followed by a longer idle period). An output capacitor coupled across output terminals of the power converter stores energy to maintain an output voltage during the idle period. At the beginning of the high power burst, current drawn by the power converter from the ac mains is high and may remain so throughout the burst. The duration of the idle periods are typically fixed, and on periods are adjusted to provide output voltage regulation. Thus, a conventionally designed power converter operates in a burst mode only at a high power level or is turned off for fixed periods of time.
Turning now to
The first and second power switches Q1, Q2 (e.g., n-channel field-effect transistors) are controlled by a controller 140 that produces control signals (e.g., gate-drive signals DQ1, DQ2) to control the first and second power switches Q1, Q2 to conduct for particular intervals of time (i.e., for particular “on” times). The term “signal” is used herein to represent, without limitation, a physical voltage or current. The first and second power switches Q1, Q2 alternately conduct in response to the gate-drive signals DQ1, DQ2 (e.g., gate-drive voltages) produced by the controller 140 with a switching frequency (designated “fs”) and a corresponding switching period Ts=1/fs. The ac voltage appearing or present on the secondary windings Ns1, Ns2 of the transformer T1 is rectified by first and second diodes D1, D2, and the dc component of the resulting waveform is coupled to the output through the low-pass output filter formed with output filter capacitor Cout to produce the output voltage Vout. A sensor (e.g., a current-sense circuit 130) senses a condition of the power converter such as a current level of the primary current Ipri that flows through the primary winding Np of the transformer T1 and provides a sensed signal (e.g., a sensed current IT) for the controller 140 representative of a level of the primary current Ipri, such as a peak or root-mean-square value of the primary current Ipri. Thus, the current-sense circuit 130 is coupled to a resonant circuit (see below) and is configured to provide a sensed signal (e.g., a sensed current IT) representative of a current level or a power level of the power converter.
The power converter is operated as a resonant half-bridge topology. The term “resonant” is employed herein to refer to a switch-mode topology employing a resonant tank circuit or resonant circuit formed principally by a resonant capacitor C1 and a resonant inductor Lres to produce a current waveform that is a portion of, but typically not a full, sinusoidal waveform. The resonant circuit is series-coupled to the transformer T1. The circuit node between the first and second divider capacitors C4, C5 substantially remains at a voltage approximately equal to half of the input voltage Vin with respect to a primary ground, which is identified with the symbol “p.” The secondary ground is identified with the symbol “s.” The source of second power switch Q2 is coupled to the primary ground p.
The resonant capacitor C1 and the first and second divider capacitors C4, C5 are coupled together at common circuit node N0. The first and second divider capacitors C4, C5 are roughly equal in capacitance and the combination is larger in capacitance than that of the resonant capacitor C1. Such a structure provides symmetry from an EMI perspective for high frequency currents fed back to the dc input voltage source 110, and also provides a relatively unvarying voltage at the common circuit node N0. In an alternative embodiment, one or both of the resonant capacitor C1 and the first divider capacitor C4 can be omitted from the power converter. If both the resonant capacitor C1 and the first divider capacitor C4 are omitted from the power converter, the second divider capacitor C5 would be selected with a capacitance similar to that of resonant capacitor C1. First and second clamping diodes DU, DL provide a clamping mechanism to limit the voltage at the common node N0 to be no greater than the input voltage Vin, and no lower than the primary ground p.
The resonant inductor Lres includes the leakage inductance of the transformer T1 referenced to its primary winding. The effective resonant capacitance is Ceff; given by the equation:
Ceff=C1·(C4+C5)/(C1+C4+C5).
The half period Thalf of the resonant circuit, which is the period during which a power switch is turned on, can be represented approximately by the equation:
Thalf=π·√{square root over (Lres·Ceff)}.
Provided that the power switch on times are approximately equal to the half period Thalf shown above, the power converter operates as a “dc transformer” that produces an output voltage Vout substantially proportional to the input voltage Vin. The output-to-input voltage ratio is substantially fixed by the transformer T1 turns ratio, and thus the power converter per se does not provide output voltage regulation. The output voltage Vout is substantially independent of the switching frequency of the first and second power switches Q1, Q2 over an operating range. Regulation of the output voltage Vout can be provided by a pre-converter stage (not shown) that regulates the input voltage Vin to the power converter illustrated in
As introduced herein, control (e.g., modification, alteration, variation, etc.) of the switching frequency is employed to reduce power converter power dissipation at a low load or at no load. In an embodiment, the dead time between fixed on times (or conduction periods) of the first and second power switches Q1, Q2 is varied to control the switching frequency. Neither the dead times between power switch conduction periods nor the on times of the first and second power switches Q1, Q2 are required to be equal. In an embodiment, the on times of the first and second power switches Q1, Q2 are substantially equal to the half period Thalf defined by the resonant inductor Lres and the effective resonant capacitance is Ceff. Of course, the dead times may be substantially equal.
Turning now to
Turning now to
At a high output power level, the power train is operated at a switching frequency that is a little lower, for example ten percent lower, than the resonant frequency fres of the resonant circuit. At a high output power level, the on time Ton of each of the first and second power switches Q1, Q2 corresponds to an on time that is equivalent to a frequency that is a little higher, for example three percent higher, than the resonant frequency of the resonant circuit. In other words, the on time Ton for each of the first and second power switches Q1, Q2 is a little shorter or less than the half period Thalf of the resonant circuit, and together the first and second power switches Q1, Q2 are on for a period of time that is a little shorter or less than twice the half period Thalf. The on times Ton of the first and second power switches Q1, Q2 are not necessarily equal. Thus, the first and second power switches Q1, Q2 and the first and second diodes D1, D2 are turned off prior to the time the current in the resonant circuit reaches zero, and the switching period is kept long enough (including delay times) to assure that, throughout the tolerance band of variations of power converter inductances and capacitances, the current through a diode on a primary side of the power converter will shift to an anti-parallel diode (or body diode) of the power switch that is about to be turned on prior to turning on the same or that the resonant current has decayed to approximately zero.
In a conventional design, the power converter illustrated in
As introduced herein, a variable dead time dependent on a sensed signal (e.g., a power converter parameter) such as a power level or current level is employed between resonant pulses of a power converter such as a resonant bridge power converter. The current may be sensed on the primary side of the power converter by averaging a ripple voltage in a resonant circuit of the power converter. The sensed current is indicative of a power level of the power converter. Unlike small variations in dead time, such as 100 or 200 nanoseconds (“ns”) variations in dead time employed in conventional designs, to enable zero-voltage switching of a power converter over a range of power converter operating conditions, a variation (e.g., a substantial variation) in dead time is employed herein to improve power conversion efficiency at light loads. Variations in dead time sufficient to provide, without limitation, a factor of ten or more reduction in switching frequency at light loads may be employed herein.
In U.S. patent application Ser. No. 12/486,520, entitled “Power Converter Employing a Variable Switching Frequency and a Magnetic Device with a Non-Uniform Gap,” to A. Brinlee, et al. (“Brinlee”), filed Jun. 17, 2009, which is incorporated herein by reference, a switching frequency of a power switch of a power converter is controlled as a function of a condition of the power converter representing an output power. Also, a duty cycle of the power switch is controlled to regulate an output characteristic of the power converter. As introduced herein in an exemplary embodiment, dead times between on times (or conduction periods) of power switches is varied, and the power switches in a resonant bridge power converter are operated with a constant (or substantially constant) on time. Additionally, the on time of the power switches may be controlled (e.g., slightly modulated) to reduce or cancel a ripple voltage (e.g., a 120 hertz ripple voltage) of an input voltage source such as an upstream power converter (e.g., a power factor correction converter) to the power converter employing the power switches.
The dead times may be increased as the load is decreased as indicated by a decrease of a current level or power level of the power converter. This causes the switching frequency of the power converter to decrease at light loads, thereby reducing switching losses. The resonant bridge power converter continues to operate as a dc transformer. Therefore, increasing the dead time causes current through the resonant circuit to increase and sufficient power converter output power is automatically maintained to ensure adequate power transfer to maintain dc-transformer operation. The dead times are advantageously increased for loads below a chosen load point so that power losses can be reduced at low load levels, and conduction- and switching-loss trade-offs can be made for the power converter.
Turning now to
Turning now to
A typical way to use a one-shot 520 is to connect a timing capacitor CT (e.g., 100 pico farads) between the input pin RTCT and local circuit ground (which is identified with the symbol “p”), and a timing resistor RT (e.g., one mega ohm) from the pin RTCT to a positive bias voltage source VCC. When the one-shot 520 is triggered, it releases the pin RTCT to rise. The rate of rise is controlled by current flowing through the timing resistor RT. When a certain threshold voltage level is reached at the pin RTCT, the one-shot 520 pulls the pin RTCT down again, and keeps the pin RTCT low until it receives another trigger input.
Control of the dead times is implemented by monitoring average ripple voltage at a resonant capacitor (such as the resonant capacitor C1 of
In an alternative embodiment, the timing resistor RT coupled to the bias voltage source VCC can be replaced with a current source providing a current slightly less than VCC/RT. A limiting diode (e.g., Zener diode Z) can be used to limit the sensed current IT to a maximum value, thereby limiting a maximum value of the load at which the dead time varies (i.e., limiting a modification of the dead time to a dead time limit). A current in the resonant circuit or in another circuit element can be sensed with a different current-sense circuit including a current-sense transformer and a resistor-diode network coupled to a secondary side of the current-sense transformer to produce the sensed current IT. A current-sense resistor coupled to an operational amplifier can also be employed to sense the current in the resonant bridge power converter to produce the sensed current IT.
As illustrated in
A lower limit for the switching frequency may be employed by choice of values for the first and second delay resistors R1, R2 and the timing resistor RT to prevent the switching frequency from decreasing into an audible range, such as a range of frequencies below 20 kilohertz (“kHz”). A substantial change in the switching frequency, such as a factor of ten or more change in the switching frequency over a range of loads presented to the power converter, may be employed to improve power conversion efficiency at a low power level. A lower limit of the switching frequency of one or four kilohertz may be employed to produce a substantial change in power conversion efficiency. A small varnished or potted transformer operated at a switching frequency of one or four kilohertz will generally not produce an objectionable level of audible noise. A burst mode of operation may also be employed at a very low load level to provide further improvement in power conversion efficiency.
Turning now to
A startup step voltage 605 enables the controller to operate. The startup step voltage 605 is coupled to an input of an AND gate 610, the output of which produces the input for the first one-shot 620 to produce a fixed on time (e.g., 20 microseconds) for the first and second power switches Q1, Q2. The output of the first one-shot 620 is inverted by an inverter 630. The output of the inverter 630 provides a clocked input voltage “clk” for a D-type (“delay”) flip-flop 650. The output of the inverter 630 also provides an input for the second one-shot 640. The output of the second one-shot 640 is inverted by an inverter 660 to provide a variable off-time delay for the first and second power switches Q1, Q2. The output of the second one-shot 640 and the Q and QN (i.e., the normal and the inverted) outputs of the D-type flip-flop 650 are coupled to the inputs of AND gates 670, 680 to provide the gate-drive signals DQ1, DQ2. Analogous to
Thus, a power converter (e.g., a resonant bridge power converter) has been introduced wherein a dead time between conduction periods of power switches therein is controlled in response to a voltage or current representative of a power level or a current level of the power converter. The power converter includes first and second power switches coupled to an input of the power converter, and a sensor coupled to the power converter configured to provide a sensed signal representative of at least one of a current level and a power level of the power converter. The power converter also includes a controller configured to increase a dead time between conduction periods of the first and second power switches when the sensed signal indicates a decrease of at least one of the current level and the power level of the power converter. In a related embodiment, a transformer is coupled to the first and second power switches, and a resonant circuit is series-coupled to a primary winding of the transformer. The sensor is configured to provide the sensed signal by monitoring an average ripple voltage of the resonant circuit. The resonant circuit may include a resonant inductor and a resonant capacitor coupled to the primary winding of the transformer.
In an alternative embodiment, the sensor may include a sense capacitor, a clamp diode, and at least one delay resistor, and the controller may include a timing resistor, a timing capacitor and a one-shot. The sensor may be configured to limit a value of the sensed signal, thereby limiting a modification of the dead times to a dead time limit. The sensor may also include a limiting diode configured to limit a value of the sensed signal.
In related embodiments, the controller is configured to control the dead times to control a switching frequency of the first and second power switches. The controller is also configured to control the conduction periods of the first and second power switches to be substantially constant. The controller may be configured to control a conduction period of at least one of the first and second power switches to be substantially equal to (including slightly less than) a half period of a resonant circuit of the power converter. In a further embodiment, a diode and a parallel-coupled impedance are coupled to a secondary winding of the transformer. The parallel-coupled impedance may be configured to convert a damped oscillatory voltage produced across a diode to a dc current supplied to an output of the power converter.
In another aspect, the present invention provides a method of operating a power converter. The method includes coupling first and second power switches to an input of the power converter, providing a sensed signal representative of at least one of a current level and a power level of the power converter, and controlling a dead time between conduction periods of the first and second power switches as a function of the sensed signal. In a related embodiment, the power converter may include a transformer coupled to the first and second power switches and a resonant circuit in series with a primary winding of the transformer. In accordance therewith, the method may provide the sensed signal by monitoring an average ripple voltage of the resonant circuit.
Those skilled in the art should understand that the previously described embodiments of a power converter including circuits to reduce no load or light load losses and related methods of operating the same are submitted for illustrative purposes only. While a power converter including circuits to reduce no load or light load losses has been described in the environment of a power converter, these processes may also be applied to other systems such as, without limitation, a bias supply, a power amplifier, or a motor controller.
For a better understanding of power converters, see “Modern DC-to-DC Power Switch-mode Power Converter Circuits,” by Rudolph P. Severns and Gordon Bloom, Van Nostrand Reinhold Company, New York, N.Y. (1985) and “Principles of Power Electronics,” by J. G. Kassakian, M. F. Schlecht and G. C. Verghese, Addison-Wesley (1991).
Also, although the present invention and its advantages have been described in detail, it should be understood that various changes, substitutions and alterations can be made herein without departing from the spirit and scope of the invention as defined by the appended claims. For example, many of the processes discussed above can be implemented in different methodologies and replaced by other processes, or a combination thereof.
Moreover, the scope of the present application is not intended to be limited to the particular embodiments of the process, machine, manufacture, composition of matter, means, methods, and steps described in the specification. As one of ordinary skill in the art will readily appreciate from the disclosure of the present invention, processes, machines, manufacture, compositions of matter, means, methods, or steps, presently existing or later to be developed, that perform substantially the same function or achieve substantially the same result as the corresponding embodiments described herein may be utilized according to the present invention. Accordingly, the appended claims are intended to include within their scope such processes, machines, manufacture, compositions of matter, means, methods, or steps.
Number | Name | Date | Kind |
---|---|---|---|
1376978 | Stoekle | May 1921 | A |
2473662 | Pohm | Jun 1949 | A |
3007060 | Kronfeld | Oct 1961 | A |
3346798 | Dinger | Oct 1967 | A |
3358210 | Grossoehme | Dec 1967 | A |
3433998 | Woelber | Mar 1969 | A |
3484562 | Kronfeld | Dec 1969 | A |
3553620 | Cielo et al. | Jan 1971 | A |
3602795 | Gunn | Aug 1971 | A |
3622868 | Todt | Nov 1971 | A |
3681679 | Chung | Aug 1972 | A |
3708742 | Gunn | Jan 1973 | A |
3708744 | Stephens et al. | Jan 1973 | A |
4019122 | Ryan | Apr 1977 | A |
4075547 | Wroblewski | Feb 1978 | A |
4202031 | Hesler et al. | May 1980 | A |
4257087 | Cuk | Mar 1981 | A |
4274071 | Pfarre | Jun 1981 | A |
4327348 | Hirayama | Apr 1982 | A |
4471423 | Hase | Sep 1984 | A |
4499481 | Greene | Feb 1985 | A |
4570174 | Huang et al. | Feb 1986 | A |
4577268 | Easter et al. | Mar 1986 | A |
4581691 | Hock | Apr 1986 | A |
4613841 | Roberts | Sep 1986 | A |
4636823 | Margalit et al. | Jan 1987 | A |
4660136 | Montorefano | Apr 1987 | A |
4770667 | Evans et al. | Sep 1988 | A |
4770668 | Skoultchi et al. | Sep 1988 | A |
4785387 | Lee et al. | Nov 1988 | A |
4799138 | Chahabadi et al. | Jan 1989 | A |
4803609 | Gillett et al. | Feb 1989 | A |
4823249 | Garcia, II | Apr 1989 | A |
4837496 | Erdi | Jun 1989 | A |
4866367 | Ridley et al. | Sep 1989 | A |
4887061 | Matsumura | Dec 1989 | A |
4899271 | Seiersen | Feb 1990 | A |
4903089 | Hollis et al. | Feb 1990 | A |
4922400 | Cook | May 1990 | A |
4962354 | Visser et al. | Oct 1990 | A |
4964028 | Spataro | Oct 1990 | A |
4999759 | Cavagnolo et al. | Mar 1991 | A |
5003277 | Sokai et al. | Mar 1991 | A |
5014178 | Balakrishnan | May 1991 | A |
5027264 | DeDoncker et al. | Jun 1991 | A |
5068756 | Morris et al. | Nov 1991 | A |
5106778 | Hollis et al. | Apr 1992 | A |
5126714 | Johnson | Jun 1992 | A |
5132888 | Lo et al. | Jul 1992 | A |
5134771 | Lee et al. | Aug 1992 | A |
5172309 | DeDoncker et al. | Dec 1992 | A |
5177460 | Dhyanchand et al. | Jan 1993 | A |
5182535 | Dhyanchand | Jan 1993 | A |
5204809 | Andresen | Apr 1993 | A |
5206621 | Yerman | Apr 1993 | A |
5208739 | Sturgeon | May 1993 | A |
5223449 | Morris et al. | Jun 1993 | A |
5225971 | Spreen | Jul 1993 | A |
5231037 | Yuan et al. | Jul 1993 | A |
5244829 | Kim | Sep 1993 | A |
5262930 | Hua et al. | Nov 1993 | A |
5282126 | Husgen | Jan 1994 | A |
5285396 | Aoyama | Feb 1994 | A |
5291382 | Cohen | Mar 1994 | A |
5303138 | Rozman | Apr 1994 | A |
5305191 | Loftus, Jr. | Apr 1994 | A |
5335163 | Seiersen | Aug 1994 | A |
5336985 | McKenzie | Aug 1994 | A |
5342795 | Yuan et al. | Aug 1994 | A |
5343140 | Gegner | Aug 1994 | A |
5353001 | Meinel et al. | Oct 1994 | A |
5369042 | Morris et al. | Nov 1994 | A |
5374887 | Drobnik | Dec 1994 | A |
5399968 | Sheppard et al. | Mar 1995 | A |
5407842 | Morris et al. | Apr 1995 | A |
5459652 | Faulk | Oct 1995 | A |
5468661 | Yuan et al. | Nov 1995 | A |
5477175 | Tisinger et al. | Dec 1995 | A |
5508903 | Alexndrov | Apr 1996 | A |
5523673 | Ratliff et al. | Jun 1996 | A |
5539630 | Pietkiewicz et al. | Jul 1996 | A |
5554561 | Plumton | Sep 1996 | A |
5555494 | Morris | Sep 1996 | A |
5610085 | Yuan et al. | Mar 1997 | A |
5624860 | Plumton et al. | Apr 1997 | A |
5663876 | Newton et al. | Sep 1997 | A |
5700703 | Huang et al. | Dec 1997 | A |
5712189 | Plumton et al. | Jan 1998 | A |
5719544 | Vinciarelli et al. | Feb 1998 | A |
5734564 | Brkovic | Mar 1998 | A |
5736842 | Jovanovic | Apr 1998 | A |
5742491 | Bowman et al. | Apr 1998 | A |
5747842 | Plumton | May 1998 | A |
5756375 | Celii et al. | May 1998 | A |
5760671 | Lahr et al. | Jun 1998 | A |
5783984 | Keuneke | Jul 1998 | A |
5784266 | Chen | Jul 1998 | A |
5804943 | Kollman et al. | Sep 1998 | A |
5815383 | Lei | Sep 1998 | A |
5815386 | Gordon | Sep 1998 | A |
5864110 | Moriguchi et al. | Jan 1999 | A |
5870299 | Rozman | Feb 1999 | A |
5880942 | Leu | Mar 1999 | A |
5886508 | Jutras | Mar 1999 | A |
5889298 | Plumton et al. | Mar 1999 | A |
5889660 | Taranowski et al. | Mar 1999 | A |
5900822 | Sand et al. | May 1999 | A |
5907481 | Svardsjo | May 1999 | A |
5909110 | Yuan et al. | Jun 1999 | A |
5910665 | Plumton et al. | Jun 1999 | A |
5920475 | Boylan et al. | Jul 1999 | A |
5925088 | Nasu | Jul 1999 | A |
5929665 | Ichikawa et al. | Jul 1999 | A |
5933338 | Wallace | Aug 1999 | A |
5940287 | Brkovic | Aug 1999 | A |
5946207 | Schoofs | Aug 1999 | A |
5956245 | Rozman | Sep 1999 | A |
5956578 | Weitzel et al. | Sep 1999 | A |
5959850 | Lim | Sep 1999 | A |
5977853 | Ooi et al. | Nov 1999 | A |
5999066 | Saito et al. | Dec 1999 | A |
5999429 | Brown | Dec 1999 | A |
6003139 | McKenzie | Dec 1999 | A |
6008519 | Yuan et al. | Dec 1999 | A |
6011703 | Boylan et al. | Jan 2000 | A |
6038154 | Boylan et al. | Mar 2000 | A |
6046664 | Weller et al. | Apr 2000 | A |
6055166 | Jacobs et al. | Apr 2000 | A |
6060943 | Jansen | May 2000 | A |
6067237 | Nguyen | May 2000 | A |
6069798 | Liu | May 2000 | A |
6069799 | Bowman et al. | May 2000 | A |
6078510 | Spampinato et al. | Jun 2000 | A |
6084792 | Chen et al. | Jul 2000 | A |
6094038 | Lethellier | Jul 2000 | A |
6097046 | Plumton | Aug 2000 | A |
6125046 | Jang et al. | Sep 2000 | A |
6144187 | Bryson | Nov 2000 | A |
6147886 | Wittenbreder | Nov 2000 | A |
6156611 | Lan et al. | Dec 2000 | A |
6160721 | Kossives et al. | Dec 2000 | A |
6163466 | Davila, Jr. et al. | Dec 2000 | A |
6181231 | Bartilson | Jan 2001 | B1 |
6188586 | Farrington et al. | Feb 2001 | B1 |
6191964 | Boylan et al. | Feb 2001 | B1 |
6208535 | Parks | Mar 2001 | B1 |
6215290 | Yang et al. | Apr 2001 | B1 |
6218891 | Lotfi et al. | Apr 2001 | B1 |
6229197 | Plumton et al. | May 2001 | B1 |
6262564 | Kanamori | Jul 2001 | B1 |
6288501 | Nakamura et al. | Sep 2001 | B1 |
6288920 | Jacobs et al. | Sep 2001 | B1 |
6295217 | Yang et al. | Sep 2001 | B1 |
6304460 | Cuk | Oct 2001 | B1 |
6309918 | Huang et al. | Oct 2001 | B1 |
6317021 | Jansen | Nov 2001 | B1 |
6317337 | Yasumura | Nov 2001 | B1 |
6320490 | Clayton | Nov 2001 | B1 |
6323090 | Zommer | Nov 2001 | B1 |
6325035 | Codina et al. | Dec 2001 | B1 |
6344986 | Jain et al. | Feb 2002 | B1 |
6345364 | Lee | Feb 2002 | B1 |
6348848 | Herbert | Feb 2002 | B1 |
6351396 | Jacobs | Feb 2002 | B1 |
6356462 | Jang et al. | Mar 2002 | B1 |
6362986 | Schultz et al. | Mar 2002 | B1 |
6373727 | Hedenskog et al. | Apr 2002 | B1 |
6373734 | Martinelli | Apr 2002 | B1 |
6380836 | Matsumoto et al. | Apr 2002 | B2 |
6388898 | Fan et al. | May 2002 | B1 |
6392902 | Jang et al. | May 2002 | B1 |
6400579 | Cuk | Jun 2002 | B2 |
6414578 | Jitaru | Jul 2002 | B1 |
6438009 | Assow | Aug 2002 | B2 |
6462965 | Uesono | Oct 2002 | B1 |
6466461 | Mao et al. | Oct 2002 | B2 |
6469564 | Jansen | Oct 2002 | B1 |
6477065 | Parks | Nov 2002 | B2 |
6483724 | Blair et al. | Nov 2002 | B1 |
6489754 | Blom | Dec 2002 | B2 |
6498367 | Chang et al. | Dec 2002 | B1 |
6501193 | Krugly | Dec 2002 | B1 |
6504321 | Giannopoulos et al. | Jan 2003 | B2 |
6512352 | Qian | Jan 2003 | B2 |
6525603 | Morgan | Feb 2003 | B1 |
6539299 | Chatfield et al. | Mar 2003 | B2 |
6545453 | Glinkowski et al. | Apr 2003 | B2 |
6548992 | Alcantar et al. | Apr 2003 | B1 |
6549436 | Sun | Apr 2003 | B1 |
6552917 | Bourdillon | Apr 2003 | B1 |
6563725 | Carsten | May 2003 | B2 |
6570268 | Perry et al. | May 2003 | B1 |
6580627 | Toshio | Jun 2003 | B2 |
6597592 | Carsten | Jul 2003 | B2 |
6608768 | Sula | Aug 2003 | B2 |
6611132 | Nakagawa et al. | Aug 2003 | B2 |
6614206 | Wong et al. | Sep 2003 | B1 |
6654259 | Koshita et al. | Nov 2003 | B2 |
6661276 | Chang | Dec 2003 | B1 |
6668296 | Dougherty et al. | Dec 2003 | B1 |
6674658 | Mao et al. | Jan 2004 | B2 |
6683797 | Zaitsu et al. | Jan 2004 | B2 |
6687137 | Yasumura | Feb 2004 | B1 |
6696910 | Nuytkens et al. | Feb 2004 | B2 |
6731486 | Holt et al. | May 2004 | B2 |
6741099 | Krugly | May 2004 | B1 |
6753723 | Zhang | Jun 2004 | B2 |
6765810 | Perry | Jul 2004 | B2 |
6775159 | Webb et al. | Aug 2004 | B2 |
6784644 | Xu et al. | Aug 2004 | B2 |
6804125 | Brkovic | Oct 2004 | B2 |
6813170 | Yang | Nov 2004 | B2 |
6831847 | Perry | Dec 2004 | B2 |
6856149 | Yang | Feb 2005 | B2 |
6862194 | Yang et al. | Mar 2005 | B2 |
6867678 | Yang | Mar 2005 | B2 |
6867986 | Amei | Mar 2005 | B2 |
6873237 | Chandrasekaran et al. | Mar 2005 | B2 |
6882548 | Jacobs et al. | Apr 2005 | B1 |
6906934 | Yang et al. | Jun 2005 | B2 |
6943553 | Zimmermann et al. | Sep 2005 | B2 |
6944033 | Xu et al. | Sep 2005 | B1 |
6977824 | Yang et al. | Dec 2005 | B1 |
6980077 | Chandrasekaran et al. | Dec 2005 | B1 |
6982887 | Batarseh et al. | Jan 2006 | B2 |
7009486 | Goeke et al. | Mar 2006 | B1 |
7012414 | Mehrotra et al. | Mar 2006 | B1 |
7016204 | Yang et al. | Mar 2006 | B2 |
7026807 | Anderson et al. | Apr 2006 | B2 |
7034586 | Mehas et al. | Apr 2006 | B2 |
7034647 | Yan et al. | Apr 2006 | B2 |
7046523 | Sun et al. | May 2006 | B2 |
7061358 | Yang | Jun 2006 | B1 |
7076360 | Ma | Jul 2006 | B1 |
7095638 | Uusitalo | Aug 2006 | B2 |
7099163 | Ying | Aug 2006 | B1 |
7148669 | Maksimovic et al. | Dec 2006 | B2 |
7170268 | Kim | Jan 2007 | B2 |
7176662 | Chandrasekaran | Feb 2007 | B2 |
7209024 | Nakahori | Apr 2007 | B2 |
7269038 | Shekhawat et al. | Sep 2007 | B2 |
7280026 | Chandrasekaran et al. | Oct 2007 | B2 |
7285807 | Brar et al. | Oct 2007 | B2 |
7298118 | Chandrasekaran | Nov 2007 | B2 |
7301785 | Yasumura | Nov 2007 | B2 |
7312686 | Bruno | Dec 2007 | B2 |
7321283 | Mehrotra et al. | Jan 2008 | B2 |
7332992 | Iwai | Feb 2008 | B2 |
7339208 | Brar et al. | Mar 2008 | B2 |
7339801 | Yasumura | Mar 2008 | B2 |
7348612 | Sriram et al. | Mar 2008 | B2 |
7360004 | Dougherty et al. | Apr 2008 | B2 |
7362592 | Yang et al. | Apr 2008 | B2 |
7362593 | Yang et al. | Apr 2008 | B2 |
7375607 | Lee et al. | May 2008 | B2 |
7385375 | Rozman | Jun 2008 | B2 |
7386404 | Cargonja et al. | Jun 2008 | B2 |
7417875 | Chandrasekaran et al. | Aug 2008 | B2 |
7427910 | Mehrotra et al. | Sep 2008 | B2 |
7446512 | Nishihara et al. | Nov 2008 | B2 |
7447049 | Garner et al. | Nov 2008 | B2 |
7468649 | Chandrasekaran | Dec 2008 | B2 |
7471523 | Yang | Dec 2008 | B2 |
7489225 | Dadafshar | Feb 2009 | B2 |
7499295 | Indika de Silva et al. | Mar 2009 | B2 |
7554430 | Mehrotra et al. | Jun 2009 | B2 |
7558037 | Gong et al. | Jul 2009 | B1 |
7558082 | Jitaru | Jul 2009 | B2 |
7567445 | Coulson et al. | Jul 2009 | B2 |
7630219 | Lee | Dec 2009 | B2 |
7633369 | Chandrasekaran et al. | Dec 2009 | B2 |
7663183 | Brar et al. | Feb 2010 | B2 |
7667986 | Artusi et al. | Feb 2010 | B2 |
7675758 | Artusi et al. | Mar 2010 | B2 |
7675759 | Artusi et al. | Mar 2010 | B2 |
7675764 | Chandrasekaran et al. | Mar 2010 | B2 |
7746041 | Xu et al. | Jun 2010 | B2 |
7778050 | Yamashita | Aug 2010 | B2 |
7778051 | Yang | Aug 2010 | B2 |
7787264 | Yang et al. | Aug 2010 | B2 |
7791903 | Zhang et al. | Sep 2010 | B2 |
7795849 | Sohma | Sep 2010 | B2 |
7813101 | Morikawa | Oct 2010 | B2 |
7847535 | Meynard et al. | Dec 2010 | B2 |
7889517 | Artusi et al. | Feb 2011 | B2 |
7889521 | Hsu | Feb 2011 | B2 |
7940035 | Yang | May 2011 | B2 |
7965528 | Yang et al. | Jun 2011 | B2 |
7983063 | Lu et al. | Jul 2011 | B2 |
8004112 | Koga et al. | Aug 2011 | B2 |
8179699 | Tumminaro et al. | May 2012 | B2 |
8278889 | Tataeishi | Oct 2012 | B2 |
20020057080 | Telefus et al. | May 2002 | A1 |
20020114172 | Webb et al. | Aug 2002 | A1 |
20030026115 | Miyazaki | Feb 2003 | A1 |
20030197585 | Chandrasekaran et al. | Oct 2003 | A1 |
20030198067 | Sun et al. | Oct 2003 | A1 |
20040017689 | Zhang et al. | Jan 2004 | A1 |
20040034555 | Dismukes et al. | Feb 2004 | A1 |
20040148047 | Dismukes et al. | Jul 2004 | A1 |
20040156220 | Kim et al. | Aug 2004 | A1 |
20040200631 | Chen | Oct 2004 | A1 |
20040217794 | Strysko | Nov 2004 | A1 |
20050024179 | Chandrasekaran et al. | Feb 2005 | A1 |
20050245658 | Mehrotra et al. | Nov 2005 | A1 |
20050281058 | Batarseh et al. | Dec 2005 | A1 |
20060007713 | Brown | Jan 2006 | A1 |
20060038549 | Mehrotra et al. | Feb 2006 | A1 |
20060038649 | Mehrotra et al. | Feb 2006 | A1 |
20060038650 | Mehrotra et al. | Feb 2006 | A1 |
20060109698 | Qu | May 2006 | A1 |
20060187684 | Chandrasekaran et al. | Aug 2006 | A1 |
20060197510 | Chandrasekaran | Sep 2006 | A1 |
20060198173 | Rozman | Sep 2006 | A1 |
20060226477 | Brar et al. | Oct 2006 | A1 |
20060226478 | Brar et al. | Oct 2006 | A1 |
20060237968 | Chandrasekaran | Oct 2006 | A1 |
20060255360 | Brar et al. | Nov 2006 | A1 |
20070007945 | King et al. | Jan 2007 | A1 |
20070030717 | Luger et al. | Feb 2007 | A1 |
20070045765 | Brar et al. | Mar 2007 | A1 |
20070069286 | Brar et al. | Mar 2007 | A1 |
20070114979 | Chandrasekaran | May 2007 | A1 |
20070222463 | Qahouq et al. | Sep 2007 | A1 |
20070241721 | Weinstein et al. | Oct 2007 | A1 |
20070296028 | Brar et al. | Dec 2007 | A1 |
20070298559 | Brar et al. | Dec 2007 | A1 |
20070298564 | Brar et al. | Dec 2007 | A1 |
20080024259 | Chandrasekaran et al. | Jan 2008 | A1 |
20080054874 | Chandrasekaran et al. | Mar 2008 | A1 |
20080111657 | Mehrotra et al. | May 2008 | A1 |
20080130321 | Artusi et al. | Jun 2008 | A1 |
20080130322 | Artusi et al. | Jun 2008 | A1 |
20080137381 | Beasley | Jun 2008 | A1 |
20080150666 | Chandrasekaran et al. | Jun 2008 | A1 |
20080205104 | Lev et al. | Aug 2008 | A1 |
20080224812 | Chandrasekaran | Sep 2008 | A1 |
20080232141 | Artusi et al. | Sep 2008 | A1 |
20080310190 | Chandrasekaran et al. | Dec 2008 | A1 |
20080315852 | Jayaraman et al. | Dec 2008 | A1 |
20080316779 | Jayaraman et al. | Dec 2008 | A1 |
20090051346 | Manabe et al. | Feb 2009 | A1 |
20090097290 | Chandrasekaran | Apr 2009 | A1 |
20090257250 | Liu | Oct 2009 | A1 |
20090273957 | Feldtkeller | Nov 2009 | A1 |
20090284994 | Lin et al. | Nov 2009 | A1 |
20090315530 | Baranwal | Dec 2009 | A1 |
20100091522 | Chandrasekaran et al. | Apr 2010 | A1 |
20100123486 | Berghegger | May 2010 | A1 |
20100149838 | Artusi et al. | Jun 2010 | A1 |
20100182806 | Garrity et al. | Jul 2010 | A1 |
20100188876 | Garrity et al. | Jul 2010 | A1 |
20100254168 | Chandrasekaran | Oct 2010 | A1 |
20100321958 | Brinlee et al. | Dec 2010 | A1 |
20100321964 | Brinlee et al. | Dec 2010 | A1 |
20110038179 | Zhang | Feb 2011 | A1 |
20110134664 | Berghegger | Jun 2011 | A1 |
20110149607 | Jungreis et al. | Jun 2011 | A1 |
20110182089 | Berghegger | Jul 2011 | A1 |
20110239008 | Lam et al. | Sep 2011 | A1 |
20110305047 | Jungreis et al. | Dec 2011 | A1 |
20120243271 | Berghegger | Sep 2012 | A1 |
20120294048 | Brinlee | Nov 2012 | A1 |
Number | Date | Country |
---|---|---|
101141099 | Mar 2008 | CN |
201252294 | Jun 2009 | CN |
0 665 634 | Jan 1994 | EP |
57097361 | Jun 1982 | JP |
3-215911 | Sep 1991 | JP |
2000-68132 | Mar 2000 | JP |
WO8700991 | Feb 1987 | WO |
WO2010083511 | Jul 2010 | WO |
WO2010083514 | Jul 2010 | WO |
WO2010114914 | Oct 2010 | WO |
WO2011116225 | Sep 2011 | WO |
Entry |
---|
Ajram, S., et al., “Ultrahigh Frequency DC-to-DC Converters Using GaAs Power Switches,” IEEE Transactions on Power Electronics, Sep. 2001, pp. 594-602, vol. 16, No. 5, IEEE, Los Alamitos, CA. |
“AN100: Application Note using Lx100 Family of High Performance N-Ch JFET Transistors,” AN100.Rev 1.01, Sep. 2003, 5 pp., Lovoltech, Inc., Santa Clara, CA. |
“AN101A: Gate Drive Network for a Power JFET,” AN101A.Rev 1.2, Nov. 2003, 2 pp., Lovoltech, Inc., Santa Clara, CA. |
“AN108: Applications Note: How to Use Power JFETs® and MOSFETs Interchangeably in Low-Side Applications,” Rev. 1.0.1, Feb. 14, 2005, 4 pp., Lovoltech, Inc., Santa Clara, CA. |
Balogh, L., et al., “Power-Factor Correction with Interleaved Boost Converters in Continuous-Inductor-Current Mode,” IEEE Proceedings of APEC, pp. 168-174, 1993, IEEE, Los Alamitos, CA. |
Biernacki, J., et al., “Radio Frequency DC-DC Flyback Converter,” Proceedings of the 43rd IEEE Midwest Symposium on Circuits and Systems, Aug. 8-11, 2000, pp. 94-97, vol. 1, IEEE, Los Alamitos, CA. |
Chen, W., et al., “Design of High Efficiency, Low Profile, Low Voltage Converter with Integrated Magnetics,” Proceedings of 1997 IEEE Applied Power Electronics Conference (APEC '97), 1997, pp. 911-917, IEEE, Los Alamitos, CA. |
Chen, W., et al., “Integrated Planar Inductor Scheme for Multi-module Interleaved Quasi-Square-Wave (QSW) DC/DC Converter,” 30th Annual IEEE Power Electronics Specialists Conference (PESC '99), 1999, pp. 759-762, vol. 2, IEEE, Los Alamitos, CA. |
Curtis, K., “Advances in Microcontroller Peripherals Facilitate Current-Mode for Digital Power Supplies,” Digital Power Forum '06, 4 pp., Sep. 2006, Darnell Group, Richardson, TX. |
Eisenbeiser, K., et al., “Manufacturable GaAs VFET for Power Switching Applications,” IEEE Electron Device Letters, Apr. 2000, pp. 144-145, vol. 21, No. 4, IEEE. |
Gaye, M., et al., “A 50-100MHz 5V to -5V, 1W Cuk Converter Using Gallium Arsenide Power Switches,” ISCAS 2000—IEEE International Symposium on Circuits and Systems, May 28-31, 2000, pp. 1-264-1-267, vol. 1, IEEE, Geneva, Switzerland. |
Goldberg, A.F., et al., “Issues Related to 1-10-MHz Transformer Design,” IEEE Transactions on Power Electronics, Jan. 1989, pp. 113-123, vol. 4, No. 1, IEEE, Los Alamitos, CA. |
Goldberg, A.F., et al., “Finite-Element Analysis of Copper Loss in 1-10-MHz Transformers,” IEEE Transactions on Power Electronics, Apr. 1989, pp. 157-167, vol. 4, No. 2, IEEE, Los Alamitos, CA. |
Jitaru, I.D., et al., “Quasi-Integrated Magnetic an Avenue for Higher Power Density and Efficiency in Power Converters,” 12th Annual Applied Power Electronics Conference and Exposition, Feb. 23-27, 1997, pp. 395-402, vol. 1, IEEE, Los Alamitos, CA. |
Kollman, R., et al., “10 MHz PWM Converters with GaAs VFETs,” IEEE 11th Annual Applied Power Electronics Conference and Exposition, Mar. 1996, pp. 264-269, vol. 1, IEEE. |
Lee, P.-W., et al., “Steady-State Analysis of an Interleaved Boost Converter with Coupled Inductors,” IEEE Transactions on Industrial Electronics, Aug. 2000, pp. 787-795, vol. 47, No. 4, IEEE, Los Alamitos, CA. |
Lenk, R., “Introduction to the Tapped Buck Converter,” PCIM 2000, HFPC 2000 Proceedings, Oct. 2000, pp. 155-166. |
Liu, W., “Fundamentals of III-V Devices: HBTs, MESFETs, and HFETs/HEMTs,” §5-5: Modulation Doping, 1999, pp. 323-330, John Wiley & Sons, New York, NY. |
Maksimović, D., et al., “Switching Converters with Wide DC Conversion Range,” IEEE Transactions on Power Electronics, Jan. 1991, pp. 151-157, vol. 6, No. 1, IEEE, Los Alamitos, CA. |
Middlebrook, R.D., “Transformerless DC-to-DC Converters with Large Conversion Ratios,” IEEE Transactions on Power Electronics, Oct. 1988, pp. 484-488, vol. 3, No. 4, IEEE, Los Alamitos, CA. |
Miwa, B.A., et al., “High Efficiency Power Factor Correction Using Interleaving Techniques,” IEEE Proceedings of APEC, 1992, pp. 557-568, IEEE, Los Alamitos, CA. |
Nguyen, L.D., et al., “Ultra-High-Speed Modulation-Doped Field-Effect Transistors: A Tutorial Review,” Proceedings of the IEEE, Apr. 1992, pp. 494-518, vol. 80, No. 4, IEEE. |
Niemela, V.A., et al., “Comparison of GaAs and Silicon Synchronous Rectifiers in a 3.3V Out, 50W DC-DC Converter,” 27th Annual IEEE Power Electronics Specialists Conference, Jun. 1996, pp. 861-867, vol. 1, IEEE. |
Ninomiya, T., et al., “Static and Dynamic Analysis of Zero-Voltage-Switched Half-Bridge Converter with PWM Control,” Proceedings of 1991 IEEE Power Electronics Specialists Conference (PESC '91), 1991, pp. 230-237, IEEE, Los Alamitos, CA. |
O'Meara, K., “A New Output Rectifier Configuration Optimized for High Frequency Operation,” Proceedings of 1991 High Frequency Power Conversion (HFPC '91) Conference, Jun. 1991, pp. 219-225, Toronto, CA. |
Peng, C., et al., “A New Efficient High Frequency Rectifier Circuit,” Proceedings of 1991 High Frequency Power Conversion (HFPC '91) Conference, Jun. 1991, pp. 236-243, Toronto, CA. |
Pietkiewicz, A., et al. “Coupled-Inductor Current-Doubler Topology in Phase-Shifted Full-Bridge DC-DC Converter,” 20th International Telecommunications Energy Conference (INTELEC), Oct. 1998, pp. 41-48, IEEE, Los Alamitos, CA. |
Plumton, D.L., et al., “A Low On-Resistance High-Current GaAs Power VFET,” IEEE Electron Device Letters, Apr. 1995, pp. 142-144, vol. 16, No. 4, IEEE. |
Rajeev, M., “An Input Current Shaper with Boost and Flyback Converter Using Integrated Magnetics,” Power Electronics and Drive Systems, 5th International Conference on Power Electronics and Drive Systems 2003, Nov. 17-20, 2003, pp. 327-331, vol. 1, IEEE, Los Alamitos, CA. |
Rico, M., et al., “Static and Dynamic Modeling of Tapped-Inductor DC-to-DC Converters,” 1987, pp. 281-288, IEEE, Los Alamitos, CA. |
Severns, R., “Circuit Reinvention in Power Electronics and Identification of Prior Work,” Proceedings of 1997 IEEE Applied Power Electronics Conference (APEC '97), 1997, pp. 3-9, IEEE, Los Alamitos, CA. |
Severns, R., “Circuit Reinvention in Power Electronics and Identification of Prior Work,” IEEE Transactions on Power Electronics, Jan. 2001, pp. 1-7, vol. 16, No. 1, IEEE, Los Alamitos, CA. |
Sun, J., et al., “Unified Analysis of Half-Bridge Converters with Current-Doubler Rectifier,” Proceedings of 2001 IEEE Applied Power Electronics Conference, 2001, pp. 514-520, IEEE, Los Alamitos, CA. |
Sun, J., et al., “An Improved Current-Doubler Rectifier with Integrated Magnetics,” 17th Annual Applied Power Electronics Conference and Exposition (APEC), 2002, pp. 831-837, vol. 2, IEEE, Dallas, TX. |
Thaker, M., et al., “Adaptive/Intelligent Control and Power Management Reduce Power Dissipation and Consumption,” Digital Power Forum '06, 11 pp., Sep. 2006, Darnell Group, Richardson, TX. |
Wei, J., et al., “Comparison of Three Topology Candidates for 12V VRM,” IEEE APEC, 2001, pp. 245-251, IEEE, Los Alamitos, CA. |
Weitzel, C.E., “RF Power Devices for Wireless Communications,” 2002 IEEE MTT-S CDROM, 2002, pp. 285-288, paper TU4B-1, IEEE, Los Alamitos, CA. |
Williams, R., “Modern GaAs Processing Methods,” 1990, pp. 66-67, Artech House, Inc., Norwood, MA. |
Wong, P.-L., et al., “Investigating Coupling Inductors in the Interleaving QSW VRM,” 15th Annual Applied Power Electronics Conference and Exposition (APEC 2000), Feb. 2000, pp. 973-978, vol. 2, IEEE, Los Alamitos, CA. |
Xu, P., et al., “Design and Performance Evaluation of Multi-Channel Interleaved Quasi-Square-Wave Buck Voltage Regulator Module,” HFPC 2000 Proceedings, Oct. 2000, pp. 82-88. |
Xu, P., et al., “A Family of Novel Interleaved DC/DC Converters for Low-Voltage High-Current Voltage Regulator Module Applications,” IEEE Power Electronics Specialists Conference, Jun. 2001, pp. 1507-1511, IEEE, Los Alamitos, CA. |
Xu, P., et al., “A Novel Integrated Current Doubler Rectifier,” IEEE 2000 Applied Power Electronics Conference, Mar. 2000, pp. 735-740, IEEE, Los Alamitos, CA. |
Yan, L., et al., “Integrated Magnetic Full Wave Converter with Flexible Output Inductor,” 17th Annual Applied Power Electronics Conference and Exposition (APEC), 2002, pp. 824-830, vol. 2, IEEE, Dallas, TX. |
Yan, L., et al., “Integrated Magnetic Full Wave Converter with Flexible Output Inductor,” IEEE Transactions on Power Electronics, Mar. 2003, pp. 670-678, vol. 18, No. 2, IEEE, Los Alamitos, CA. |
Zhou, X., et al., “A High Power Density, High Efficiency and Fast Transient Voltage Regulator Module with a Novel Current Sensing and Current Sharing Technique,” IEEE Applied Power Electronics Conference, Mar. 1999, pp. 289-294, IEEE, Los Alamitos, CA. |
Zhou, X., et al., “Investigation of Candidate VRM Topologies for Future Microprocessors,” IEEE Applied Power Electronics Conference, Mar. 1998, pp. 145-150, IEEE, Los Alamitos, CA. |
Chhawchharia, P., et al., “On the Reduction of Component Count in Switched Capacitor DC/DC Convertors,” Hong Kong Polytechnic University, IEEE, 1997, Hung Hom, Kowloon, Hong King, pp. 1395-1401. |
Freescale Semiconductor, “Implementing a Digital AC/DC Switched-Mode Power Supply using a 56F8300 Digital Signal Controller,” Application Note AN3115, Aug. 2005, 24 pp., Chandler, AZ. |
Kuwabara, K., et al., “Switched-Capacitor DC—DC Converters,” Fujitsu Limited, IEEE, 1988, Kawasaki, Japan, pp. 213-218. |
Maxim, Application Note 725, www.maxim-ic.com/an725, Maxim Integrated Products, Nov. 29, 2001, 8 pages. |
National Semiconductor Corporation, “LM2665 Switched Capacitor Voltage Converter,” www.national.com, Sep. 2005, 9 pages. |
National Semiconductor Corporation, “LMC7660 Switched Capacitor Voltage Converter,” www.national.com, Apr. 1997, 12 pages. |
Texas Instruments Incorporated, “LT1054, LT1054Y Switched-Capacitor Voltage Converters With Regulators,” SLVS033C, Feb. 1990—Revised Jul. 1998, 25 pages. |
Vallamkonda, S., “Limitations of Switching Voltage Regulators,” A Thesis in Electrical Engineering, Texas Tech University, May 2004, 89 pages. |
Xu, M., et al., “Voltage Divider and its Application in the Two-stage Power Architecture,” Center for Power Electronics Systems, Virginia Polytechnic Institute and State University, IEEE, 2006, Blacksburg, Virginia, pp. 499-505. |
Freescale Semiconductor, “56F8323 Evaluation Module User Manual, 56F8300 16-bit Digital Signal Controllers”, MC56F8323EVMUM, Rev. 2, Jul. 2005 (72 pages). |
Freescale Semiconductor, “56F8323/56F8123 Data Sheet Preliminary Technical Data, 56F8300 16-bit Digital Signal Controllers,” MC56F8323 Rev. 17, Apr. 2007 (140 pages). |
Freescale Semiconductor, “Design of a Digital AC/DC SMPS using the 56F8323 Device, Designer Reference Manual, 56800E 16-bit Digital Signal Controllers”, DRM074, Rev. 0, Aug. 2005 (108 pages). |
Power Integrations, Inc., “TOP200-4/14 TOPSwitch® Family Three-terminal Off-line PWM Switch,” Internet Citation http://www.datasheet4u.com/.download.php?id=311769, Jul. 1996, XP002524650, pp. 1-16. |
Number | Date | Country | |
---|---|---|---|
20110149607 A1 | Jun 2011 | US |