Controller for variable transmission

Information

  • Patent Grant
  • 11125329
  • Patent Number
    11,125,329
  • Date Filed
    Monday, October 15, 2018
    6 years ago
  • Date Issued
    Tuesday, September 21, 2021
    3 years ago
Abstract
An electronic controller for a variable ratio transmission and an electronically controllable variable ratio transmission including a variator or other CVT are described herein. The electronic controller can be configured to receive input signals indicative of parameters associated with an engine coupled to the transmission. The electronic controller can also receive one or more control inputs. The electronic controller can determine an active range and an active variator mode based on the input signals and control inputs. The electronic controller can control a final drive ratio of the variable ratio transmission by controlling one or more electronic solenoids that control the ratios of one or more portions of the variable ratio transmission.
Description
BACKGROUND

Continuously variable transmissions (CVT) and transmissions that are substantially continuously variable are increasingly gaining acceptance in various applications. The process of controlling the ratio provided by the CVT is complicated by the continuously variable or minute gradations in ratio presented by the CVT. Furthermore, the range of ratios that may be implemented in a CVT may not be sufficient for some applications. A transmission may implement a combination of a CVT with one or more additional CVT stages, one or more fixed ratio range splitters, or some combination thereof in order to extend the range of available ratios. The combination of a CVT with one or more additional stages further complicates the ratio control process, as the transmission may have multiple configurations that achieve the same final drive ratio.


The different transmission configurations can, for example, multiply input torque across the different transmission stages in different manners to achieve the same final drive ratio. However, some configurations provide more flexibility or better efficiency than other configurations providing the same final drive ratio.


The criteria for optimizing transmission control may be different for different applications of the same transmission. For example, the criteria for optimizing control of a transmission for fuel efficiency may differ based on the type of prime mover applying input torque to the transmission. Furthermore, for a given transmission and prime mover pair, the criteria for optimizing control of the transmission may differ depending on whether fuel efficiency or performance is being optimized.


Systems and methods are described herein for addressing the complicated and sometimes competing criteria that are addressed in controlling a transmission final drive ratio.


SUMMARY

An electronic controller for a variable ratio transmission and an electronically controllable variable ratio transmission including a variator or other CVT are described herein. The electronic controller can be configured to receive input signals indicative of parameters associated with an engine coupled to the transmission. The electronic controller can also receive one or more control inputs. The electronic controller can determine an active range and an active variator mode based on the input signals and control inputs. The electronic controller can control a final drive ratio of the variable ratio transmission by controlling one or more electronic solenoids that control the ratios of one or more portions of the variable ratio transmission.


Aspects of the invention include a method of controlling a variable ratio transmission. The method includes receiving a plurality of input signals, determining an active control range from a plurality of control ranges based at least in part on the plurality of input signals, determining an active variator mode from a plurality of variator modes based on the plurality of input signals and the active control range, and controlling an operation of the variator based on the input signals and the active variator mode.


Aspects of the invention include a method of controlling a variable ratio transmission. The method includes receiving one or more electronic input values, and controlling a current applied to a control solenoid to vary a position of a variator control piston that operates to vary a ratio provided by a variator by varying an angle of a rotation axis for at least one rotating planet in the variator.


Aspects of the invention include a controller system that includes a shift schedule module configured to store a shift schedule map, a shift point module coupled to the shift schedule module, configured to receive a plurality of electronic input signals, and configured to determine an active control range from a plurality of control ranges based at least in part on the plurality of electronic input signals and the shift schedule map, a variator mode module configured to determine a variator mode based on the plurality of electronic input signals and the active control range, and a control module configured to control a ratio of a variator based on the variator mode.


Aspects of the invention include a controller system that includes a transmission having a variable ratio variator whose ratio is varied based at least in part on a position of a longitudinal axis of at least one rotating planet within the variator, and an electronic controller configured to receive a plurality of inputs and generate a control output that varies the position of a longitudinal axis of the at least one rotating planet within the variator based on the plurality of inputs.





BRIEF DESCRIPTION OF THE DRAWINGS

The features, objects, and advantages of embodiments of the disclosure will become more apparent from the detailed description set forth below when taken in conjunction with the drawings, in which like elements bear like reference numerals.



FIG. 1 is a simplified functional block diagram of a drive apparatus including a variable ratio transmission.



FIG. 2 is a simplified power flow diagram of an embodiment of a variable ratio transmission with electronic control.



FIG. 3A is a simplified diagram of a variable ratio transmission having electronic control.



FIG. 3B is a simplified diagram of an embodiment of a variator.



FIG. 3C is a simplified fluid flow diagram of an embodiment of a variable ratio transmission.



FIG. 4 is a simplified functional block diagram of an embodiment of an electronic controller for a variable ratio transmission.



FIG. 5 is a simplified diagram of an embodiment of a transmission shift curve implemented by an electronic controller.



FIG. 6 is a simplified diagram of an embodiment of an engine speed map implemented by an electronic controller.



FIG. 7 is a simplified diagram of an embodiment of a variator map implemented by an electronic controller.



FIG. 8 is a simplified diagram of an embodiment of a variator map implemented by an electronic controller.



FIG. 9 is a simplified diagram of an embodiment of an engine speed limit map implemented by an electronic controller.



FIG. 10 is a simplified diagram of an embodiment of a variator rate limit map implemented by an electronic controller.



FIG. 11 is a simplified diagram mapping estimated engine torque to throttle position.



FIG. 12 is a simplified diagram of an embodiment of a line pressure schedule.



FIG. 13 is a simplified diagram of an embodiment of a line pressure control map.



FIG. 14 is a simplified diagram of an embodiment of a clutch application profile.



FIG. 15 is a simplified diagram of an embodiment of a clutch pressure control map.



FIG. 16 is a simplified diagram of an embodiment of a torque converter clutch curve.



FIG. 17 is a simplified flow chart of an embodiment of a method of controlling a variable ratio transmission.



FIG. 18 is a simplified flowchart of an embodiment of a method of controlling a variator in a variable ratio transmission.



FIG. 19 is a schematic diagram of an embodiment of a fluid flow diagram of an embodiment of a valve system that can be implemented on a variable ratio transmission.





DETAILED DESCRIPTION OF CERTAIN EMBODIMENTS

An electronic controller for a variable ratio transmission is described herein that enables electronic control over a variable ratio transmission having a continuously variable ratio portion, such as a Continuously Variable Transmission (CVT), Infinitely Variable Transmission (IVT), or variator. The electronic controller can be configured to receive input signals indicative of parameters associated with an engine coupled to the transmission. The parameters can include throttle position sensor values, vehicle speed, gear selector position, user selectable mode configurations, and the like, or some combination thereof. The electronic controller can also receive one or more control inputs. The electronic controller can determine an active range and an active variator mode based on the input signals and control inputs. The electronic controller can control a final drive ratio of the variable ratio transmission by controlling one or more electronic solenoids that control the ratios of one or more portions of the variable ratio transmission.


The electronic controller described herein is described in the context of a continuous variable transmission, such as the continuous variable transmission of the type described in International Application Number PCT/US2008/053347, entitled “CONTINUOUSLY VARIABLE TRANSMISSIONS AND METHODS THEREFOR,” assigned to the assignee of the present application and hereby incorporated by reference herein in its entirety. However, the electronic controller is not limited to controlling a particular type of transmission but can be configured to control any of several types of variable ratio transmissions.


As used herein, the terms “operationally connected,” “operationally coupled”, “operationally linked”, “operably connected”, “operably coupled”, “operably linked,” and like terms, refer to a relationship (mechanical, linkage, coupling, etc.) between elements whereby operation of one element results in a corresponding, following, or simultaneous operation or actuation of a second element. It is noted that in using said terms to describe the various embodiments, specific structures or mechanisms that link or couple the elements are typically described. However, unless otherwise specifically stated, when one of said terms is used, the term indicates that the actual linkage or coupling may take a variety of forms, which in certain instances will be obvious to a person of ordinary skill in the relevant technology.


The term “radial” is used herein to indicate a direction or position that is perpendicular relative to a longitudinal axis of a transmission or variator. The term “axial” as used herein refers to a direction or position along an axis that is parallel to a main or longitudinal axis of a transmission or variator. For clarity and conciseness, at times similar components labeled similarly (for example, control piston 582A and control piston 582B) will be referred to collectively by a single label (for example, control pistons 582).



FIG. 1 is a simplified functional block diagram of an embodiment of a drive apparatus 100, which is referred to herein as the drive 100. In some embodiments, the drive 100 includes a transmission 101 operationally coupled between a prime mover 102 and a load 114. The prime mover 102 delivers power to the transmission 101, and the transmission 101 delivers power to the load 114. The prime mover 102 can be one or more of any number of power generating devices, and the load 114 can be one or more of any number of driven devices or components. Examples of the prime mover 102 include, but are not limited to, engines, including but not limited to internal combustion engines and external combustion engines, motors, such as electric motors, and the like, or some combination thereof. Examples of loads include, but are not limited to, drive train differential assemblies, power take-off assemblies, generator assemblies, pump assemblies, and the like.


In one embodiment, the transmission 101 includes an input interface 104, a variator 106, an output interface 110, and a range box 112. The input interface 104 is operationally coupled to the prime mover 102. The variator 106 can be operationally coupled between the input interface 104 and the output interface 110. The range box 112 is operationally coupled between the output interface 110 and the load 114.


A controller 108, such as an electronic controller, can be configured to monitor one or more states, properties, or characteristics of the drive 100. The controller 108 can be configured to receive one or more inputs from a user interface 107, which is typically local to the drive 100 and controller 108. The controller 108 may optionally include a remote interface 109 that is configured to receive one or more inputs from a remote controller (not shown).


The controller 108 can be coupled to the prime mover 102 and can be configured to monitor or otherwise determine one or more characteristics of the prime mover 102. In a particular embodiment where the prime mover 102 includes an internal combustion engine, the controller can be configured to monitor, for example, a throttle position, an engine speed, and the like or some combination thereof.


The controller 108 can also be coupled to one or more stages within the transmission 101, and can be configured to monitor or otherwise determine one or more characteristics of the transmission 101. For example, the controller 108 can be configured to monitor or otherwise determine various mechanical characteristics, fluid pressures and temperatures within each of the input interface 104, variator 106, output interface 110, and range box 112.


The controller 108 can be coupled to the user interface 107 to receive or monitor inputs provided locally. The user interface 107 can include, for example, a gear shift controller, typically referred to as a gear shift lever. The user interface 107 may also include one or more manual mode selectors, which can be selectively activated to control an operational mode of the drive 100. The manual mode selectors can be, for example, one or more switches or programmable elements. In an particular example, the manual mode selectors can selectively indicate an economy mode, a performance mode, a luxury mode, and the like. The manual mode selectors need not be mutually exclusive, but may be activated or disabled simultaneously or otherwise concurrently.


The controller 108 can be coupled to the remote controller (not shown) via the remote interface 109 and can be configured to receive one or more inputs from the remote controller. The remote interface 109 can be a wired interface, wireless interface, and the like, or some combination thereof. In one embodiment, the remote interface 109 can support a wired communication standard. In another embodiment, the remote interface 109 can support a wireless communication standard. In other embodiments, the remote interface 109 can support a proprietary wired or wireless communication interface. Alternatively, the remote interface 109 can be configured to support a combination of wired and wireless interfaces.


The controller 108 can receive, from the remote controller via the remote interface 109, one or more control inputs or monitor inputs. The controller 108 can be configured, for example, to receive programmable updates, tables, operational maps, other information, and the like, or some combination thereof from the remote controller.


The controller 108 can be configured to provide one or more outputs, based at least in part on the inputs, and which can be used to control operational characteristics of the drive 100. For example, the controller 10 can control operational characteristics of the drive 100, and in particular the transmission 101, based on a combination of the inputs and one or more predetermined operational maps, algorithms, or processes. The controller 108 can also be configured to provide one or more outputs that communicate or otherwise indicate a state, characteristic, or condition of one or more aspects of the drive 100. For example, the controller 108 can be configured to control one or more indicators in the user interface 107 or provide diagnostic information to the remote controller via the remote interface 109.


As will be described in greater detail below, the controller 108 can be configured to control a final drive ratio of the transmission 101, including the drive ratio provided by the variator 106 and the drive ratio enabled of the range box 112. The controller 108 can also be configured to control operational characteristics such as shifting characteristics.


In one embodiment the controller 108 can be configured to control a plurality of solenoid valves (not shown) that can control aspects of each of the input interface 104, variator 106, and range box 112. The controller 108 can be configured to control one or more of the solenoid valves using open loop control. Alternatively, or additionally, the controller 108 can be configured to control one or more of the solenoid valves in a closed control loop that utilizes feedback information provided to or monitored by one or more inputs to the controller 108.


The input interface 104 can be configured for receiving power from the prime mover 102 and transferring such power to the variator 106. The output interface 110 can be configured for combining power (that is, torque applied at a given rotational speed) from the variator 106 and transferring such combined power to the range box 112. It is disclosed herein that neither the input interface 104 nor the output interface 110 is necessarily limited to a particular respective physical and/or operational configuration. Accordingly, the input interface 104 may include any gearing or coupling structure suitable for providing such distributed power transfer and distribution functionality, and the output interface 110 may include any gearing or coupling structure suitable for providing such combined power transfer functionality. Examples of the input interface 104 include, but are not limited to, a torque converter assembly, a hydraulic clutch coupling, a manually actuated clutch assembly, a computer-controlled clutch assembly, a magnetorheological clutch coupling, and the like, or some combination thereof.


The variator 106 can be configured for enabling power distributed thereto from the input interface 104 to be transferred to the output interface 110 in a manner whereby torque and/or rotational speed associated with that power is selectively variable (that is, selectively adjustable).


The range box 112 provides various gear selection and clutch engagement functionalities and operates to extend the range of final drive ratios available from the transmission 101. Examples of such gear selection functionality include, but are not limited to, selective engagement of available range box gear ratios and selective engagement of various load drive directions. Examples of such clutch engagement functionality include, but are not limited to, passive implementation of various clutch engagement operations and active implementation of various clutch engagement operations.



FIG. 2 is a simplified diagram of a variable ratio transmission 101 having electronic control. The variable ratio transmission 101 of FIG. 2 can be, for example, the transmission implemented in the drive embodiment illustrated in FIG. 1.


The transmission 101 consists of four major subsystems. The subsystems include a torque converter 210 with a lockup clutch 212, a variator 220, alternatively referred to as a CVT element, a power combiner 230, which can be implemented as a combining planetary gearset, and a two-speed range box 240. The two speed range box 240 can be implemented, for example, as a Ravigneaux gearset and clutches 242, 244, and 246. The transmission 101 is illustrated with a two speed range box 240 for purposes of clarity. Other embodiments may omit the range box 240 and associated clutches 242, 244, and 246 in favor of a reverser, while still other embodiments may implement more than one range box 240 or a range box 240 capable of more than two speeds.


The overall transmission ratio is determined by the torque converter 210, the variator 220, and the range box 240. The range of ratios supported by the variator 220 may produce an overlap in the range of ratios supported by the transmission 101 in the two different range box 240 configurations. Thus, there are multiple ways to achieve a given overall ratio that occurs in the region of overlapping ranges.


An embodiment of a strategy chosen by the control system, and in particular the controller 108, to perform the ratio selection and control is described herein. In general, the variator 220 is relied upon for more precise engine control and smoother operation at low vehicle speeds.


The transmission controller 108 accepts inputs from one or more system sensors and a driver, and operates one or more hydraulic solenoid valves 243, 245, 247, 213, and 221, to control the range clutches 242, 244, 246, variator 220 and torque converter clutch (TCC) 212. The controller 108 can be configured to apply and release each of the solenoid valves 213, 221, 243, 245, and 247 independently based at least in part on the one or more sensor inputs.



FIG. 3A is a simplified diagram of a variable ratio transmission 101 having electronic control. In one embodiment, the transmission 101 can include a torque converter subassembly 800, a main shaft 1000, a variator 1200, a combining device 1400, a range box 1600, and a transmission housing 1800. The transmission housing 1800 can include a bell housing 1810 (that is, a first housing portion) and a rear housing 1820 (that is, a second housing portion) separably connected to the bell housing 1810. In the embodiment illustrated, the torque converter subassembly 800, the main shaft 1000, the variator 1200, the combining device 1400, and the range box 1600 are operably mounted on or within the transmission housing 1800 in an axially aligned manner. Thus, it is disclosed herein that the transmission housing 1800 is configured for housing and supporting various subassemblies and/or components of the transmission 101. In other embodiments, any one of the torque converter subassembly 800, the variator 1200, the combining device 1400, and the range box 1600 can be arranged in a parallel shaft configuration relative to the other components.


In some embodiments, the variator 1200 and the main shaft 1000 can be operably coupled between a power output portion of the torque converter subassembly 800 and power input portions of the combining device 1400. In operation, the torque converter subassembly 800 transfers power to the variator 1200 through the main shaft 1000. The variator 1200 supplies power to a first power input portion 1410 of the combining device 1400. The main shaft 1000 supplies power to a second power input portion 1405 of the combining device 1400. Power from the variator 1200 and the main shaft 1000 can be supplied to the combining device 1400 in a selectively variable ratio (for example, power from the variator 1200 in relation to power from the main shaft 1000) and can be combined by the combining device 1400. The combining device 1400 delivers the combined power to the range box 1600 via a power output portion 1401 of the combining device 1400. The power output portion 1401 can include a carrier of planetary gear set and/or a transfer shaft.


In one embodiment, the variator 1200 mounts on the main shaft 1000. In one configuration, the variator 1200 and the main shaft 1000 form a torque split unit. More specifically, the ratio of torque transferred to the combining device 1400 through the variator 1200 or through the main shaft 1000 is selectively variable dependent upon a torque ratio setting of the variator 1200. To this end, the variator 1200 transfers power to the combining device 1400 in a manner whereby the torque and/or the rotational speed associated with that power is selectively and continuously variable (that is, adjustable). Thus, the variator 1200 can be configured for receiving power of a first specification (for example, first torque and first rotational shaft speed) and outputting power of a second specification (for example, second torque and second rotational shaft speed).


The torque converter subassembly 800 is one embodiment of an input interface 104, for example, thereby providing the functionality of transferring power from a prime mover attached to the torque converter subassembly 800 to the variator 1200 via, for example, the main shaft 1000. In other embodiments, a different type of input interface such as, for example, a manually controlled clutch subassembly, a computer controlled clutch assembly, or a flywheel can be implemented in place of the torque converter subassembly 800. The combining device 1400 is an embodiment of an output interface, thereby providing the functionality of combining power received from the variator 1200 and the main shaft 1000 and transferring such power to the range box 1600. In one embodiment, the range box 1600 receives power from the combining device 1400 and outputs power in conjunction with providing one or more of the various gear selection and clutch engagement functionalities discussed above in reference to FIG. 1. As is discussed further below, the range box 1600 in combination with the variator 1200 enables the transmission 101 to operate in multiple modes (that is, a multi-mode transmission).


In one embodiment, the variator 1200 can include an input load-cam-and-traction-ring subassembly 2000A, an output load-cam-and-traction-ring subassembly 2000B, an array of planet-and-shift-lever subassemblies 2100, a shift-cam-and-sun subassembly 2200, and a stator-manifold subassembly 2300. In one embodiment, the shift-cam-and-sun subassembly 2200 is supported by the stator-manifold subassembly 2300. The shift-cam-and-sun subassembly 2200 is supported in a manner enabling the shift-cam-and-sun subassembly 2200 to be translated along a longitudinal axis LA1 of the main shaft 1000. The planet-and-shift-lever subassemblies 2100 are arrayed angularly around the main shaft 1000, and are supported jointly by the shift-cam-and-sun subassembly 2200 and the stator-manifold subassembly 2300. Each one of the planet-and-shift-lever subassemblies 2100 is supported in a manner that facilitates synchronous rotation of all the planet-and-shift-lever subassemblies 2100 about a respective reference axis TA1 extending through a planet 2102 of each one of the planet-and-shift-lever subassemblies 2100. Through such synchronous rotation, all of the planet-and-shift-lever subassemblies 2100 are in the same relative rotational position at a given point in time. The axis TA1 associated with each one of the planet-and-shift-lever subassemblies 2100 extends through a center point of the respective planet 2102 substantially perpendicular to a radial reference axis RA1 extending from the longitudinal axis LA1 through the center point of the respective planet 2102.


In some embodiments, the main shaft 1000 includes a first end portion 1005, a central portion 1010 and a second end portion 1015. The first end portion 1005 couples to a power output portion 805 of the torque converter assembly 800 (for example, an output hub of a converter turbine) in a manner precluding relative rotation of the main shaft 1000 with respect to the power output portion 805. The central portion 1010 of the main shaft 1000 couples to the input load-cam-and-traction-ring subassembly 2000A in a manner precluding relative rotation of the main shaft 1000 with respect to the input load-cam-and-traction-ring subassembly 2000A. The second end portion 1015 of the main shaft 1000 couples to the first power input portion 1405 of the combining device 1400 in a manner precluding relative rotation of the main shaft 1000 with respect to the first power input portion 1405. The output load-cam-and-traction-ring subassembly 2000B of the variator 1200 couples to a first power input portion 1410 of the combining device 1400 in a manner precluding relative rotation of the output load-cam-and-traction-ring subassembly 2000B with respect to the first power input portion 1410. Thus, the main shaft 1000 is suitably configured for transferring power from the torque converter subassembly 800 (a) directly to the combining device 1400, and (b) to the combining device 1400 through the variator 1200.


Each of the planets 2102 is located by the input load-cam-and-traction-ring subassembly 2000A, the output load-cam-and-traction-ring subassembly 2000B, and the shift-cam-and-sun subassembly 2200. The main shaft 1000 can be configured to exert torque on the input load-cam-and-traction-ring subassembly 2000A. Through traction at a respective input traction interface TI1 between the input load-cam-and-traction-ring subassembly 2000A and each planet 2102, torque is exerted by the input load-cam-and-traction-ring subassembly 2000A on the planets 2102, thereby causing each planet 2102 to rotate about a respective planet axle 2104. The input traction interface TI1 is defined, as used here, at a region of contact between the input load-cam-and-traction-ring subassembly 2000A and the respective planet 2102. Preferably, but not necessarily, traction at each input traction interface TI1 and each output traction interface TI2 is provided through an elastohydrodynamic layer formed by a traction fluid.


Through traction at a respective output traction interface TI2 between the input load-cam-and-traction-ring subassembly 2000B and each planet 2102, torque is exerted by the planets 2102 on the output load-cam-and-traction-ring subassembly 2000B, thereby causing the output load-cam-and-traction-ring subassembly 2000B to rotate about the main shaft 1000. The output traction interface TI2 is defined, as used here, at a region of contact between the output load-cam-and-traction-ring subassembly 2000B and the respective planet 2102. As shown in FIG. 3A, the output load-cam-and-traction-ring subassembly 2000B can be coupled to the combining device 1400. Accordingly, torque can be transferred from the main shaft 1000 to the combining device 1400 through the variator 1200.


As discussed above in reference to FIG. 3A, the ratio of torque transferred to the combining device 1400 through the variator 1200 or through the main shaft 1000 can be selectively variable dependent upon the torque ratio of the variator 1200. The torque ratio refers to a relative position of the input traction interface TI1 and the output traction interface TI2, relative to the axis LA2, for a given tilt of the planet-and-shift-lever subassemblies 2100. When the tangential surface velocity of the planets 2102 at the input traction interface TI1 is the same as the tangential surface velocity of the planets 2102 at the output traction interface TI2, the torque ratio is substantially equal to 1 and there is no corresponding torque multiplication. Through tilting of the planet-and-shift-lever subassemblies 2100, the ratio of the tangential surface velocity of the planets 2102 at the input traction interface TI1 to that of the tangential surface velocity of the planets 2102 at the output traction interface TI2 is selectively adjustable. As discussed further below, the shift-cam-and-sun subassembly can be configured such that translation of the shift-cam-and-sun subassembly 2200 causes such tilt of the planet-and-shift-lever subassemblies 2100. The direction of tilt of the planet-and-shift-lever subassemblies 2100 from the position corresponding to the torque ratio of 1 dictates whether the torque multiplication is greater than 1 (that is, torque output is greater than torque input) or less than 1 (that is, torque input is greater than torque output).


As depicted in FIG. 3A, the input traction interface TI1 and the output traction interface TI2 are angularly equidistant relative to a radial reference axis RA1 extending through the tangential reference axis TA1. As a result, the torque ratio is 1 when a longitudinal axis LA2 of each planet 2102 is parallel with the longitudinal axis LA1 of the main shaft 1000. Such an equidistant configuration provides for a balanced adjustment range such that full adjustment of the planet-and-shift-lever subassemblies 2100 in a first adjustment direction results in the same absolute torque multiplication value as full adjustment in a second direction. In other embodiments, the input traction interface TI1 and the output traction interface TI2 may be non-equidistant from the reference axis TA1 when the torque ratio is 1.0 and the longitudinal axis LA2 is parallel with the longitudinal axis LA1. Such a non-equidistant configuration provides for biasing of the adjustment range such that full adjustment of the planet-and-shift-lever subassemblies 2100 in the first adjustment direction results in a different absolute torque multiplication value than full adjustment in the second adjustment direction.


As illustrated in the embodiment of FIG. 3A, the variator 1200 can be axially constrained on the main shaft 1000 between an axial reaction flange 1020 of the main shaft 1000 and an axial lock nut 1305. The axial lock nut 1305 includes a threaded bore configured for mating with a corresponding threaded portion 1025 of the main shaft 1000. The axial reaction flange 1020 can be fixedly attached to the main shaft 1000 adjacent the second end portion 1015 of the main shaft 1000. The threaded portion 1025 can be an integral component of the main shaft 1000, adjacent to the central portion 1010 of the main shaft 1000. In one embodiment, the main shaft 1000 includes an anti-rock piloting surface 1028 configured for engaging a mating anti-rock piloting surface of the axial lock nut 1305 for limiting rocking of the axial lock nut 1305 with respect to the main shaft 1000.


A first engagement extension 1030 at the first end portion 1005 of the main shaft 1000 can be configured for engaging or supporting a bearing assembly 810 that interfaces with certain components of the torque converter subassembly 800 or other support member. A second engagement extension 1035 at the second end portion 1015 of the main shaft 1000 can be configured for engaging or supporting a bearing assembly 1415 that interfaces with certain components of the combining device 1400. In some embodiments, the bearing assemblies 810, 1415 include each only a bushing or a bearing component. In other embodiments, the bearing assemblies 810, 1415 each include a bushing or a bearing component and a seal component configured to engage a mating surface of the respective engagement extension 1030, 1035.



FIG. 3B is a simplified diagram of an embodiment of a variator 1200 that can be, for example, the variator in the transmission of FIG. 3A. In the illustrated embodiment of the variator 1200, each one of the planet-and-shift-lever subassemblies 2100 includes a planet 2102 rotatably mounted on a planet axle 2104, which can be positioned on a planet central bore 2103. Spaced apart planet bearings 2108, an inner spacer 2110, and outer spacers 2112 can mount coaxially on the planet axle 2104. In some embodiment, the inner spacer 2110 is positioned between the planet bearings 2108, and each one of the planet bearings 2108 is positioned between a respective one of the outer spacers 2112 and the inner spacer 2110. Accordingly, each planet 2102 is rotatably mounted on a respective planet axle 2104 in a load-bearing and rotatable manner. The variator 1200 is not limited to a particular planet bearing and spacer arrangement for rotatably mounting each planet 2102 on the respective planet axle 2104. For example, in some embodiments, a planet bearing and spacer arrangement using more than two or less two planet bearings and more than two or less spacers (that is, inner position and/or outer position) can be implemented.


Planet axle shift levers 2106 (“shift levers 2106”) can be fixedly attached to opposing end portions 2107 of the planet axle 2104 such that the planet 2102 is positioned between the shift levers 2106. The planet axle 2104 extends through a planet axle bore 2111 of each shift lever 2106. In one embodiment, the opposing end portions 2107 include skew roller shoulders 2109 on which skew rollers 2122 mount. Each skew roller 2122 can be held in place by a washer 2124 and a clip ring 2126, which clip ring 2126 can be engaged within a groove in the skew roller shoulder 2109. It is disclosed herein that, in some embodiments, a shift lever 2106 can include one or more features (not shown) such as, for example, a recess, a channel, etc., for providing clearance with other components of the variator 1200.


In some embodiments, a shift guide roller axle 2116 can be engaged within a shift guide roller axle bore 2117 of each shift lever 2106 and within a corresponding axle capturing feature 2119 of the planet axle 2104. In one embodiment, the shift guide roller axle bore 2117 intersects and is generally perpendicular to the planet axle bore 2111. The shift guide roller axle bore 2117 is adjacent to a first end portion 2121 of the shift lever 2106. Examples of the axle capturing feature 2119 include, but are not limited to, a feature generally characterized as a notch, a cut out, a channel, a seat, or the like. The shift guide roller axle 2116 and the corresponding axle capturing feature 2119 can be configured for limiting (for example, substantially precluding) radial displacement of the shift guide roller axle 2116 with respect to the engaged axle capturing feature 2119. Thus, such mating configuration of the shift guide roller axle 2116 and the corresponding axle capturing feature 2119 limits displacement of the shift lever 2106 along the longitudinal axis LA2 of the planet axle 2104 when the shift guide roller axle 2116 is mounted on the planet axle 2104 with the shift guide roller axle 2116 engaged within the shift guide roller axle bore 2117 and the corresponding axle capturing feature 2119. Shift guide rollers 2114 can be mounted on opposing end portions of each shift guide roller axle 2116. Each shift guide roller axle 2116 can be secured in place by, for example, washers 2118 and clip rings 2120, which clip rings 2120 can be engaged within a groove 2191 of the shift guide roller axle 2116. In other embodiments, the shift guide roller axle 2116 can be secured by, for example, an interference fit, press fit, etc. Side faces 2244 can be configured to substantially constrain movement of the shift lever 2106, thereby limiting rotation of the respective shift lever 2106 about the longitudinal axis LA1 of the variator 1200.


In an embodiment of the variator 1200, the shift-cam-and-sun subassembly 2200 can include sun 2202, bearings 2204, shift cams 2206, control pistons 2208, piston tube 2210, shim 2212, inner seals 2214, and outer seals 2216. As shown in FIG. 3C, in some embodiments, the control pistons 2208 are coupled to the shift cams 2206 through the piston tube 2210. The control pistons 2208 and the shift cams 2206 can be mounted on the piston tube 2210 by, for example, a press-fit interface. The sun 2202 can be operationally coupled to the shift cams 2206 through the bearings 2204. The bearings 2204 can be configured to transfer axial and radial loads between the sun 2202 and the shift cams 2206. The sun 2202 and the shift cams 2206 can be configured to receive the bearings 2204. The variator 1200 is not limited to bearings of a particular type. For example, an angular contact bearing is a suitable bearing type for the bearings 2204.


The position of the control pistons 2208 can be selectably controlled, for example, via an electronic solenoid under the control of an electronic controller. The controller can utilize a closed loop control to monitor the transmission state and adjust the electronic solenoid, and thereby the position of the control pistons 2208, accordingly.



FIG. 3C is a simplified fluid flow diagram 300 of an embodiment of a variable ratio transmission. The fluid flow diagram 300 can illustrate, for example, a fluid flow within the transmission of FIG. 3A. The fluid flow diagram 300 illustrates schematically the control of fluid flow and fluid pressures through the use of one or more electronic solenoids. The fluid flow and controls illustrated in the flow diagram 300 of FIG. 3C are illustrative and not intended to be limiting on the number and type of controls that may be implemented within a transmission. Although the fluid flow diagram generally illustrates the electronic solenoids, e.g. 213, as controlling a fluid exhaust, the electronic solenoids are not limited to controlling fluid exhaust, and may be configured to control inlet fluid flow or a chamber volume in order to effectuate the desired control.


In the example of FIG. 3C, fluid, such as hydraulic fluid within the transmission is contained within a sump 350. A pump 310 draws the fluid from the sump, pressurizes it, and distributes it to one or more control paths within the transmission. The pump 310 can be, for example, driven by the primary move via the input interface. In one example, an internal combustion engine drives the torque converter, and the torque converter drives the pump 310. The pump 310 typically includes one or more mechanisms (not shown) for controlling, regulating, or otherwise limiting the fluid pressure. Such mechanisms include, but are not limited to solenoids, check balls, diaphragms, regulators, and the like, or some combination thereof. The line pressure can be static or may be dynamically regulated by the controller. The pressure regulator is not illustrated for the sake of clarity.


The pressurized fluid from the pump 310 is distributed along a plurality of control passages. Each of the control passages can be sized to minimize the drop in fluid pressure experienced at the output of the pump 310 across the entire control range of flow in the control passage.


A first control passage can be, for example, coupled to the torque converter and operate to control the engagement and disengagement of the torque converter clutch. A first electronic solenoid 213 under the control of the controller can selectively control a torque converter clutch piston 312 to selectively control the pressure applied to the torque converter clutch. For example, the first electronic solenoid 213 can be substantially de-energized when the torque converter clutch is not engaged, where de-energized refers to the currently flowing through the solenoid that is insignificant relative to an actuation current. The fluid supplied in the first control passage is permitted to exhaust back to the sump 350 thereby inhibiting sufficient pressure to actuate the torque converter clutch. The first electronic solenoid 213 can be engaged to substantially limit fluid exhaust from the first control passage, thereby permitting build up of pressure within the first control passage and engaging the torque converter clutch.


A second control passage may be implemented in conjunction with a second electronic solenoid 221 and variator control piston 320 to control the ratio provided by the variator. The controller can control the amount of current to the second electronic solenoid 221 to control the fluid exhaust through the second control passage and thereby the position of the variator control piston 320. The position of the variator control piston 320, as described above in relation to FIG. 3B, controls the shift-cam-and-sun subassembly and planet-and-shift-lever subassemblies, which control the ratio provided by the variator.


A third control passage may be implemented in conjunction with a third electronic solenoid 243 and range clutch control piston 342 to control the engagement of the range clutch. The controller can provide an actuation current to the third electronic solenoid 243 to engage the range clutch control piston 342 and permit fluid pressure to engage the clutch. Conversely, the controller can inhibit current to the third electronic solenoid 243 to disengage the range clutch control piston 342 and permit fluid in the third control passage to exhaust to the sump 350, thereby inhibiting pressure applied to the range clutch. The position of the range clutch can be used to control the ratio of the range box.


Similarly, a fourth control passage may be implemented in conjunction with a fourth electronic solenoid 245 and forward clutch control piston 344 to control the engagement of the forward clutch. The controller can provide an actuation current to the fourth electronic solenoid 245 to engage the forward clutch control piston 344, and can inhibit current to the fourth electronic solenoid 245 to disengage the forward clutch control piston 344.


Likewise, a fifth control passage may be implemented in conjunction with a fifth electronic solenoid 247 and reverse clutch control piston 346 to control the engagement of the reverse clutch. The controller can provide an actuation current to the fifth electronic solenoid 247 to engage the reverse clutch control piston 346, and can inhibit current to the fifth electronic solenoid 247 to disengage the reverse clutch control piston 346.



FIG. 4 is a simplified functional block diagram of an embodiment of an electronic controller 108 for a variable ratio transmission. The controller 108 can be, for example, the controller illustrated in FIG. 1 and can be used, for example, to control the transmission of FIG. 3A. The electronic controller 108 functions are broken down into system inputs, controller outputs, range control, variator control, torque converter clutch locking and diagnostics.


The controller 108 implements a strategy for controlling the range box and variator. The controller 108 determines the appropriate functionality as a function of driver (user) and vehicle inputs in the shift point module 410. The shift logic module 430 determines the appropriate clutches to apply and their required torque capacity. The rate of apply and corresponding solenoid current are computed in the shift quality control module 450. The controller 108 also determines when use of the variator is enabled.


The controller 108 can also be configured to include diagnostics and failure modes to enable the ability to avoid dangerous or destructive conditions and to allow reduced functionality operation in case of failure when possible. Major electrical and hydraulic failures can be addressed, as well as highly degraded performance.


The controller 108 includes a plurality of modules configured to receive input from one or more sensors or controls in the drive system. Each external signal that enters the electronic controller can represent a sensor measurement or a control state. Prior to using the input information, the input data may undergo signal conditioning, scaling, error checking, and the like, or some combination thereof.


The input signals and control states may be analog signals, digital signals, or a combination of analog and digital signals. An initial complement of analog inputs for a particular implementation is listed in Table 1 as an illustrative example. A controller 108 need not support the entire complement of input types. For example, the first three analog signal types may be implemented within a production controller 108. The others analog inputs may be supported in the production implementation or may be included for potential use in development units.









TABLE 1







Analog Inputs













Input
Range
Excitation
Variable
Units
Range
Type





throttle position
0-5 V
5 V
throttle
%
0-100 
potentiometer


sump temperature
0-5 V
5 V
Tsump
deg. C.
−50 . . . 200
thermistor


variator temperature
0-5 V
5 V
Tcool
deg. C.
−50 . . . 200
thermistor


P1 servo pressure
0-5 V

P1
kPa (gauge)
0-3400
transducer


P2 servo pressure
0-5 V

P2
kPa (gauge)
0-3400
transducer


reverse clutch pressure
0-5 V

Prev
kPa (gauge)
0-3400
transducer


forward clutch pressure
0-5 V

Pfwd
kPa (gauge)
0-3400
transducer


direct clutch pressure
0-5 V

Pdir
kPa (gauge)
0-3400
transducer


manual low clutch pressure
0-5 V

Pmlow
kPa (gauge)
0-3400
transducer


line pressure
0-5 V

Pline
kPa (gauge)
0-3400
transducer


lube pressure
0-5 V

Plube
kPa (gauge)
0-3400
transducer


servo position A
+/−5 V  

XservoA
mm
+/−15.5
transducer


servo position B
+/−5 V  

XservpB
mm
+/−15.5
transducer









The controller 108 may also be configured to accept one or more digital inputs. In one embodiment, an active signal is pulled to ground. That is, the controller 108 provides a pull-up function.


The controller 108, and in particular the controller modules receiving sensor and state inputs, can be configured to condition or otherwise process the received input signals. For example, the controller 108 can perform signal conditioning on the input signals to reduce or otherwise mitigate noise effects. For example, the controller 108 may condition inputs that are provided by a thermistor. The controller 108 may implement a pull-up resistor at each thermistor input to form a voltage divider, with the junction voltage providing an indication of resistance.


Typically, the controller 108 performs a linear translation from input voltage to the engineering units, as indicated in Table 1. Inputs that are scaled, shifted, or otherwise conditioned or processed, such as thermistor inputs, may be translated based on a calibration. A lookup table can be used to perform this calibration. Predetermined input signal ranges can be used by the controller 108 to check for sensor failures. The detection of erroneous values will be flagged by the controller 108 for the diagnostic routines.


One or more values may be predetermined and stored within one or more modules of the controller 108. For example, physical dimensions can be used as parameters to estimate variables that are not directly measured. In one instance, the parameters for a range box based on a particular Ravigneaux gear set model are:

P1m=3.62 ratio nring/nsum1
P2m=2.77 ratio nring/nsum2


The radius of a particular implementation of the variator ball (planet) is:

Rballm=31.75e-5 m model variator ball radius


The plurality of modules operate on the sensors in conjunction with one or more predetermined maps, algorithms, or processes implemented in modules within the controller 108 to determine one or more control signals. One or more output control modules can operate to provide the one or more control signals to their respective control destinations.


The controller 108 outputs can be primarily solenoid controls to control electronic solenoids in the transmission. In addition, the controller 108 can be configured to provide one or more pieces of diagnostic information. The controller 108 can be configured, for example, to provide such diagnostic information as a driver warning light.


The electronic control of the transmission is achieved through electrohydraulic solenoids. A list of the solenoids and their general characteristics is given in Table 2 as an illustrative example. Several different types of solenoid are employed. These may include a variable-force solenoid (VFS), a variable bleed solenoids (VBS), on/off shift solenoids and pulse-width modulated on/off solenoids (PWM). The VFS and VBS types are typically used with closed-loop current control in order to maintain accuracy of control. The on/off solenoids typically require no feedback.









TABLE 2







Solenoid Control Outputs















Solenoid
Feedback
Voltage
Current
Freq
Variable
Units
Range
Default





Line pressure VFS
current
9-14 V
1 A
300 Hz
iLine
mA
0-1000
press.


Low VBS
current
9-14 V
1 A
300 Hz
iLow
mA
0-1000
press.


Direct VBS
current
9-14 V
1 A
300 Hz
iDirect
mA
0-1000
exh.


Reverse VBS
current
9-14 V
1 A
300 Hz
iReverse
mA
0-1000
press.


Ratio VBS
current
9-14 V
1 A
300 Hz
iRatio
mA
0-1000
press.


Forward shift
no
9-14 V
1 A
 0 Hz
ManShift
logic
0-1  
exh.


Forward sequence
no
9-14 V
1 A
 0 Hz
FwdOn
logic
0-1  
exh.


TCC PWM
no
9-14 V
1.5 A  
 32 Hz
TCCduty
%
0-100 
exh.









The controller 108 can generate PWM signals, using, for example, microcomputer timers. Pulses are generated at the appropriate frequency with width according to duty cycle. Narrow pulses represent low duty cycle and wide pulses for high duty cycle. Although they are not specifically designated as PWM solenoids, the VFS and VBS can use a PWM signal as part of their control. In this case, however, the appropriate output module from the controller 108 adjusts the duty cycle that an average current feedback tracks the command. The controller 108 can generate PWM signals with a relatively high frequency, that is typically higher than an update rate of non-PWM controlled solenoids, and higher than a response time of the solenoid, so that the solenoid valve does not actually cycle on and off each pulse, but instead, provides a smooth response. In effect, the response time characteristic of the electronic solenoid operates as a lowpass filter to smooth the PWM signal.


The controller 108 includes a shift point module 410 configured to receive input from one or more of a shift schedule module 412, a plurality of sensors, including, but not limited to, a vehicle speed sensor, a throttle position sensor, one or more control state sensors, such as a shift position lever state sensor, and the like.


The list of sensor signals and switch inputs in Table 3 represents the digital inputs to the transmission controller 108. Table 3 is an illustrative example of one embodiment of the sensor signal and switch inputs.









TABLE 3







Digital Inputs












Input
Range
Sense
Variable
Logic
Type





pressure switch N
0-12 V
ground
PRNDLN
code
boolean


pressure switch R
0-12 V
ground
PRNDLR
code
boolean


pressure switch P
0-12 V
ground
PRNDLP
code
boolean


zero throttle
0-12 V
ground
throttle0
inverted
boolean


switch


100% throttle
0-12 V
ground
throttle100
inverted
boolean


switch


PRNDL Park
0-12 V
ground
ParkSwitch
inverted
boolean


Switch


PRNDL Manual+
0-12 V
ground
ManualUp
inverted
boolean


PRNDL Manual−
0-12 V
ground
ManualDown
inverted
boolean


Brake
0-12 V
ground
BrakeSwitch
inverted
boolean


Perf/Economy
0-12 V
ground
Performance
TRUE
boolean


Switch









An embodiment of a pressure switch manifold decoding is shown in Table 4 as an illustrative example. On each of the three input lines (N, R and P), logic 0 represents a closed switch and 1 is open, or floating. Because neutral and park are identical hydraulically, only two of the bits (N and P) are needed to identify the four possible states. Park and neutral can be distinguished via the park switch on the PRNDL lever. The decoded PRNDL position is represented by the variable lever.









TABLE 4







Pressure Manifold Logic













Range
N
R
P
Lever







Park
1
0
1
0



Reverse
0
0
1
1



Neutral
1
0
1
2



Drive
1
M
0
3



Low
0
M
0
4










In Drive and Low, the third pressure manifold bit, R, indicates the status of the manual low clutch. The table entry M is logic 1 when the clutch is pressurized and logic 0 when it is vented.


The five speed inputs listed in Table 5 can be sensed by the frequencies of toothed wheels passing a magnetic pickup. Each speed sensor generates a pulse train that triggers timer circuits, for example, within the shift point module 410 or an optional speed sensor conditioning module (not shown). The timers can determine the period of each pulse, and the reciprocal of the period is the frequency of the pulse train. Pulses of a duration that is either much shorter or larger than the trend can be assumed to represent noise and can be discarded. Persistently erratic or lost pulses can be reported to a diagnostic routine.


In one embodiment, the frequency can be scaled. For example, the pulse frequency can divided by the number of pulses per revolution and the result multiplied by 60 to arrive at the shaft speed in rpm. Vehicle speed can be approximated from tail shaft speed, neglecting slip, which may be negligible.









TABLE 5







Speed Inputs














Input
Pulse/Rev
Type
Voltage
Variable
Units
Range
Type





Engine speed
TBD
Hall
5 V
Ne
rpm
0-10000
unsigned


Turbine speed
TBD
Hall
5 V
Nturb
rpm
0-10000
unsigned


Variator output speed
TBD
Hall
5 V
Nvar
rpm
0-10000
unsigned


Reverse ring speed
TBD
Hall
5 V
Nring
rpm
0-10000
unsigned


Tail shaft speed
TBD
Hall
5 V
Ntail
rpm
0-10000
unsigned









The shift point module 410 operates on the inputs to determine which one of a plurality of ranges to operate within. The electronic controller 108 configured to control the transmission of FIG. 3A having a two-ratio range box and a CVT variator can implement virtually an infinite number of ratio combinations within the ratio range. The controller 108, and in particular, the shift point module 410 is configured to provide transmission control based on a predetermined number of control ranges. The number of ranges and the span for each of the predetermined control ranges can be stored, for example, in the shift schedule module 412. For example, the controller 108 can implement three control ranges. The shift point module 410 can determine, based on the inputs, the relevant control range and can identify the active control range by the variable ngear. Table 6 is an example of an embodiment of transmission control range designations. In one example, the shift point module 410 determines the appropriate range based on the shift curves stored in the shift schedule module 412.









TABLE 6







Transmission Control Range Designations









ngear
variator
range





1
Underdrive
Low


2
Engine speed control
Low


3
Overdrive
Direct









The shift point module 410 can also determine and output a variator flag value. The shift point module 410 can determine the state of the variator flag based at least in part on the ngear control range state. The shift point module 410 can output, for example, an active variator flag in those control range states when active variator control is enabled.


In the first control range, the controller 108 controls both the variator and range box to be in low, giving the maximum possible underdrive. In the second control range, the controller 108 controls the variator ratio and the range of ratios can be shifted toward one-to-one and beyond into overdrive, while the range box remains in low. In the third control range, the controller 108 controls the range box to shift to one-to-one (direct) with the variator controlled to operate in full overdrive.


The shift point module 410 provides the ngear value and appropriate shift flags to the shift logic module 430. The shift logic module 430 operates on the input values and outputs shift control commands as well as a line pressure valve control. For example, the shift logic module 430 can determine the current state of the control range based on the ngear value provided by the shift point module 410. The shift logic module 430 operates on an active upshift flag to command an upshift of the transmission. Conversely, the shift logic operates on an active downshift flag to command a downshift of the transmission.


The shift logic module 430 can also be configured to command the application of the torque converter clutch to control whether the torque converter is engaged into a lockup state. The controller 108 can lock the torque converter clutch in order to operate the transmission more efficiently. The shift point module 410 in combination with the shift logic module 430 may determine the conditions for torque converter lockup in a manner similar to the range control strategy. The conditions under which the controller 108 applies the torque converter clutch can be determined by driver input and vehicle speed. In one embodiment, the shift point module 410 can implement the conditions for torque converter lockup as another range value in the number of predetermined control ranges. In such an embodiment, the shift point module 410 can implement the additional torque converter lockup clutch as an additional shift strategy stored in the shift schedule module 412.


The shift logic module 430 can be configured to provide line pressure valve control information directly to a line pressure solenoid in order to adjust the line pressure within the transmission. This is discussed in further detail below. The shift logic module 430 can also be configured to directly control the torque converter clutch solenoid to selectively engage or disengage the torque converter clutch.


The shift logic module 430 sends the shift commands, whether upshift or downshift, to a shift quality control module 450 that operates to control the appropriate pressure control solenoid to achieve a particular shift quality. As will be subsequently explained in further detail, the shift quality control module 450 can operate on the shift control from the shift logic module 430 by implementing a particular shift profile. The shift quality control module 450 implements a particular shift profile, for example, by controlling current applied to the appropriate shift solenoid based on the shift profile.


The shift quality control module 450 can implement different shift profiles to provide differing shift characteristics. For example, the shift quality control module 450 can implement a rapid first shift profile when the transmission is operated in a performance mode and can implement a gentle second shift profile when the transmission is operated in a luxury mode.


A variator mode module 420 operates to control the ratio provided by the variator. The variator mode module 420 can determine when the variator can be controlled according to several different modes. Typically, the engine speed is controlled by the variator in order to achieve objectives of performance or fuel economy, for example. Alternatively, a specific ratio may be commanded. In each of these cases, the objective can be translated to a desired instantaneous engine (or turbine) speed. A variator valve can be adjusted dynamically to track this setpoint. Full overdrive and underdrive may be commanded at the extremes of operation.


The variator mode module 420 can be configured to receive sensor and control state inputs which may be the same, distinct from, or at least partially overlap the sensor and control state inputs received at the shift point module 410. The variator mode module 420 also receives a variator flag value from the shift point module 410.


The controller 108, and in particular the variator mode module 420, may limit dynamic control of the ratio of the variator to those situations where the variator flag is active. If the variator flag is active, the variator mode module 420 can determine a variator mode and a corresponding variator control based on the various inputs. Alternatively, if the variator flag is inactive, the variator mode module 420 determine a static state of the variator based on the input signals. In an alternate embodiment, the variator mode module 420 may also receive the ngear value from the shift point module 410 and determine the state of the variator control based in part on the ngear value as well as the state of the variator flag.


The variator mode module 420 can determine an active one of a plurality of variator modes based on the input signals. The controller 108 can, for example, implement a plurality of variator modes. Although there is virtually no limit to the number of variator modes that the controller 108 may implement, the majority of driving conditions may be satisfied using fewer than approximately ten variator modes. Each variator mode allows the controller 108 to control the variator (or CVT) to provide good drivability according to the driver inputs, engine and vehicle conditions. Examples of the various variator modes and conditions for their operation are provided below.


The variator mode module 420 outputs the variator mode value to an engine speed setpoint module 440. The engine speed setpoint module 440 operates to control the variator in order to control at least one of an engine speed or variator ratio that depends on the variator mode.


The engine speed setpoint module 440 can determine a desired engine speed, for example, based in part on one or more algorithms, engine maps, and the like or some combination thereof. The various engine maps and algorithms can be stored within memory within the engine speed setpoint module 440 or in memory otherwise accessible by the engine speed setpoint module 440.


The engine speed setpoint module 440 provides the target engine speed to a closed loop algorithm control module 460. The closed loop algorithm control module 460 receives the target engine speed and actual engine speed as input values. The actual engine speed can be determined based on one or more sensor values, such as, for example provided by a crankshaft sensor or flywheel sensor.


The engine speed setpoint module 440 generates a control output to maintain the actual engine speed to within an error tolerance of the target engine speed. In one embodiment, the engine speed setpoint module 440 outputs a current signal that is used to control a variator valve. In a particular example, the engine speed setpoint module 440 modulates the current provided to an electronic solenoid that controls a position of a variator control piston within the variator.


The engine speed setpoint module 440 can, for example, compare the target engine speed against the actual engine speed and generate an error signal that is used to control the output signal. The engine speed setpoint module 440 can implement a loop filter and loop gain to achieve the desired control characteristics. For example, a lower bandwidth on the loop filter may eliminate unwanted spurious effects on the control output, but at a cost of speed at which the engine speed setpoint module 440 can react to sudden changes in either the target engine speed or the actual engine speed.


The engine speed setpoint module 440 can control the ratio solenoid of the variator so that the measured engine speed feedback tracks the setpoint. The engine speed setpoint module 440 can perform PI (proportional+integral) control. The general form of the equations is shown below.


In proportional control, the difference between the setpoint and feedback represents the closed loop error. This difference is multiplied by a constant of proportionality to increase or decrease the solenoid current and corresponding variator ratio, as required.

e0=Neset−Ne
u0=Kvarp*e0,Kvarp=1e-4 A/rpm, proportional gain


The engine speed setpoint module 440 can accumulate the integral of the error to minimize steady-state error in the control loop. The engine speed setpoint module 440 can approximate this integral in discrete time.

e1=e1+Ts*e0,
uI=Kvari*e1,
Kvari=0 A/rpm/sec integral gain
Talg=0.01 sec sample time interval


The engine speed setpoint module 440 can limit the sum of the control action to be within a usable range of the solenoid. The engine speed setpoint module 440 can perform ratio limit based on the pseudo code provided below.

if (u0+u1>iRatioMax)
iRatio=iRatioMax
freeze the value of e1
else if (u0+u1<iRatioMin)
iRatio=iRatioMin
freeze the value of e1
else
iRatio=u0+u1


The functions of the various modules within the controller 108 may be implemented as hardware, software, or as a combination of hardware and software. The controller 108 can include a processor 492 or computer and one or more processor readable or computer readable media. The one or more processor readable or computer readable media can be implemented, for example, as memory 494. The processor readable or computer readable media can be encoded with one or more instructions, data, or information that are arranged as software instructions that, when executed by the processor or computer, implement the functionality of portions or all of one or more of the modules within the controller 108.



FIG. 5 is a simplified diagram of an embodiment of a transmission shift curve 500 implemented by an electronic controller. As described above, the controller may implement three distinct ngear control ranges.


The appropriate range is determined by the controller according to shift curves such as those shown in FIG. 5. A threshold is calibrated, in terms of vehicle speed as a function of throttle. V12 is the curve that directs the transmission to ngear=2. This enables the variator ratio control as a function of engine speed. The V21 is the downshift curve for the overall transmission into low. The curve varlow shows that the variator will be in low ratio prior to the 2-1 downshift. Note that the transition into low is at a somewhat lower speed to prevent hunting. V23 is the curve that signals an upshift, ngear=3, to the range box. This shifts the range box from low to high, which may be direct. The controller 108 commands the variator to a predetermined ratio, such as a predetermined overdrive ratio by virtue of the varhigh curve. The V32 curve signals, ngear=2, the range box to downshift from direct to low and enables the variator back into a control mode.


The shift curves can be implemented as table values stored in the shift schedule module. The tables values and shift curves can be changed to achieve a particular vehicle performance criterion. For example, the shift schedule module can be configured to store a plurality of shift curves corresponding to a plurality of selectable user selectable transmission characteristics. The controller can select or otherwise access a particular shift curve instantiation based on the value of the user selectable characteristic. In one example, a user interface may permit a user to select from a performance mode or an economy mode. A distinct shift curve may be stored within the shift schedule module for each user selectable mode and accessed by the controller upon activation by the user. The various shift curves can be based on maximum engine torque, and may differ based on the type and characteristics of the prime mover coupled to the transmission.


An illustrative example of the data included in a shift curve is provided below.
















Th_set = [0 10 20 40 60 90 91 100]
pct
throttle angle


V12 = [12 12 12 20 25 30 30 30]
kph
1-2 upshift


V21 = [10 10 10 10 10 10 10 10]
kph
2-1 downshift


V23 = [45 45 60 80 100 125 130 130]
kph
2-3 upshift


V32 = [42 42 50 73 92 120 125 125]
kph
3-2 downshift


Tconfirm
sec
delay time for shift point









The variator control described above can be implemented, for example, with five variator control modes listed in Table 7. These variator control modes permit the transmission to provide good drivability according to the driver inputs, engine and vehicle conditions.









TABLE 7







Variator Control Mode Definition









Variator Mode
Name
Function





0
Idle
Underdrive


1
Launch
Underdrive


2
Drive
Engine Speed Control


3
High
Overdrive


4
Manual
Ratio Control


5
Coast
Ratio Control


6
Low Freewheel
Ratio Control


7
Reverse
Ratio Control










FIG. 6 is a simplified diagram of an embodiment of an engine speed map 600 implemented by an electronic controller. The variator control modes can be implemented directly be the variator mode module.


The variator mode module may implement the ratio control of modes 0, 1, and 3 directly based on a predetermined control value for the variator mode. In modes 0 and 1, the variator mode module can be configured to set the variator ratio to a predetermined underdrive value, such as a minimum underdrive ratio. Conversely, in mode 3, the variator mode module can be configured to set the variator ratio to a predetermined overdrive value, such as a maximum overdrive ratio.


Mode 2 is the main dynamic control mode of the variator. The control strategy the for mode 2 implemented by the controller, and in particular the variator mode module, can be to maintain the engine speed at some optimum operating point based on a specific criteria. The ratio of the variator is changed to satisfy a closed loop engine speed control system. The engine speed set point function is based on the chosen operating criteria. The criterion for this strategy is based on an engine speed set point established near the maximum engine torque for each throttle. This performance criterion can be seen by plotting the engine set points on the engine map 600.
















Th_setv = [0 10 20 40 60 90 100]
pct
throttle angle


Ne_set2 = [1500 1500 1675 2450 3200 4200
rpm
engine speed


4200]

setpoint mode 2










FIG. 7 is a simplified diagram of an embodiment of a variator ratio map 700 implemented by an electronic controller. The variator mode module may implement the variator ratio map 700 of FIG. 7 via one or more look up tables for the corresponding modes. An example of the type of information included in the look up tables is provided below. The variator mode module may map the predetermined ratio to a corresponding solenoid control value.
















V_set = [O 10 20 40 60 90 100 120]
kph
Vehicle speed mode




4, 5, 6


Ratio_set4 = [1.88 1.88 .55 .55 .55 .55 .55

variator ratio set


.55]

point mode 4


Ratio_set5 = [1.88 1.88 1.5 1.15 .75 .55 .55

variator ratio set


.55]

point mode 5&6










FIG. 8 is a simplified diagram of an embodiment of a variator ratio map 702 implemented by an electronic controller. In the embodiment of FIG. 8, the variator ratio map is implemented in a look up table and is used by the variator mode module to control the variator ratio in mode 7, corresponding to reverse. An example of the type of information included in the look up tables is provided below. The variator mode module may map the predetermined ratio to a corresponding solenoid control value.
















V_set = [0 10 20 40 60 90 100 120]
kph
Vehicle speed set point




mode 7


Ratio_set7 = [100 100 100 100 100 55 55

variator ratio set point


55]

mode 7










FIG. 9 is a simplified diagram of an embodiment of an engine speed limit map 900 implemented by an electronic controller. The electronic controller may implement an engine speed limit that is based on vehicle speed in order to limit or otherwise prevent engine damage that may occur as a result of exceeding reasonable engine speed limits.


In the embodiment of FIG. 9, the engine speed limit map 900 is implemented in a look up table and is used by the controller to control the engine speed, for example, by providing feedback to an engine control module. An example of the type of information included in the look up table is provided below.
















Veh_limit = [20 40 60 80 100 120]
kph
Vehicle speed for




Neset limit


Neset_limit = [4000 4000 4000 5000 6000
rpm
Neset limit


6000]









Alternatively, the variator control modes indicated in Table 9 can be implemented in each case entirely with engine speed control. That is, although other operating objectives may indicated, such as underdrive, overdrive, or ratio control, those objectives can generally be translated to a desired engine speed in each case. In modes zero, one, and three, out-of-range speeds can be used to force the controls to saturate towards one of the ratio extremes. For modes four through seven, the variator output speed and desired ratio are used to compute the corresponding engine speed. The desired ratio is calibrated as a function of vehicle speed in these cases. The computed engine speed set point can be filtered with a first-order filter in order to prevent control activity that is too abrupt.






Neset
=

{



7000


Idle





f


(

throttle
,
veh_speed

)




Drive




500


Transmission







g
1



(
veh_speed
)


*
N





var



Coast







g
2



(
veh_speed
)


*
N





var



Manual









FIG. 10 is a simplified diagram of an embodiment of a variator rate limit map 902 implemented by an electronic controller. Limiting may also be applied to restrict the rate of ratio change in the downshift direction. The limit values of the ratio valve current (iRatioMax and iRatioMin) can be a function of vehicle speed. The rate limit map may be implemented as a look up table. An example of the type of data in the look up table is provided below.
















iRat0 = 0.7
A
null current


V_limit = [10 20 40 60 80 100 120]
kph
vehicle speed for




variator valve limit


iRsol_limitset = [1 .85 .8 .78 .75 .75 .75]
A
current limit










FIG. 11 is a simplified diagram 904 mapping estimated engine torque to throttle position. The engine torque map may be predetermined for particular type of prime mover coupled to the transmission. The engine torque map may be stored as a lookup table in memory. The controller 108 can estimate engine torque as a function of throttle. Clutch capacity requirements are computed as a function of engine torque.


The controller can implement transmission range selection according to the logic of Table 8, which may be implemented in the shift logic illustrated in FIG. 4.









TABLE 8







Shift Control Logic










Clutch Capacity

















Manual
Variator


Operating Mode
Reverse
Forward
Direct
Low
Control
















Park





Underdrive


Reverse

TfCR



Underdrive


Neutral





Hold


Drive
ngear = 1

TfCL


Underdrive



ngear = 2

TfCL


Enable



ngear = 3

TfCL
TfCH

Overdrive


Low
ngear = 1

TfCL

TfCL
Underdrive



ngear = 2

TfCL

TfCL
Enable
















TABLE 9







Solenoid Control Logic









Solenoid Excitation













Operating Mode
SHIFT
SEQ
REV
LOW
DIR
RATIO

















Park

0
0
1
1
0
1


Reverse

0
0
0
1
0
1


Neutral

0
0
1
1
0
C


Drive
ngear = 1
0
0
1
0
0
1



ngear = 2
0
0
1
0
0
C



ngear = 3
0
0
1
0
1
0


Low
ngear = 1
1
1
1
0
0
1



ngear = 2
1
1
1
0
0
C









The controller can, for example, implement the modes in the shift control logic of Table 8 using the following pseudocode, where the parameters Vrev and Vmanlow are constants that represent vehicle speed thresholds, above which the controller inhibits the corresponding shift.














if lever is in Park or Neutral


      release all clutches


if lever is shifted to Reverse


      if Vkph ≤ Vrev


        apply Reverse clutch


      else


        inhibit reverse range until Vkph ≤Vrev,


        then apply clutch


if lever is shifted to Drive


      from Park, Reverse or Neutral (with ngear < 3)


        apply Forward clutch


      from Low


        keep Forward clutch locked and release


        Manual Low clutch


      from Neutral with ngear = 3


        apply Direct clutch, then lock Forward clutch


if lever is shifted to Low


      from Park or Reverse


        apply Manual Low clutch, then lock Forward clutch


      from Drive or Neutral


        if Vkph > VmanLow


            inhibit shift


        else if powered with one-way holding


            lock Manual Low clutch and keep


            Forward clutch locked


        else


            apply Manual Low clutch, then lock


            Forward clutch


if lever is in Drive


      if an upshift to ngear = 3 is detected


        apply Direct clutch to shift off one-way


        (Forward clutch locked)


      if a downshift to ngear < 3 is detected


        release Direct clutch and keep Forward


        locked so one-way holds









The controller can determine the application of the various clutches based on the shift control logic and can implement the logic by selectively enabling or disabling current applied to control solenoids. For example, the controller can implement the logic of Table 8 by setting the solenoid outputs according to the control shown in Table 9. The values indicated in the table represent electrical state, with zero for off and one for on. For the modulated solenoids (reverse, low and direct) the value indicates a steady-state value. In the case of the ratio solenoid, the letter C indicates that the solenoid is controlled to achieve the speed or ratio objective described in the portion describing variator control.


As described above in relation to the fluid flow diagram of FIG. 3C, the fluid line pressure provided by the pump may be dynamically regulated or otherwise dynamically controlled by the controller to enable particular transmission performance in each of the various operating modes.



FIG. 12 is a simplified diagram of an embodiment of a line pressure schedule 906. The line controller can dynamically regulate the line pressure to a plurality of levels that can map to the various transmission operating modes. As shown in the line pressure schedule 906 of FIG. 12, the controller can control a solenoid or other pressure regulator to achieve three distinct line pressures. A first lowest line pressure can be implemented when the transmission is selected to be in neutral or park. A second intermediate line pressure can be used when the transmission is selected to be in drive or low. A third highest line pressure can be sued when the transmission is selected to be in reverse. Examples of the values for the line pressures are provided below.
















Plinemin = 6.8e5
n/m{circumflex over ( )}2
min line pressure


LineSF = 1.25

safety factor for minimum




line pressure


PlineSetMin = 8.5e5
n/m{circumflex over ( )}2
lowest setpoint


PlineSetNom = 13.6e5
n/m{circumflex over ( )}2
nominal line pressure


PlineSetMax = 22e5
n/m{circumflex over ( )}2
maximum line pressure for




high torque reverse


pLinemset = le5*[6 8 10 12 14 16 18


20 221]


llinem = [1 0.78 0.7 0.63 0.55 0.47

A solenoid valve current


0.37 0.2 0]

amps










FIG. 13 is a simplified diagram of an embodiment of a line pressure control map 908. The line pressure control map 908 can be used to calibrate an electronic solenoid used to control the line pressure. In one embodiment, portions of the map may be stored in memory as a lookup table and accessed by the controller to set the line pressure based on the schedule of FIG. 12. Alternatively, only those information corresponding to the desired line pressures in the line pressure schedule of FIG. 12 may be stored in memory for access by the controller.



FIG. 14 is a simplified diagram of an embodiment of a clutch application profile 1402.


The shift quality of an automatic range transmission requires control of the driveline dynamics during the engagement and disengagement of clutches during gear ratio changes. The main performance criteria are a smooth shift with good clutch durability. Shift quality of a shift is based on the application of hydraulic pressure to the clutch in both amplitude and timing. This control system has several parameters that can be adjusted to modulate the hydraulic pressure and therefore the resultant clutch torque.


The clutch apply torque set point profile 1402, as shown in FIG. 14, is based on a number of calibration parameters. The required clutch torque must balance the static input torque to the range box in addition to dynamic torque required to synchronize the clutch. As an example, for an upshift the torque clutch set point is based on the following parameters:

Tfc=Kcratio*Tinest+Kcratio le*(Ne0−Ne1)/tshift


Where:


Kcratio=torque ratio clutch to input


le=engine inertia


Ne=engine speed


Tshift=shift time


In order to simplify the shift quality calibration the required clutch setpoint uses a step input based on a single coefficient and an estimated range box input torque. A low rate torque ramp can be used for fine-tuning.


Note that, in addition to the value of the step, TfCH, defined in FIG. 14, there are three calibration parameters associated with the application.

dTfCH=slope of torque ramp, Nm/sec
TdoneCH=duration of ramp, sec
TfCHmax=maximum torque for lockup


The examples provided are applicable for control of the direct clutch in the transmission of FIG. 2. Similar parameters can also be defined for the reverse and low clutches.


The main parameter used for shift quality calibration is the step coefficient Kcxx. The larger the coefficient value, the shorter the shift. A shorter shift causes a greater driveline disturbance.














Forward clutch/manual











TfCLmax = 540
nm
max torque



Kcls310 = 2.0
nm/nm
drive 1st gear



Kclp400 = 1.15
nm/nm
manual low



dTfCL = l 0
nm/sec
torque ramp



TdoneCL = 2.0
sec
timer for max torque series



Tmandone = 2.0
sec
timer for max torque manual







Reverse clutch











TfCRmax = l600
nm
max torque



Kcrl00 = 8
nm/nm



Kcrl01 = 16
nm/nm



dTfCR = 200
nm/sec



TdoneCR = 5







Direct clutch











TfCHmax = 400





Kch330 = 0.45



dTfCH = 20



TdoneCH = 5










The hydraulic pressure needed to engage the clutch is based on the required clutch torque and clutch characteristics. FIG. 15 is a simplified diagram of an embodiment of a clutch pressure control map 1404. The controller, and in particular the shift quality control module, can store one or more clutch pressure control map 1404 as a look up table in memory. The shift quality control module can access the clutch pressure control map to implement the shift quality as provided in the clutch apply torque set point profile of FIG. 14.


Although the controller can control the operation of the lockup clutch in the torque converter as an additional control range, the engagement and disengagement of the torque converter lockup clutch need not be controlled to the same extent as, for example, the direct clutch used to engage the ranges of the range box. The controller typically applies the lockup clutch in conditions where the torque converter is operating near 100% efficiency, and thus, the transition to a lockup condition does not result in as great a transition as occurs when shifting the range provided by the range box.



FIG. 16 is a simplified diagram of an embodiment of a torque converter clutch curve 1602. The controller applies the torque converter clutch according to logic that is similar to the control range selection described above. The controller can lock the torque converter clutch at low speed with light throttle for efficiency. As the driver steps into the throttle as sensed by the percentage of the throttle position sensor, the controller unlocks the clutch to allow the converter to multiply torque.


Torque converter lockup can be inhibited at low oil temperature in order to allow losses in the fluid coupling to heat the oil. Furthermore, the converter can remain locked at excessive temperature in order to prevent the generation of further heat.


The torque converter clutch control strategy is based on the criteria of minimum operation in the unlocked open converter phase. The conditions for open converter are to provide good launch and enhance shift quality. The controller can store the parameters of the torque converter clutch curve in memory. An example of stored parameters is provided below.
















Th_settcc = [0 10 20 40 60 90 91 100]
pct
throttle angle


VTClock = [14 14 18 28 34 44 44 44]
kph
Torque converter




lock up


VTCunlock = [12 12 12 12 22 34 34 34]
kph
Torque converter




unlock









A controller can thus be configured according to the various embodiments and features described herein to control a transmission, and in particular, a transmission having at least one substantially continuously variable ratio portion, such as a variator, CVT or IVT. The examples described above use an example transmission having a variator in combination with a two-speed range box. In the process of controlling the transmission, the controller executes various strategies and processes that permit transmission operation to be optimized over various conditions and corresponding criteria.



FIG. 17 is a simplified flow chart of an embodiment of a method 1700 of controlling a variable ratio transmission. The method 1700 can be implemented, for example, within the controller of FIG. 4 to control the variable ratio transmission of FIGS. 2 and 3A.


The method 1700 begins at block 1710 where the controller, for example at the shift point module and the variator mode module, receives input signals that can include sensor values as well as control input values.


The controller proceeds to block 1712 and determines the active control range based on the input values. For example, the shift point module can determine an active control range from a plurality of control ranges. Each of the control ranges can correspond to a range of transmission ratios. Two or more of the control ranges may include overlapping ratios.


The controller proceeds to block 1714 and the variator mode module determines the active variator mode from a plurality of variator modes. The variator mode module can determine the variator mode based on the input values as well as the active control range or a signal, such as the variator flag, that may be based on the active control range.


The controller proceeds to block 1716 and determines a range box configuration, which can include a range box clutch engagement configuration, a range box ratio, and the like, or some combination thereof.


The controller proceeds to block 1718 and determines the state of a torque converter clutch that can be based on the input signals and the active control range. The controller proceeds to block 1720 and configures the variator based on the mode and input values. The controller proceeds to block 1722 and configures the range box based on its determined configuration. The controller proceeds to block 1724 and configures the torque converter clutch based on whether the controller determines it should be engaged or disengaged.



FIG. 18 is a simplified flowchart of an embodiment of a method 1750 of controlling a variator in a variable ratio transmission. The method 1750 can be implemented, for example, by the controller of FIG. 4 operating on the transmission of FIGS. 3A-3C.


The method 1750 begins at block 1752 where the controller, for example at the shift point module and the variator mode module, receives input signals that can include sensor values as well as control input values.


The controller proceeds to block 1754 where the shift point module can determine a variator mode based on the inputs. The controller proceeds to block 1756, where the shift point module determines an active control range. The controller proceeds to block 1758 where the controller, for example, using the shift point module, determines a range box ratio based on the control range, the input signals, and a shift schedule stored in and accessed from the shift schedule module.


The controller proceeds to block 1760 where the variator mode module can determine a desired variator ratio, for example, based in part on the variator mode. The controller proceeds to block 1762 and the engine speed setpoint module maps the ratio to a target engine speed.


The controller proceeds to block 1764 and controls the variator to achieve the target engine speed. The controller can, for example, utilize a closed loop control module to monitor an engine speed and control a solenoid that controls a position of a longitudinal axis of a rotating planet within the variator in order to achieve the target engine speed.



FIG. 19 is a schematic diagram of an embodiment of a fluid flow diagram of an embodiment of a valve system 2500 that can be implemented on a variable ratio transmission such as the transmission 101. The associated hardware represented by the symbols and schematic notations illustrated in FIG. 19 should be readily apparent to those having ordinary skill in the relevant technology. The valve system 2500 can include a pump valve subsystem 2502 configured to be in fluid communication with a number of pressure control valves. In one embodiment, the pump valve subsystem 2502 is adapted to cooperate with a pump 806 (FIG. 3A) provided on the transmission 101. The pump valve subsystem 2502 can include a pressure regulator valve 2504. The pressure regulator valve 2504 controls, among other things, the system pressure of the valve system 2500 (sometimes referred to here as “line pressure”). The pressure regulator valve 2504 is in fluid communication with a number of torque converter control valves 2506A, 2506B, 2506C. The torque converter control valves 2506 are adapted to control the engagement and disengagement of the torque converter 210, for example, among other things.


In one embodiment, the valve system 2500 includes a manual valve 2508 in fluid communication with the pressure regulator valve 2504. The manual valve 2508 can be operably coupled to the PRNDL lever. The manual valve 2508 is adapted to cooperate with, for example, the pressure switch manifold described in reference to Table 4. In one embodiment, the range box 1600 consists of hydraulic friction clutches in communication with the valve system 1500 that govern the engagement and disengagement of each clutch as governed by the control logic. FIG. 19 illustrates the hydraulic connection for each clutch in the range box. A reverse clutch 2510, a forward clutch 2512, a direct clutch 2514, and a manual low clutch 2516 are all engaged and disengaged by hydraulic pressure acting on the face of the clutch. The aforementioned clutches can be substantially similar to the clutches included in the range box 1600. The passage of pressurized fluid to each clutch is achieved through holes in the transmission case, for example, and ports in the valve system 2500. The valve system 2500 can include a set of reverse clutch control valves 2518A and 2518B in fluid communication with the reverse clutch 2510. The valve system 2500 can include a direct clutch control valve 2520 in fluid communication with the direct clutch 2514. The valve system 2500 can include a forward clutch control valve 2522 in fluid communication with the forward clutch 2512. The valve system 2500 can include a manual low clutch control valve 2524 in fluid communication with the manual low clutch 2516. The manual low clutch control valve 2524 is configured to be in fluid communication with the forward clutch control valve 2522. In one embodiment, the valve system 2500 includes a clutch regulator valve 2526 configured to regulator pressure supplied to the manual low clutch control valve 2524. Each of the control valves can be adapted to cooperate with electrohydraulic solenoids as indicated in Table 2, for example.


In one embodiment, the manual valve 2508 is used to direct line pressure to the appropriate collection of valves for range box control. When “P” or “N” is selected, the manual valve moves to a position that blocks line pressure to all clutch control valves. When “R” is selected, the manual valve moves to a position that directs line pressure to the reverse clutch control valves 2518. The selection of “D” or “L” moves the manual valve to a position that directs line pressure to control valves for the direct clutch 2514, the forward clutch 2512, and the manual low clutch 2516.


In one embodiment, the selection of “D” or “L” enables the coordination of the direct clutch 2514, the forward clutch 2512, and the manual low clutch 2516 as governed by the control logic. The forward clutch 2512 and the manual low clutch 2516 are controlled with the forward clutch control valve 2522 (“Fwd Sequence Valve” in FIG. 19), the manual low clutch control valve 2524 (“Fwd/Man Shift Valve” in FIG. 19), and the clutch regulator valve 2526 (“Fwd/Man (Low) Reg Valve” in FIG. 19). The forward clutch control valve 2522 and the low clutch control valve 2524 are directional control valves in communication with normally exhausted On/Off solenoids.


In one embodiment, the selection of “R” moves the manual valve to a position that directs line pressure to the reverse clutch control valves 1518. The reverse clutch control valves can include two pressure regulators valves, a passive valve 2518B and an active valve 2518A. The active valve 2518A (“Reverse Reg Valve” in FIG. 19) is in communication with the control system through a normally pressurized variable bleed solenoid. The regulated pressure is directed from the active valve 2518A to the reverse clutch 2510 and to the passive valve 2518B (“reverse boost valve” in FIG. 19). The reverse clutch pressure is exhausted when the manual valve selection is changed from “R” and the control logic coordinates the appropriate solenoid commands.


In one embodiment the valve system 2500 includes a lube pressure regulator 2528 configured to be in communication with the line pressure and a lubrication system of the transmission 101, for example. Lube system pressure is regulated either with a passive pressure regulator or actively controlled with a solenoid in the same manner as the main pressure regulator. The valve system 2500 can include a solenoid pressure regulator 2530 configured to be in fluid communication with the line pressure. The solenoid pressure regulator 2530 supplies pressurized fluid to a number of solenoids in the valve system 2500. In one embodiment, the valve system 2500 includes a torque converter regulator valve 2531 configured to be in fluid communication with the torque converter control valves 2506. The valve system 2500 includes a ratio control valve 2532 configured to cooperate with the variator 1200, for example. In one embodiment, the ratio control valve 2532 is an open-center pressure control valve.


The controller is not limited to controlling the transmission, but can also serve to provide diagnostic information based on the various input signals provided to the controller. The controller can be configured to control the transmission when detecting failure modes to prevent catastrophic failure of the transmission and to permit limited operation in failure modes.


Electrical failures can be broken down into two categories: loss of power and controller crash. A reasonable recovery of operation, perhaps with reduced function, is typically possible in both cases.


In the case of complete loss of electric power, all solenoids will operate with zero current. The internal pressures controlled by the solenoids will revert to default pressure states. The hydraulic system within the transmission can be designed so that this represents a usable “limp home” mode. The variator can default to full overdrive and the torque converter can default to an unlocked condition. The range box state can depend on the PRNDL position, and can operate, for example, in under driver control. In Drive the default range is Low and in Reverse, Reverse. This facilitates vehicle launch and driving at reasonable speed. Furthermore, if the failure occurs at high vehicle speed, the one-way clutch can overrun to prevent excessive engine speed.


Although the controller circuits are designed to be highly robust, the remote chance of loss of control can be addressed with a watchdog timer. This is an internal circuit that requires periodic timer resets during normal operation. If the controller program hangs up and doesn't perform the reset within the prescribed interval, the timer resets the controller system. This allows the controller to come back on line and maintain control of the system.


Two general classes of hydraulic failure modes may be addressed. These classes include loss of pressure and excessive backpressure.


Unexpectedly low pressure can be detected in two ways. The controller can directly measure or otherwise receive signals indicative of various system pressure levels and can compared the values to expected ranges. Even without the direct measurement of pressure, loss of pressure may lead to excessive clutch slip as indicated by speed inputs. In either case, excessive clutch slip will deteriorate friction plates and low variator pressure will lead to loss of control.


The prescribed countermeasure for this condition is to place the transmission in neutral by releasing all clutches. This removes all load from the friction plates and the variator. Although the vehicle can not be driven in this condition, potentially destructive component wear is prevented. An indication to the driver of transmission failure may also be given.


The controller can measure or otherwise monitor the lube pressure an input variable. In the event that lube pressure is lost or unexpectedly low, a destructive situation is imminent. In this case the transmission will immediately shift to neutral so that no components will need to carry power. The controller can illuminate the diagnostic lamp.


If a clutch pack is released but residual pressure is trapped, undesirable clutch drag will result. Again, this can be detected via monitoring pressure or speed. The safest response to this condition is to alert the driver to stop the vehicle.


Two temperature sensors may be implemented in the controller system. The first monitors the sump oil to indicate the mean fluid temperature. The second is located in the variator to sense the temperature of the traction fluid splashing on the ball (planet) contact patches.


Temperature extremes in the variator coolant are a sign of impending catastrophic failure. If this condition is detected the transmission will be immediately placed in neutral by releasing all clutches. This unloads the variator and minimizes any further potentially destructive contact patch slip power. Although the vehicle cannot be driven, failing to this condition is the safest compromise and prevents further wear.


Low fluid temperature increases viscosity, restricting flow in some circuits. This is not considered to be a failure but it can potentially compromise performance. Below a calibrated threshold, the control system can heat the oil to a reasonable working temperature by preventing torque converter clutch lockup.


High fluid temperature can accelerate degradation of friction and traction properties. Above a calibrated threshold, the converter of a moving vehicle can be controlled to always run locked in order to reduce further heating. If the temperature continues to rise a warning light will alert the driver.


System speed measurements allow the computation of slip across each friction clutch. If slip is detected in cases where the clutch is known to be applied with a high safety factor, it will be judged that the friction material has degraded substantially. The driver will be alerted to the error and the clutch will be opened to prevent further damage and excessive heating.


An input can be provided to the controller to measure the variator servo position. The ring contact radii can be computed from this information, hence the mechanical ratio of the ball variator. This can be compared to the speed ratio in order to determine the slip at the ring contact patches. If the slip is determined to be above a calibrated threshold the variator is unloaded to prevent potential damage. As in the case of high variator lube temperature, this is achieved by shifting the transmission to neutral, resulting in a loss of vehicle power.


As used herein, the term coupled or connected is used to mean an indirect coupling as well as a direct coupling or connection. Where two or more blocks, modules, devices, or apparatus are coupled, there may be one or more intervening blocks between the two coupled blocks.


The various illustrative logical blocks, modules, controller, and circuits described in connection with the embodiments disclosed herein may be implemented or performed with a general purpose processor, a digital signal processor (DSP), a Reduced Instruction Set Computer (RISC) processor, an application specific integrated circuit (ASIC), a field programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described herein. A general purpose processor may be a microprocessor, but in the alternative, the processor may be any processor, controller, microcontroller, or state machine.


A controller or processor may also be implemented as a combination of computing devices, for example, a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration.


The steps of a method, process, or algorithm described in connection with the embodiments disclosed herein may be embodied directly in hardware, in a software module as one or more programmable instructions to be executed by a processor, data, or information encoded onto a processor or computer readable media and executed by a processor or computer, or in a combination of the two.


The various steps or acts in a method or process may be performed in the order shown, or may be performed in another order. Additionally, one or more process or method steps may be omitted or one or more process or method steps may be added to the methods and processes. An additional step, block, or action may be added in the beginning, end, or intervening existing elements of the methods and processes.


The above description of the disclosed embodiments is provided to enable any person of ordinary skill in the art to make or use the disclosure. Various modifications to these embodiments will be readily apparent to those of ordinary skill in the art, and the generic principles defined herein may be applied to other embodiments without departing from the spirit or scope of the disclosure. Thus, the disclosure is not intended to be limited to the embodiments shown herein but is to be accorded the widest scope consistent with the principles and novel features disclosed herein.

Claims
  • 1. A control system for a variable ratio transmission in a drivetrain comprising a variator and a range box, the drivetrain having a pressurized hydraulic fluid in a control path with at least one passage in the control path associated with the variator, the control system comprising: a plurality of sensors, each of the plurality of sensors configured to communicate a signal representing a measurement or a control state;a variator solenoid configured to control hydraulic pressure to the variator;a range clutch solenoid configured to control hydraulic pressure to a range clutch;a forward clutch solenoid configured to control hydraulic pressure to a forward clutch;a reverse clutch solenoid configured to control hydraulic pressure to a reverse clutch; andan electronic controller communicatively coupled to the variator solenoid, the range clutch solenoid, the forward clutch solenoid, the reverse clutch solenoid, the plurality of sensors, and the range box, the electronic controller configured to send a command to the variator solenoid to enable the variator, the electronic controller comprising: a plurality of modules configured to receive input from the plurality of sensors, the plurality of modules comprising: a shift logic module configured to send a command to one or more of a torque converter clutch solenoid, the range clutch solenoid, the forward clutch solenoid, and the reverse clutch solenoid to apply one or more of a torque converter clutch, the range clutch, the forward clutch, and the reverse clutch; anda shift quality control module configured to determine a rate at which each of the torque converter clutch, the range clutch, the forward clutch, and the reverse clutch is applied.
  • 2. The control system of claim 1, wherein one or more of the range clutch solenoid, the forward clutch solenoid, and the reverse clutch solenoid is a variable force solenoid (VFS) or a variable bleed solenoid (VBS).
  • 3. The control system of claim 2, wherein the electronic controller comprises one or more of a set of maps, algorithms, and processes to determine, from the plurality of sensors, one or more control signals provided to the variator solenoid, the range clutch solenoid, the forward clutch solenoid, and the reverse clutch solenoid.
  • 4. The control system of claim 1, wherein the electronic controller is configured to modulate a current applied to the variator solenoid to control a ratio of the variator.
  • 5. The control system of claim 1, wherein the electronic controller is configured to adjust a longitudinal axis of a rotating planet within the variator.
  • 6. The control system of claim 5, wherein the electronic controller is configured to control a position of a shift lever coupled to the rotating planet.
  • 7. The control system of claim 1, wherein the electronic controller comprises a shift point module configured to: receive a plurality of inputs;determine, based on one or more inputs of the plurality of inputs, a variator output flag; andsend the variator output flag to the shift logic module.
  • 8. The control system of claim 1, wherein the electronic controller comprises a shift point module configured to: receive a plurality of inputs;determine, based on one or more inputs of the plurality of inputs, a range of a plurality of ranges in which control of the variator is enabled.
  • 9. The control system of claim 8, wherein the plurality of ranges comprises underdrive, overdrive, and engine speed control, and wherein the electronic controller is configured to send a signal to the range clutch solenoid to increase or decrease hydraulic pressure to the range clutch.
  • 10. The control system of claim 1, wherein the shift quality control module is configured to determine an application rate and a corresponding solenoid current.
  • 11. The control system of claim 1, further comprising a torque converter clutch solenoid configured to control hydraulic pressure to a torque converter clutch corresponding to a torque converter that couples power from a prime mover to the variator, wherein the electronic controller is communicatively coupled to the torque converter clutch solenoid, wherein the shift logic module is configured to send a command to the torque converter clutch solenoid to apply the torque converter clutch, and wherein the shift quality control module is configured to determine a rate at which the torque converter clutch is applied.
  • 12. The control system of claim 11, wherein the electronic controller further comprises an engine speed setpoint module configured to determine an engine speed setpoint, and wherein the electronic controller is further configured to: receive an engine speed value; andcontrol a ratio of the variator based on the engine speed value and the engine speed setpoint.
  • 13. The control system of claim 12, wherein the electronic controller is further configured to: receive a throttle position sensor input value, a gear selector value, and a vehicle speed value;determine a configuration of the torque converter clutch; andsend a signal to the torque converter clutch solenoid to engage or disengage the torque converter clutch.
  • 14. The control system of claim 13, wherein the electronic controller is configured to control actuation of the range clutch solenoid to control hydraulic pressure to the range clutch to activate the configuration of the range box.
  • 15. The control system of claim 14, wherein the electronic controller is configured to configure the range box into one of at least two forward modes, a reverse mode, a neutral mode, and a park mode.
CROSS REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 14/529,773, filed Oct. 31, 2014 and scheduled to issue on Oct. 16, 2018 as U.S. Pat. No. 10,100,927, which is a divisional of U.S. patent application Ser. No. 12/271,611, filed Nov. 14, 2008 and issued as U.S. Pat. No. 8,996,263 on Mar. 31, 2015, which claims the benefit of U.S. Provisional Application No. 60/988,560, filed Nov. 16, 2007, and entitled “CONTROLLER FOR A CONTINUOUSLY VARIABLE TRANSMISSION.” The disclosures of all of the above-referenced prior applications, publications, and patents are considered part of the disclosure of this application, and are incorporated by reference herein in their entirety.

US Referenced Citations (1025)
Number Name Date Kind
225933 Kellogg Mar 1880 A
719595 Huss Feb 1903 A
721663 James Mar 1903 A
1121210 Techel Dec 1914 A
1175677 Barnes Mar 1916 A
1207985 Null et al. Dec 1916 A
1380006 Nielsen May 1921 A
1390971 Samain Sep 1921 A
1558222 Beetow Oct 1925 A
1629092 Crockett May 1927 A
1629902 Arter et al. May 1927 A
1686446 Gilman Oct 1928 A
1774254 Daukus Aug 1930 A
1793571 Vaughn Feb 1931 A
1847027 Thomsen et al. Feb 1932 A
1850189 Weiss Mar 1932 A
1858696 Weiss May 1932 A
1865102 Hayes Jun 1932 A
1903228 Thomson Mar 1933 A
1947044 Gove Feb 1934 A
1978439 Sharpe Oct 1934 A
2030203 Gove et al. Feb 1936 A
2060884 Madle Nov 1936 A
2086491 Dodge Jul 1937 A
2097631 Madle Nov 1937 A
2100629 Chilton Nov 1937 A
2109845 Madle Mar 1938 A
2112763 Cloudsley Mar 1938 A
2123008 Hayes Jul 1938 A
2131158 Almen et al. Sep 1938 A
2134225 Christiansen Oct 1938 A
2152796 Erban Apr 1939 A
2196064 Erban Apr 1940 A
2209254 Ahnger Jul 1940 A
2259933 Holloway Oct 1941 A
2269434 Brooks Jan 1942 A
2325502 Auguste Jul 1943 A
RE22761 Wemp May 1946 E
2461258 Brooks Feb 1949 A
2469653 Kopp May 1949 A
2480968 Ronai Sep 1949 A
2553465 Monge May 1951 A
2563370 Reese Aug 1951 A
2586725 Henry Feb 1952 A
2595367 Picanol May 1952 A
2596538 Dicke May 1952 A
2597849 Alfredeen May 1952 A
2675713 Acker Apr 1954 A
2696888 Chillson et al. Dec 1954 A
2868038 Billeter May 1955 A
2716357 Rennerfelt Aug 1955 A
2730904 Rennerfelt Jan 1956 A
2748614 Weisel Jun 1956 A
2959070 Flinn Jan 1959 A
2873911 Perrine Feb 1959 A
2874592 Oehrli Feb 1959 A
2883883 Chillson Apr 1959 A
2891213 Kern Jun 1959 A
2901924 Banker Sep 1959 A
2913932 Oehrli Nov 1959 A
2931234 Hayward Apr 1960 A
2931235 Hayward Apr 1960 A
2949800 Neuschotz Aug 1960 A
2959063 Perry Nov 1960 A
2959972 Madson Nov 1960 A
2964959 Beck Dec 1960 A
3008061 Mims et al. Nov 1961 A
3028778 Hayward Apr 1962 A
3035460 Guichard May 1962 A
3048056 Wolfram Aug 1962 A
3051020 Hartupee Aug 1962 A
3086704 Hurtt Apr 1963 A
3087348 Kraus Apr 1963 A
3088704 Grady May 1963 A
3154957 Kashihara Nov 1964 A
3163050 Kraus Dec 1964 A
3176542 Monch Apr 1965 A
3184983 Kraus May 1965 A
3204476 Rouverol Sep 1965 A
3207248 Strom Sep 1965 A
3209606 Yamamoto Oct 1965 A
3211364 Wentling et al. Oct 1965 A
3216283 General Nov 1965 A
3229538 Schlottler Jan 1966 A
3237468 Schlottler Mar 1966 A
3246531 Kashihara Apr 1966 A
3248960 Schottler May 1966 A
3273468 Allen Sep 1966 A
3277745 Harned Oct 1966 A
3280646 Lemieux Oct 1966 A
3283614 Hewko Nov 1966 A
3292443 Felix Dec 1966 A
3340895 Osgood, Jr. et al. Sep 1967 A
3407687 Hayashi Oct 1968 A
3413896 Wildhaber Dec 1968 A
3430504 Dickenbrock Mar 1969 A
3439563 Petty Apr 1969 A
3440895 Fellows Apr 1969 A
3464281 Azuma Sep 1969 A
3477315 Macks Nov 1969 A
3487726 Burnett Jan 1970 A
3487727 Gustafsson Jan 1970 A
3574289 Scheiter et al. Apr 1971 A
3581587 Dickenbrock Jun 1971 A
3661404 Bossaer May 1972 A
3695120 Titt Oct 1972 A
3707888 Schottler Jan 1973 A
3727473 Bayer Apr 1973 A
3727474 Fullerton Apr 1973 A
3736803 Horowitz et al. Jun 1973 A
3743063 Blechschmidt Jul 1973 A
3745844 Schottler Jul 1973 A
3768715 Tout Oct 1973 A
3769849 Hagen Nov 1973 A
3800607 Zurcher Apr 1974 A
3802284 Sharpe et al. Apr 1974 A
3810398 Kraus May 1974 A
3820416 Kraus Jun 1974 A
3866985 Whitehurst Feb 1975 A
3891235 Shelly Jun 1975 A
3934493 Hillyer Jan 1976 A
3954282 Hege May 1976 A
3984129 Hege Oct 1976 A
3987681 Keithley et al. Oct 1976 A
3996807 Adams Dec 1976 A
4023442 Woods et al. May 1977 A
4098146 McLarty Jul 1978 A
4103514 Grosse-Entrup Aug 1978 A
4159653 Koivunen Jul 1979 A
4169609 Zampedro Oct 1979 A
4177683 Moses Dec 1979 A
4227712 Dick Oct 1980 A
4314485 Adams Feb 1982 A
4345486 Olesen Aug 1982 A
4369667 Kemper Jan 1983 A
4382186 Denholm May 1983 A
4382188 Cronin May 1983 A
4391156 Tibbals Jul 1983 A
4456233 Muller Jun 1984 A
4459873 Black Jul 1984 A
4464952 Stubbs Aug 1984 A
4468984 Castelli et al. Sep 1984 A
4494524 Wagner Jan 1985 A
4496051 Ortner Jan 1985 A
4501172 Kraus Feb 1985 A
4515040 Takeuchi et al. May 1985 A
4526255 Hennessey et al. Jul 1985 A
4546673 Shigematsu et al. Oct 1985 A
4560369 Hattori Dec 1985 A
4567781 Russ Feb 1986 A
4569670 McIntosh Feb 1986 A
4574649 Seol Mar 1986 A
4585429 Marier Apr 1986 A
4592247 Mutshler et al. Jun 1986 A
4617838 Anderson Oct 1986 A
4628766 de Brie Perry Dec 1986 A
4630839 Seol Dec 1986 A
4631469 Tsuboi et al. Dec 1986 A
4643048 Hattori et al. Feb 1987 A
4651082 Kaneyuki Mar 1987 A
4663990 Itoh et al. May 1987 A
4667525 Schottler May 1987 A
4700581 Tibbals, Jr. Oct 1987 A
4706518 Moroto et al. Nov 1987 A
4713976 Wilkes Dec 1987 A
4717368 Yamaguchi et al. Jan 1988 A
4735430 Tomkinson Apr 1988 A
4738164 Kaneyuki Apr 1988 A
4744261 Jacobson May 1988 A
4756211 Fellows Jul 1988 A
4781663 Reswick Nov 1988 A
4838122 Takamiya et al. Jun 1989 A
4856374 Kreuzer Aug 1989 A
4857035 Anderson Aug 1989 A
4869130 Wiecko Sep 1989 A
4881925 Hattori Nov 1989 A
4884473 Lew Dec 1989 A
4900046 Aranceta-Angoitia Feb 1990 A
4909101 Terry Mar 1990 A
4918344 Chikamori et al. Apr 1990 A
4961477 Sweeney Oct 1990 A
4964312 Kraus Oct 1990 A
4976170 Hayashi et al. Dec 1990 A
5006093 Itoh et al. Apr 1991 A
5020384 Kraus Jun 1991 A
5025685 Kobayashi et al. Jun 1991 A
5033322 Nakano Jul 1991 A
5033571 Morimoto Jul 1991 A
5037361 Takahashi Aug 1991 A
5044214 Barber Sep 1991 A
5059158 Bellio et al. Oct 1991 A
5069655 Schivelbusch Dec 1991 A
5083982 Sato Jan 1992 A
5099710 Nakano Mar 1992 A
5121654 Fasce Jun 1992 A
5125677 Ogilvie et al. Jun 1992 A
5138894 Kraus Aug 1992 A
5156412 Meguerditchian Oct 1992 A
5166879 Greene et al. Nov 1992 A
5194052 Ueda et al. Mar 1993 A
5230258 Nakano Jul 1993 A
5236211 Meguerditchian Aug 1993 A
5236403 Schievelbusch Aug 1993 A
5261858 Browning Nov 1993 A
5267920 Hibi Dec 1993 A
5269726 Swanson et al. Dec 1993 A
5273501 Schievelbusch Dec 1993 A
5318486 Lutz Jun 1994 A
5319486 Vogel et al. Jun 1994 A
5330396 Lohr et al. Jul 1994 A
5355749 Obara et al. Oct 1994 A
5356348 Bellio et al. Oct 1994 A
5375865 Terry, Sr. Dec 1994 A
5379661 Nakano Jan 1995 A
5383000 Michaloski Jan 1995 A
5383677 Thomas Jan 1995 A
5387000 Sato Feb 1995 A
5401221 Fellows et al. Mar 1995 A
5413540 Streib et al. May 1995 A
5451070 Lindsay et al. Sep 1995 A
5476019 Cheever et al. Dec 1995 A
5489003 Ohyama et al. Feb 1996 A
5508574 Vlock Apr 1996 A
5514047 Tibbles et al. May 1996 A
5526261 Kallis et al. Jun 1996 A
5531510 Yamane Jul 1996 A
5562564 Folino Oct 1996 A
5564998 Fellows Oct 1996 A
5577423 Mimura Nov 1996 A
5601301 Liu Feb 1997 A
5607373 Ochiai et al. Mar 1997 A
5645507 Hathaway Jul 1997 A
5651750 Imanishi et al. Jul 1997 A
5664636 Ikuma et al. Sep 1997 A
5669845 Muramoto et al. Sep 1997 A
5669846 Moroto et al. Sep 1997 A
5683322 Meyerle Nov 1997 A
5690346 Keskitalo Nov 1997 A
5701786 Kawakami Dec 1997 A
5720687 Bennett Feb 1998 A
D391824 Larson Mar 1998 S
D391825 Larson Mar 1998 S
5722502 Kubo Mar 1998 A
5746676 Kawase et al. May 1998 A
5755303 Yamamoto et al. May 1998 A
D396396 Larson Jul 1998 S
5799541 Arbeiter Sep 1998 A
5819864 Koike et al. Oct 1998 A
5823052 Nobumoto Oct 1998 A
5823058 Arbeiter Oct 1998 A
5839083 Sugiyama Nov 1998 A
5846155 Taniguchi et al. Dec 1998 A
5857387 Larson et al. Jan 1999 A
5888160 Miyata et al. Mar 1999 A
5895337 Fellows et al. Apr 1999 A
5899827 Nakano et al. May 1999 A
5902207 Sugihara May 1999 A
5964123 Arbeiter Oct 1999 A
5967933 Valdenaire Oct 1999 A
5976054 Yasuoka Nov 1999 A
5984826 Nakano Nov 1999 A
5995895 Watt et al. Nov 1999 A
6000707 Miller Dec 1999 A
6003649 Fischer Dec 1999 A
6004239 Makino Dec 1999 A
6006151 Graf Dec 1999 A
6012538 Sonobe et al. Jan 2000 A
6015359 Kunii Jan 2000 A
6019701 Mori et al. Feb 2000 A
6029990 Busby Feb 2000 A
6042132 Suenaga et al. Mar 2000 A
6045477 Schmidt Apr 2000 A
6045481 Kumagai Apr 2000 A
6047230 Spencer Apr 2000 A
6053833 Masaki Apr 2000 A
6053841 Kolde et al. Apr 2000 A
6054844 Frank Apr 2000 A
6056661 Schmidt May 2000 A
6066067 Greenwood May 2000 A
6071210 Kato Jun 2000 A
6074320 Miyata et al. Jun 2000 A
6076846 Clardy Jun 2000 A
6079726 Busby Jun 2000 A
6083139 Deguchi Jul 2000 A
6085140 Choi Jul 2000 A
6085521 Folsom et al. Jul 2000 A
6086506 Petersmann et al. Jul 2000 A
6095940 Ai et al. Aug 2000 A
6095945 Graf Aug 2000 A
6099431 Hoge et al. Aug 2000 A
6101895 Yamane Aug 2000 A
6113513 Itoh et al. Sep 2000 A
6119539 Papanicolaou Sep 2000 A
6119800 McComber Sep 2000 A
6125314 Graf et al. Sep 2000 A
6146297 Kimura Nov 2000 A
6159126 Oshidari Dec 2000 A
6171210 Miyata et al. Jan 2001 B1
6171212 Reuschel Jan 2001 B1
6174260 Tsukada et al. Jan 2001 B1
6182000 Ohta et al. Jan 2001 B1
6186922 Bursal et al. Feb 2001 B1
6188945 Graf et al. Feb 2001 B1
6210297 Knight Apr 2001 B1
6217473 Ueda et al. Apr 2001 B1
6217478 Vohmann et al. Apr 2001 B1
6241636 Miller Jun 2001 B1
6243638 Abo et al. Jun 2001 B1
6251038 Ishikawa et al. Jun 2001 B1
6251043 Gierling Jun 2001 B1
6258003 Hirano et al. Jul 2001 B1
6261200 Miyata et al. Jul 2001 B1
6266931 Erickson et al. Jul 2001 B1
6296593 Gotou Oct 2001 B1
6311113 Danz et al. Oct 2001 B1
6312358 Goi et al. Nov 2001 B1
6322475 Miller Nov 2001 B2
6325386 Shoge Dec 2001 B1
6340067 Fujiwara Jan 2002 B1
6356817 Abe Mar 2002 B1
6358174 Folsom et al. Mar 2002 B1
6358178 Wittkopp Mar 2002 B1
6367833 Horiuchi Apr 2002 B1
6371878 Bowen Apr 2002 B1
6375412 Dial Apr 2002 B1
6390945 Young May 2002 B1
6390946 Hibi et al. May 2002 B1
6406399 Ai Jun 2002 B1
6414401 Kuroda et al. Jul 2002 B1
6419608 Miller Jul 2002 B1
6425838 Matsubara et al. Jul 2002 B1
6434960 Rousseau Aug 2002 B1
6440035 Tsukada et al. Aug 2002 B2
6440037 Takagi et al. Aug 2002 B2
6449548 Jain et al. Sep 2002 B1
6459978 Tamiguchi et al. Oct 2002 B2
6461268 Milner Oct 2002 B1
6470252 Tashiro et al. Oct 2002 B2
6482094 Kefes Nov 2002 B2
6492785 Kasten et al. Dec 2002 B1
6494805 Ooyama et al. Dec 2002 B2
6499373 Van Cor Dec 2002 B2
6513405 Stürmer et al. Feb 2003 B1
6514175 Taniguchi et al. Feb 2003 B2
6520878 Leclair et al. Feb 2003 B1
6522965 Gierling Feb 2003 B1
6527662 Miyata Mar 2003 B2
6532890 Chen Mar 2003 B2
6551210 Miller Apr 2003 B2
6558285 Sieber May 2003 B1
6561941 Nakano et al. May 2003 B2
6571920 Sturmer Jun 2003 B1
6575047 Reik et al. Jun 2003 B2
6588296 Wessel Jul 2003 B2
6658338 Joe et al. Dec 2003 B2
6659901 Sakai et al. Dec 2003 B2
6672418 Makino Jan 2004 B1
6676559 Miller Jan 2004 B2
6679109 Gierling et al. Jan 2004 B2
6681652 Auer et al. Jan 2004 B2
6682432 Shinozuka Jan 2004 B1
6684143 Graf et al. Jan 2004 B2
6689012 Miller Feb 2004 B2
6694241 Kim Feb 2004 B2
6718247 Graf et al. Apr 2004 B1
6721637 Abe et al. Apr 2004 B2
6723014 Shinso et al. Apr 2004 B2
6723016 Sumi Apr 2004 B2
6805654 Nishii Oct 2004 B2
6808053 Kirkwood et al. Oct 2004 B2
6839617 Mensler et al. Jan 2005 B2
6849020 Sumi Feb 2005 B2
6859709 Joe et al. Feb 2005 B2
6868949 Braford Mar 2005 B2
6909953 Joe et al. Jun 2005 B2
6931316 Joe et al. Aug 2005 B2
6932739 Miyata et al. Aug 2005 B2
6942593 Nishii et al. Sep 2005 B2
6945903 Miller Sep 2005 B2
6949049 Miller Sep 2005 B2
6958029 Inoue Oct 2005 B2
6991575 Inoue Jan 2006 B2
6991579 Kobayashi et al. Jan 2006 B2
6994189 Chen Feb 2006 B2
7000496 Wessel et al. Feb 2006 B2
7004487 Matsumoto Feb 2006 B2
7011600 Miller et al. Mar 2006 B2
7011601 Miller Mar 2006 B2
7011602 Makiyama et al. Mar 2006 B2
7014591 Miller Mar 2006 B2
7029418 Taketsuna et al. Apr 2006 B2
7032914 Miller Apr 2006 B2
7036620 Miller et al. May 2006 B2
7044884 Miller May 2006 B2
7063195 Berhan Jun 2006 B2
7063640 Miller Jun 2006 B2
7074007 Miller Jul 2006 B2
7074154 Miller Jul 2006 B2
7074155 Miller Jul 2006 B2
7077777 Miyata et al. Jul 2006 B2
7086979 Frenken Aug 2006 B2
7086981 Ali et al. Aug 2006 B2
7094171 Inoue Aug 2006 B2
7111860 Grimaldos Sep 2006 B1
7112158 Miller Sep 2006 B2
7112159 Miller et al. Sep 2006 B2
7125297 Miller et al. Oct 2006 B2
7131930 Miller et al. Nov 2006 B2
7140999 Miller Nov 2006 B2
7147586 Miller et al. Dec 2006 B2
7153233 Miller et al. Dec 2006 B2
7156770 Miller Jan 2007 B2
7160220 Shinojima et al. Jan 2007 B2
7160222 Miller Jan 2007 B2
7163485 Miller Jan 2007 B2
7163486 Miller et al. Jan 2007 B2
7163846 Sakai Jan 2007 B2
7166052 Miller et al. Jan 2007 B2
7166056 Miller et al. Jan 2007 B2
7166057 Miller et al. Jan 2007 B2
7166058 Miller et al. Jan 2007 B2
7169076 Miller et al. Jan 2007 B2
7172529 Miller et al. Feb 2007 B2
7175564 Miller Feb 2007 B2
7175565 Miller et al. Feb 2007 B2
7175566 Miller et al. Feb 2007 B2
7192381 Miller et al. Mar 2007 B2
7197915 Luh et al. Apr 2007 B2
7198582 Miller et al. Apr 2007 B2
7198583 Miller et al. Apr 2007 B2
7198584 Miller et al. Apr 2007 B2
7198585 Miller et al. Apr 2007 B2
7201693 Miller et al. Apr 2007 B2
7201694 Miller et al. Apr 2007 B2
7201695 Miller et al. Apr 2007 B2
7204777 Miller et al. Apr 2007 B2
7207918 Shimazu Apr 2007 B2
7214159 Miller et al. May 2007 B2
7217215 Miller et al. May 2007 B2
7217216 Inoue May 2007 B2
7217219 Miller May 2007 B2
7217220 Careau et al. May 2007 B2
7226379 Ibamoto Jun 2007 B2
7232395 Miller et al. Jun 2007 B2
7234873 Kato et al. Jun 2007 B2
7235031 Miller et al. Jun 2007 B2
7238136 Miller et al. Jul 2007 B2
7238137 Miller et al. Jul 2007 B2
7238138 Miller et al. Jul 2007 B2
7238139 Roethler et al. Jul 2007 B2
7246672 Shirai et al. Jul 2007 B2
7250018 Miller et al. Jul 2007 B2
7261663 Miller et al. Aug 2007 B2
7275610 Kuang et al. Oct 2007 B2
7285068 Hosoi Oct 2007 B2
7288042 Miller et al. Oct 2007 B2
7288043 Shioiri et al. Oct 2007 B2
7320660 Miller Jan 2008 B2
7322901 Miller et al. Jan 2008 B2
7343236 Wilson Mar 2008 B2
7347801 Guenter et al. Mar 2008 B2
7383748 Rankin Jun 2008 B2
7383749 Schaefer Jun 2008 B2
7384370 Miller Jun 2008 B2
7393300 Miller et al. Jul 2008 B2
7393302 Miller Jul 2008 B2
7393303 Miller Jul 2008 B2
7395731 Miller et al. Jul 2008 B2
7396209 Miller et al. Jul 2008 B2
7402122 Miller Jul 2008 B2
7410443 Miller Aug 2008 B2
7419451 Miller Sep 2008 B2
7422541 Miller Sep 2008 B2
7422546 Miller et al. Sep 2008 B2
7427253 Miller Sep 2008 B2
7431677 Miller et al. Oct 2008 B2
7452297 Miller et al. Nov 2008 B2
7455611 Miller et al. Nov 2008 B2
7455617 Miller et al. Nov 2008 B2
7462123 Miller et al. Dec 2008 B2
7462127 Miller et al. Dec 2008 B2
7470210 Miller et al. Dec 2008 B2
7478885 Urabe Jan 2009 B2
7481736 Miller et al. Jan 2009 B2
7510499 Miller et al. Mar 2009 B2
7540818 Miller et al. Jun 2009 B2
7547264 Usoro Jun 2009 B2
7574935 Rohs et al. Aug 2009 B2
7591755 Petrzik et al. Sep 2009 B2
7632203 Miller Dec 2009 B2
7651437 Miller et al. Jan 2010 B2
7654928 Miller et al. Feb 2010 B2
7670243 Miller Mar 2010 B2
7686729 Miller et al. Mar 2010 B2
7717815 Tenberge May 2010 B2
7727101 Miller Jun 2010 B2
7727106 Maheu et al. Jun 2010 B2
7727107 Miller Jun 2010 B2
7727108 Miller et al. Jun 2010 B2
7727110 Miller et al. Jun 2010 B2
7727115 Serkh Jun 2010 B2
7731300 Gerstenslager Jun 2010 B2
7731615 Miller et al. Jun 2010 B2
7762919 Smithson et al. Jul 2010 B2
7762920 Smithson et al. Jul 2010 B2
7770674 Miles Aug 2010 B2
7785228 Smithson et al. Aug 2010 B2
7828685 Miller Nov 2010 B2
7837592 Miller Nov 2010 B2
7871353 Nichols et al. Jan 2011 B2
7882762 Armstrong et al. Feb 2011 B2
7883442 Miller et al. Feb 2011 B2
7885747 Miller et al. Feb 2011 B2
7887032 Malone Feb 2011 B2
7909723 Triller et al. Mar 2011 B2
7909727 Smithson et al. Mar 2011 B2
7914029 Miller et al. Mar 2011 B2
7959533 Nichols et al. Jun 2011 B2
7963880 Smithson et al. Jun 2011 B2
7967719 Smithson et al. Jun 2011 B2
7976426 Smithson et al. Jul 2011 B2
8066613 Smithson et al. Nov 2011 B2
8066614 Miller et al. Nov 2011 B2
8070635 Miller Dec 2011 B2
8087482 Miles et al. Jan 2012 B2
8123653 Smithson et al. Feb 2012 B2
8133149 Smithson et al. Mar 2012 B2
8142323 Tsuchiya et al. Mar 2012 B2
8167759 Pohl et al. May 2012 B2
8171636 Smithson et al. May 2012 B2
8230961 Schneidewind Jul 2012 B2
8262536 Nichols et al. Sep 2012 B2
8267829 Miller et al. Sep 2012 B2
8313404 Carter et al. Nov 2012 B2
8313405 Bazyn et al. Nov 2012 B2
8317650 Nichols et al. Nov 2012 B2
8317651 Lohr Nov 2012 B2
8321097 Vasiliotis et al. Nov 2012 B2
8342999 Miller Jan 2013 B2
8360917 Nichols et al. Jan 2013 B2
8376889 Hoffman et al. Feb 2013 B2
8376903 Pohl et al. Feb 2013 B2
8382631 Hoffman et al. Feb 2013 B2
8382637 Tange Feb 2013 B2
8393989 Pohl Mar 2013 B2
8398518 Nichols et al. Mar 2013 B2
8469853 Miller et al. Jun 2013 B2
8469856 Thomassy Jun 2013 B2
8480529 Pohl et al. Jul 2013 B2
8496554 Pohl et al. Jul 2013 B2
8506452 Pohl et al. Aug 2013 B2
8512195 Lohr et al. Aug 2013 B2
8517888 Brookins Aug 2013 B1
8535199 Lohr et al. Sep 2013 B2
8550949 Miller Oct 2013 B2
8585528 Carter et al. Nov 2013 B2
8608609 Sherrill Dec 2013 B2
8622866 Bazyn et al. Jan 2014 B2
8626409 Vasiliotis et al. Jan 2014 B2
8628443 Miller et al. Jan 2014 B2
8641572 Nichols et al. Feb 2014 B2
8641577 Nichols et al. Feb 2014 B2
8663050 Nichols et al. Mar 2014 B2
8663052 Sich Mar 2014 B2
8678974 Lohr Mar 2014 B2
8688337 Takanami Apr 2014 B2
8708360 Miller et al. Apr 2014 B2
8721485 Lohr et al. May 2014 B2
8738255 Carter et al. May 2014 B2
8776633 Armstrong et al. Jul 2014 B2
8784248 Murakami et al. Jul 2014 B2
8790214 Lohr et al. Jul 2014 B2
8814739 Hamrin et al. Aug 2014 B1
8818661 Keilers et al. Aug 2014 B2
8827856 Younggren et al. Sep 2014 B1
8827864 Durack Sep 2014 B2
8845485 Smithson et al. Sep 2014 B2
8852050 Thomassy Oct 2014 B2
8870711 Pohl et al. Oct 2014 B2
8888643 Lohr et al. Nov 2014 B2
8900085 Pohl et al. Dec 2014 B2
8920285 Smithson et al. Dec 2014 B2
8924111 Fuller Dec 2014 B2
8956262 Tomomatsu et al. Feb 2015 B2
8961363 Shiina et al. Feb 2015 B2
8968152 Beaudoin Mar 2015 B2
8992376 Ogawa et al. Mar 2015 B2
8996263 Quinn et al. Mar 2015 B2
9017207 Pohl et al. Apr 2015 B2
9022889 Miller May 2015 B2
9046158 Miller et al. Jun 2015 B2
9052000 Cooper Jun 2015 B2
9074674 Nichols et al. Jul 2015 B2
9086145 Pohl et al. Jul 2015 B2
9121464 Nichols et al. Sep 2015 B2
9182018 Bazyn et al. Nov 2015 B2
9239099 Carter et al. Jan 2016 B2
9249880 Vasiliotis et al. Feb 2016 B2
9273760 Pohl et al. Mar 2016 B2
9279482 Nichols et al. Mar 2016 B2
9291251 Lohr et al. Mar 2016 B2
9328807 Carter et al. May 2016 B2
9341246 Miller et al. May 2016 B2
9360089 Lohr et al. Jun 2016 B2
9365203 Keilers et al. Jun 2016 B2
9371894 Carter et al. Jun 2016 B2
9388896 Hibino et al. Jul 2016 B2
9506562 Miller et al. Nov 2016 B2
9528561 Nichols et al. Dec 2016 B2
9541179 Cooper Jan 2017 B2
9574642 Pohl et al. Feb 2017 B2
9574643 Pohl Feb 2017 B2
9611921 Thomassy et al. Apr 2017 B2
9618100 Lohr Apr 2017 B2
9656672 Schieffelin May 2017 B2
9676391 Carter et al. Jun 2017 B2
9677650 Nichols et al. Jun 2017 B2
9683638 Kostrup Jun 2017 B2
9683640 Lohr et al. Jun 2017 B2
9709138 Miller et al. Jul 2017 B2
9726282 Pohl et al. Aug 2017 B2
9732848 Miller et al. Aug 2017 B2
9739375 Vasiliotis et al. Aug 2017 B2
9833201 Niederberger Dec 2017 B2
9850993 Bazyn et al. Dec 2017 B2
9869388 Pohl et al. Jan 2018 B2
9878717 Keilers et al. Jan 2018 B2
9878719 Carter et al. Jan 2018 B2
9903450 Thomassy Feb 2018 B2
9909657 Uchino Mar 2018 B2
9920823 Nichols et al. Mar 2018 B2
9945456 Nichols et al. Apr 2018 B2
9950608 Miller et al. Apr 2018 B2
9963199 Hancock May 2018 B2
10023266 Contello et al. Jul 2018 B2
10036453 Smithson Jul 2018 B2
10047861 Thomassy et al. Aug 2018 B2
10056811 Pohl Aug 2018 B2
10066712 Lohr et al. Sep 2018 B2
10066713 Nichols et al. Sep 2018 B2
10088026 Versteyhe Oct 2018 B2
10100927 Quinn et al. Oct 2018 B2
10197147 Lohr Feb 2019 B2
10208840 Nichols Feb 2019 B2
10252881 Hiltunen Apr 2019 B2
10253859 Schoolcraft Apr 2019 B2
10253880 Pohl Apr 2019 B2
10253881 Hamrin Apr 2019 B2
10260607 Carter Apr 2019 B2
10323732 Nichols Jun 2019 B2
10400872 Lohr Sep 2019 B2
10428915 Thomassy Oct 2019 B2
10428939 Miller Oct 2019 B2
10458526 Nichols Oct 2019 B2
10634224 Lohr Apr 2020 B2
10703372 Carter Jul 2020 B2
10704657 Thomassy Jul 2020 B2
10704687 Vasiliotis Jul 2020 B2
10711869 Miller Jul 2020 B2
20010008192 Morisawa Jul 2001 A1
20010023217 Miyagawa et al. Sep 2001 A1
20010041644 Yasuoka et al. Nov 2001 A1
20010044358 Taniguchi Nov 2001 A1
20010044361 Taniguchi et al. Nov 2001 A1
20010046920 Sugihara Nov 2001 A1
20020017819 Chen Feb 2002 A1
20020019285 Henzler Feb 2002 A1
20020025875 Tsujioka Feb 2002 A1
20020028722 Sakai et al. Mar 2002 A1
20020037786 Hirano et al. Mar 2002 A1
20020045511 Geiberger et al. Apr 2002 A1
20020049113 Watanabe et al. Apr 2002 A1
20020117860 Man et al. Aug 2002 A1
20020128107 Wakayama Sep 2002 A1
20020151401 Lemanski Oct 2002 A1
20020161503 Joe et al. Oct 2002 A1
20020169051 Oshidari Nov 2002 A1
20020179348 Tamai et al. Dec 2002 A1
20020189524 Chen Dec 2002 A1
20030015358 Abe et al. Jan 2003 A1
20030015874 Abe et al. Jan 2003 A1
20030022753 Mizuno et al. Jan 2003 A1
20030036456 Skrabs Feb 2003 A1
20030096674 Uno May 2003 A1
20030132051 Nishii et al. Jul 2003 A1
20030135316 Kawamura et al. Jul 2003 A1
20030144105 O'Hora Jul 2003 A1
20030151300 Goss Aug 2003 A1
20030160420 Fukuda Aug 2003 A1
20030181286 Miller Sep 2003 A1
20030216216 Inoue et al. Nov 2003 A1
20030221892 Matsumoto et al. Dec 2003 A1
20040038772 McIndoe et al. Feb 2004 A1
20040051375 Uno Mar 2004 A1
20040058772 Inoue et al. Mar 2004 A1
20040067816 Taketsuna et al. Apr 2004 A1
20040082421 Wafzig Apr 2004 A1
20040087412 Mori et al. May 2004 A1
20040092359 Imanishi et al. May 2004 A1
20040119345 Takano Jun 2004 A1
20040171452 Miller Sep 2004 A1
20040171457 Fuller Sep 2004 A1
20040204283 Inoue Oct 2004 A1
20040224808 Miller Nov 2004 A1
20040231331 Iwanami et al. Nov 2004 A1
20040254047 Frank et al. Dec 2004 A1
20050037876 Unno et al. Feb 2005 A1
20050037886 Lemansky Feb 2005 A1
20050064986 Ginglas Mar 2005 A1
20050073127 Miller Apr 2005 A1
20050079948 Miller Apr 2005 A1
20050085326 Miller Apr 2005 A1
20050085327 Miller Apr 2005 A1
20050085334 Miller Apr 2005 A1
20050085336 Miller Apr 2005 A1
20050085337 Miller Apr 2005 A1
20050085338 Miller Apr 2005 A1
20050085979 Carlson et al. Apr 2005 A1
20050096176 Miller May 2005 A1
20050096179 Miller May 2005 A1
20050113202 Miller May 2005 A1
20050113210 Miller May 2005 A1
20050117983 Miller Jun 2005 A1
20050119086 Miller Jun 2005 A1
20050119087 Miller Jun 2005 A1
20050119090 Miller Jun 2005 A1
20050119093 Miller Jun 2005 A1
20050124453 Miller Jun 2005 A1
20050124456 Miller Jun 2005 A1
20050130784 Miller Jun 2005 A1
20050137046 Miller Jun 2005 A1
20050137051 Miller Jun 2005 A1
20050137052 Miller Jun 2005 A1
20050148422 Miller Jul 2005 A1
20050148423 Miller Jul 2005 A1
20050153808 Miller Jul 2005 A1
20050153809 Miller Jul 2005 A1
20050153810 Miller Jul 2005 A1
20050159265 Miller Jul 2005 A1
20050159266 Miller Jul 2005 A1
20050159267 Miller Jul 2005 A1
20050164819 Miller Jul 2005 A1
20050170927 Miller Aug 2005 A1
20050176544 Miller Aug 2005 A1
20050176545 Miller Aug 2005 A1
20050178893 Miller Aug 2005 A1
20050181905 Ali et al. Aug 2005 A1
20050184580 Kuan et al. Aug 2005 A1
20050197231 Miller Sep 2005 A1
20050209041 Miller Sep 2005 A1
20050227809 Bitzer et al. Oct 2005 A1
20050229731 Parks et al. Oct 2005 A1
20050233846 Green et al. Oct 2005 A1
20050255957 Miller Nov 2005 A1
20060000684 Agner Jan 2006 A1
20060006008 Brunemann et al. Jan 2006 A1
20060052204 Eckert et al. Mar 2006 A1
20060054422 Dimsey et al. Mar 2006 A1
20060084549 Smithson Apr 2006 A1
20060108956 Clark May 2006 A1
20060111212 Ai et al. May 2006 A9
20060154775 Ali et al. Jul 2006 A1
20060172829 Ishio Aug 2006 A1
20060180363 Uchisasai Aug 2006 A1
20060223667 Nakazeki Oct 2006 A1
20060234822 Morscheck et al. Oct 2006 A1
20060234826 Moehlmann et al. Oct 2006 A1
20060276299 Imanishi Dec 2006 A1
20070004552 Matsudaira et al. Jan 2007 A1
20070004554 Hans Jan 2007 A1
20070004556 Rohs et al. Jan 2007 A1
20070041823 Miller Feb 2007 A1
20070049450 Miller Mar 2007 A1
20070082770 Nihei Apr 2007 A1
20070099753 Matsui et al. May 2007 A1
20070142161 Miller Jun 2007 A1
20070149342 Guenter et al. Jun 2007 A1
20070155552 De Cloe Jul 2007 A1
20070155567 Miller et al. Jul 2007 A1
20070155580 Nichols Jul 2007 A1
20070167274 Petrzik Jul 2007 A1
20070167275 Miller Jul 2007 A1
20070167276 Miller Jul 2007 A1
20070167277 Miller Jul 2007 A1
20070167278 Miller Jul 2007 A1
20070167279 Miller Jul 2007 A1
20070167280 Miller Jul 2007 A1
20070179013 Miller Aug 2007 A1
20070193391 Armstrong et al. Aug 2007 A1
20070197337 Miller Aug 2007 A1
20070219048 Yamaguchi Sep 2007 A1
20070219696 Miller Sep 2007 A1
20070228687 Parker Oct 2007 A1
20070232423 Katou et al. Oct 2007 A1
20070245846 Armstrong Oct 2007 A1
20070270265 Miller Nov 2007 A1
20070270266 Miller Nov 2007 A1
20070270267 Miller Nov 2007 A1
20070270268 Miller Nov 2007 A1
20070270269 Miller Nov 2007 A1
20070270270 Miller Nov 2007 A1
20070270271 Miller Nov 2007 A1
20070270272 Miller Nov 2007 A1
20070270278 Miller Nov 2007 A1
20070275809 Miller Nov 2007 A1
20070281819 Miller Dec 2007 A1
20070287578 Miller Dec 2007 A1
20070287579 Miller Dec 2007 A1
20070287580 Miller Dec 2007 A1
20080004008 Nicol Jan 2008 A1
20080009389 Jacobs Jan 2008 A1
20080032852 Smithson et al. Feb 2008 A1
20080032853 Smithson Feb 2008 A1
20080032854 Smithson et al. Feb 2008 A1
20080034585 Smithson Feb 2008 A1
20080034586 Smithson Feb 2008 A1
20080039269 Smithson et al. Feb 2008 A1
20080039270 Smithson Feb 2008 A1
20080039271 Smithson Feb 2008 A1
20080039272 Smithson Feb 2008 A1
20080039273 Smithson et al. Feb 2008 A1
20080039274 Smithson Feb 2008 A1
20080039275 Smithson Feb 2008 A1
20080039276 Smithson et al. Feb 2008 A1
20080039277 Smithson Feb 2008 A1
20080040008 Smithson Feb 2008 A1
20080070729 Miller Mar 2008 A1
20080071436 Dube Mar 2008 A1
20080073136 Miller Mar 2008 A1
20080073137 Miller Mar 2008 A1
20080073467 Miller Mar 2008 A1
20080079236 Miller Apr 2008 A1
20080081715 Miller Apr 2008 A1
20080081728 Faulring et al. Apr 2008 A1
20080085795 Miller Apr 2008 A1
20080085796 Miller Apr 2008 A1
20080085797 Miller Apr 2008 A1
20080085798 Miller Apr 2008 A1
20080121486 Miller May 2008 A1
20080121487 Miller May 2008 A1
20080125281 Miller May 2008 A1
20080125282 Miller May 2008 A1
20080132373 Miller Jun 2008 A1
20080132377 Miller Jun 2008 A1
20080139363 Williams Jun 2008 A1
20080141809 Miller Jun 2008 A1
20080141810 Miller Jun 2008 A1
20080146403 Miller Jun 2008 A1
20080146404 Miller Jun 2008 A1
20080149407 Shibata et al. Jun 2008 A1
20080161151 Miller Jul 2008 A1
20080183358 Thomson et al. Jul 2008 A1
20080188345 Miller Aug 2008 A1
20080200300 Smithson et al. Aug 2008 A1
20080228362 Muller et al. Sep 2008 A1
20080236319 Nichols Oct 2008 A1
20080248917 Nichols Oct 2008 A1
20080261771 Nichols Oct 2008 A1
20080284170 Cory Nov 2008 A1
20080305920 Nishii et al. Dec 2008 A1
20090011907 Radow Jan 2009 A1
20090023545 Beaudoin Jan 2009 A1
20090055061 Zhu Feb 2009 A1
20090062062 Choi Mar 2009 A1
20090082169 Kolstrup Mar 2009 A1
20090107454 Hiyoshi et al. Apr 2009 A1
20090132135 Quinn, Jr. May 2009 A1
20090164076 Vasiliotis Jun 2009 A1
20090189397 Miller Jul 2009 A1
20090221391 Bazyn Sep 2009 A1
20090251013 Vollmer et al. Oct 2009 A1
20090280949 Lohr Nov 2009 A1
20090312145 Pohl Dec 2009 A1
20090318261 Tabata et al. Dec 2009 A1
20100056322 Thomassy Mar 2010 A1
20100093479 Carter et al. Apr 2010 A1
20100093480 Pohl Apr 2010 A1
20100093485 Pohl Apr 2010 A1
20100120577 Gu et al. May 2010 A1
20100131164 Carter May 2010 A1
20100145573 Vasilescu Jun 2010 A1
20100181130 Chou Jul 2010 A1
20100198453 Dorogusker Aug 2010 A1
20100228405 Morgal Sep 2010 A1
20100264620 Miles Oct 2010 A1
20100267510 Nichols Oct 2010 A1
20100313614 Rzepecki Dec 2010 A1
20110034284 Pohl Feb 2011 A1
20110088503 Armstrong Apr 2011 A1
20110105274 Lohr May 2011 A1
20110127096 Schneidewind Jun 2011 A1
20110172050 Nichols Jul 2011 A1
20110178684 Umemoto et al. Jul 2011 A1
20110184614 Keilers Jul 2011 A1
20110190093 Bishop Aug 2011 A1
20110218072 Lohr Sep 2011 A1
20110230297 Shiina et al. Sep 2011 A1
20110237385 Andre Parise Sep 2011 A1
20110254673 Jean Oct 2011 A1
20110291507 Post Dec 2011 A1
20110319222 Ogawa et al. Dec 2011 A1
20120029744 Yun Feb 2012 A1
20120035011 Menachem et al. Feb 2012 A1
20120035015 Ogawa et al. Feb 2012 A1
20120035016 Miller Feb 2012 A1
20120043841 Miller Feb 2012 A1
20120115667 Lohr May 2012 A1
20120130603 Simpson et al. May 2012 A1
20120238386 Pohl Sep 2012 A1
20120239235 Voigtlaender Sep 2012 A1
20120258839 Smithson et al. Oct 2012 A1
20120309579 Miller Dec 2012 A1
20130035200 Noji et al. Feb 2013 A1
20130053211 Fukuda et al. Feb 2013 A1
20130072340 Bazyn Mar 2013 A1
20130079191 Lohr Mar 2013 A1
20130080006 Vasiliotis Mar 2013 A1
20130095977 Smithson Apr 2013 A1
20130102434 Nichols Apr 2013 A1
20130106258 Miller May 2013 A1
20130139531 Pohl Jun 2013 A1
20130146406 Nichols Jun 2013 A1
20130152715 Pohl Jun 2013 A1
20130190123 Pohl Jul 2013 A1
20130190125 Nichols Jul 2013 A1
20130288844 Thomassy Oct 2013 A1
20130288848 Carter Oct 2013 A1
20130310214 Pohl Nov 2013 A1
20130324344 Pohl Dec 2013 A1
20130331218 Lohr Dec 2013 A1
20130337971 Kolstrup Dec 2013 A1
20140011619 Pohl Jan 2014 A1
20140011628 Lohr Jan 2014 A1
20140038771 Miller Feb 2014 A1
20140073470 Carter Mar 2014 A1
20140094339 Ogawa et al. Apr 2014 A1
20140121922 Vasiliotis May 2014 A1
20140128195 Miller May 2014 A1
20140141919 Bazyn May 2014 A1
20140144260 Nichols May 2014 A1
20140148303 Nichols May 2014 A1
20140155220 Messier et al. Jun 2014 A1
20140179479 Nichols Jun 2014 A1
20140206499 Lohr Jul 2014 A1
20140228163 Aratsu et al. Aug 2014 A1
20140248988 Lohr Sep 2014 A1
20140257650 Carter Sep 2014 A1
20140274536 Versteyhe Sep 2014 A1
20140323260 Miller Oct 2014 A1
20140329637 Thomassy Nov 2014 A1
20140335991 Lohr Nov 2014 A1
20140365059 Cyril Dec 2014 A1
20150018154 Thomassy Jan 2015 A1
20150038285 Aratsu et al. Feb 2015 A1
20150039195 Pohl Feb 2015 A1
20150051801 Quinn, Jr. Feb 2015 A1
20150072827 Lohr Mar 2015 A1
20150080165 Pohl Mar 2015 A1
20150219194 Winter et al. Aug 2015 A1
20150226323 Pohl Aug 2015 A1
20150233473 Miller Aug 2015 A1
20150260284 Miller Sep 2015 A1
20150337928 Smithson Nov 2015 A1
20150345599 Ogawa Dec 2015 A1
20150360747 Baumgaertner Dec 2015 A1
20150369348 Nichols et al. Dec 2015 A1
20150377305 Nichols Dec 2015 A1
20160003349 Kimura et al. Jan 2016 A1
20160031526 Watarai Feb 2016 A1
20160039496 Hancock Feb 2016 A1
20160040763 Nichols Feb 2016 A1
20160061301 Bazyn Mar 2016 A1
20160131231 Carter May 2016 A1
20160146342 Vasiliotis May 2016 A1
20160178037 Pohl Jun 2016 A1
20160186847 Nichols Jun 2016 A1
20160195177 Versteyhe Jul 2016 A1
20160201772 Lohr et al. Jul 2016 A1
20160244063 Carter Aug 2016 A1
20160273627 Miller Sep 2016 A1
20160281825 Lohr Sep 2016 A1
20160290451 Lohr Oct 2016 A1
20160298740 Carter et al. Oct 2016 A1
20160347411 Yamamoto et al. Dec 2016 A1
20160362108 Keilers Dec 2016 A1
20160377153 Ajumobi Dec 2016 A1
20170072782 Miller Mar 2017 A1
20170082049 David et al. Mar 2017 A1
20170102053 Nichols Apr 2017 A1
20170103053 Guerra Apr 2017 A1
20170159812 Pohl et al. Jun 2017 A1
20170163138 Pohl Jun 2017 A1
20170204948 Thomassy et al. Jul 2017 A1
20170204969 Thomassy Jul 2017 A1
20170211696 Nassouri Jul 2017 A1
20170211698 Lohr Jul 2017 A1
20170225742 Hancock et al. Aug 2017 A1
20170268638 Nichols et al. Sep 2017 A1
20170274903 Carter Sep 2017 A1
20170276217 Nichols et al. Sep 2017 A1
20170284519 Kolstrup Oct 2017 A1
20170284520 Lohr et al. Oct 2017 A1
20170314655 Miller et al. Nov 2017 A1
20170328470 Pohl Nov 2017 A1
20170335961 Hamrin Nov 2017 A1
20170343105 Vasiliotis et al. Nov 2017 A1
20180066754 Miller et al. Mar 2018 A1
20180106359 Bazyn et al. Apr 2018 A1
20180119786 Mepham May 2018 A1
20180134750 Pohl et al. May 2018 A1
20180148055 Carter et al. May 2018 A1
20180148056 Keilers et al. May 2018 A1
20180195586 Thomassy et al. Jul 2018 A1
20180202527 Nichols et al. Jul 2018 A1
20180236867 Miller et al. Aug 2018 A1
20180251190 Hancock et al. Sep 2018 A1
20180306283 Engesather et al. Oct 2018 A1
20180327060 Contello et al. Nov 2018 A1
20180347693 Thomassy et al. Dec 2018 A1
20180372192 Lohr Dec 2018 A1
20190049004 Quinn, Jr. Feb 2019 A1
20190195321 Smithson Jun 2019 A1
20190277399 Guerin Sep 2019 A1
20190323582 Horak Oct 2019 A1
20200018384 Nichols et al. Jan 2020 A1
Foreign Referenced Citations (352)
Number Date Country
118064 Dec 1926 CH
1047556 Dec 1990 CN
1054340 Sep 1991 CN
2245830 Jan 1997 CN
1157379 Aug 1997 CN
1167221 Dec 1997 CN
1178573 Apr 1998 CN
1178751 Apr 1998 CN
1204991 Jan 1999 CN
2320843 May 1999 CN
1281540 Jan 2001 CN
1283258 Feb 2001 CN
1297404 May 2001 CN
1300355 Jun 2001 CN
1412033 Apr 2003 CN
1434229 Aug 2003 CN
1474917 Feb 2004 CN
1483235 Mar 2004 CN
1555466 Dec 2004 CN
1568407 Jan 2005 CN
1654858 Aug 2005 CN
2714896 Aug 2005 CN
1736791 Feb 2006 CN
1791731 Jun 2006 CN
1847702 Oct 2006 CN
1860315 Nov 2006 CN
1896562 Jan 2007 CN
1940348 Apr 2007 CN
101016076 Aug 2007 CN
101166922 Apr 2008 CN
101312867 Nov 2008 CN
201777370 Mar 2011 CN
102165219 Aug 2011 CN
203358799 Dec 2013 CN
498 701 May 1930 DE
866748 Feb 1953 DE
1165372 Mar 1964 DE
1171692 Jun 1964 DE
2021027 Dec 1970 DE
2 310880 Sep 1974 DE
2 136 243 Jan 1975 DE
2436496 Feb 1975 DE
3940919 Jun 1991 DE
4120540 Nov 1992 DE
19851738 May 2000 DE
10155372 May 2003 DE
10261372 Jul 2003 DE
102009016869 Oct 2010 DE
102011016672 Oct 2012 DE
102012210842 Jan 2014 DE
102012212526 Jan 2014 DE
102012023551 Jun 2014 DE
102012222087 Jun 2014 DE
102013201101 Jul 2014 DE
102014007271 Dec 2014 DE
102013214169 Jan 2015 DE
0 432 742 Dec 1990 EP
0 528 381 Feb 1993 EP
0 528 382 Feb 1993 EP
0 635 639 Jan 1995 EP
635639 Jan 1995 EP
0 638 741 Feb 1995 EP
0 831 249 Mar 1998 EP
0 832 816 Apr 1998 EP
0877341 Nov 1998 EP
0 976 956 Feb 2000 EP
1 010 612 Jun 2000 EP
1 136 724 Sep 2001 EP
1 188 602 Mar 2002 EP
1 251 294 Oct 2002 EP
1 366 978 Mar 2003 EP
1 362 783 Nov 2003 EP
1 433 641 Jun 2004 EP
1 452 441 Sep 2004 EP
1 518 785 Mar 2005 EP
1 624 230 Feb 2006 EP
1811202 Jul 2007 EP
2261108 Dec 2010 EP
2338782 Jun 2011 EP
2464560 Jun 2012 EP
2620672 Jul 2013 EP
2357128 Aug 2014 EP
2 893 219 Jul 2015 EP
2927534 Oct 2015 EP
620375 Apr 1927 FR
2460427 Jan 1981 FR
2590638 May 1987 FR
2909938 Jun 2008 FR
2996276 Apr 2014 FR
391448 Apr 1933 GB
592320 Sep 1947 GB
772749 Apr 1957 GB
858710 Jan 1961 GB
906002 Sep 1962 GB
906002 Sep 1962 GB
919430 Feb 1963 GB
919430 Feb 1963 GB
1132473 Nov 1968 GB
1165545 Oct 1969 GB
1376057 Dec 1974 GB
2031822 Apr 1980 GB
2035481 Jun 1980 GB
2035482 Jun 1980 GB
2080452 Aug 1982 GB
38-025315 Nov 1963 JP
41-3126 Feb 1966 JP
42-2843 Feb 1967 JP
42-2844 Feb 1967 JP
44-1098 Jan 1969 JP
46-029087 Aug 1971 JP
47-000448 Jan 1972 JP
47962 Jan 1972 JP
S47448 Jan 1972 JP
47-207 Jun 1972 JP
47-20535 Jun 1972 JP
47-1621 Aug 1972 JP
47-00962 Nov 1972 JP
47-29762 Nov 1972 JP
48-54371 Jul 1973 JP
49-012742 Mar 1974 JP
49-013823 Apr 1974 JP
49-041536 Nov 1974 JP
50-114581 Sep 1975 JP
51-25903 Aug 1976 JP
51-150380 Dec 1976 JP
52-35481 Mar 1977 JP
53-048166 Jan 1978 JP
53-50395 Apr 1978 JP
55-135259 Oct 1980 JP
56-24251 Mar 1981 JP
56-047231 Apr 1981 JP
56-101448 Aug 1981 JP
56-127852 Oct 1981 JP
58-065361 Apr 1983 JP
59-069565 Apr 1984 JP
59-144826 Aug 1984 JP
59-190557 Oct 1984 JP
S073958 May 1985 JP
60-247011 Dec 1985 JP
61-031754 Feb 1986 JP
61-053423 Mar 1986 JP
61-144466 Jul 1986 JP
61-173722 Oct 1986 JP
61-270552 Nov 1986 JP
62-075170 Apr 1987 JP
63-125854 May 1988 JP
63-219953 Sep 1988 JP
63-160465 Oct 1988 JP
01210653 Aug 1989 JP
01-039865 Nov 1989 JP
01-286750 Nov 1989 JP
01-308142 Dec 1989 JP
02-130224 May 1990 JP
02-157483 Jun 1990 JP
02-271142 Jun 1990 JP
02-182593 Jul 1990 JP
03-149442 Jun 1991 JP
03-223555 Oct 1991 JP
422843 Jan 1992 JP
470207 Mar 1992 JP
470962 Mar 1992 JP
479762 Mar 1992 JP
04-166619 Jun 1992 JP
04-272553 Sep 1992 JP
04-327055 Nov 1992 JP
04-351361 Dec 1992 JP
05-087154 Apr 1993 JP
06-050169 Feb 1994 JP
06-050358 Feb 1994 JP
07-42799 Feb 1995 JP
07-133857 May 1995 JP
07-139600 May 1995 JP
07-259950 Oct 1995 JP
08-135748 May 1996 JP
08-170706 Jul 1996 JP
08170706 Jul 1996 JP
08-247245 Sep 1996 JP
08-270772 Oct 1996 JP
09-024743 Jan 1997 JP
09024743 Jan 1997 JP
09-089064 Mar 1997 JP
10-061739 Mar 1998 JP
10-078094 Mar 1998 JP
10-089435 Apr 1998 JP
10-115355 May 1998 JP
10-115356 May 1998 JP
10-194186 Jul 1998 JP
10-225053 Aug 1998 JP
10-511621 Nov 1998 JP
H10307964 Nov 1998 JP
11-063130 Mar 1999 JP
11063130 Mar 1999 JP
11-091411 Apr 1999 JP
11-210850 Aug 1999 JP
11-227669 Aug 1999 JP
11-240481 Sep 1999 JP
11-257479 Sep 1999 JP
11317653 Nov 1999 JP
2000-6877 Jan 2000 JP
2000-46135 Feb 2000 JP
2000-177673 Jun 2000 JP
2001-027298 Jan 2001 JP
2001-071986 Mar 2001 JP
2001-107827 Apr 2001 JP
2001-165296 Jun 2001 JP
2001234999 Aug 2001 JP
2001-328466 Nov 2001 JP
2001521109 Nov 2001 JP
2002-147558 May 2002 JP
2002-250421 Jun 2002 JP
2002-291272 Oct 2002 JP
2002-307956 Oct 2002 JP
2002-533626 Oct 2002 JP
2002-372114 Dec 2002 JP
2003-028257 Jan 2003 JP
2003-56662 Feb 2003 JP
2003-507261 Feb 2003 JP
2003-161357 Jun 2003 JP
2003-194206 Jul 2003 JP
2003-194207 Jul 2003 JP
2003524119 Aug 2003 JP
2003-320987 Nov 2003 JP
2003-336732 Nov 2003 JP
2004-011834 Jan 2004 JP
2004-38722 Feb 2004 JP
2004-162652 Jun 2004 JP
2004162652 Jun 2004 JP
2004-189222 Jul 2004 JP
2004-232776 Aug 2004 JP
2004-526917 Sep 2004 JP
2004-301251 Oct 2004 JP
2005-003063 Jan 2005 JP
2005-096537 Apr 2005 JP
2005-188694 Jul 2005 JP
2005-240928 Sep 2005 JP
2005240928 Sep 2005 JP
2005-312121 Nov 2005 JP
2006-015025 Jan 2006 JP
2006-283900 Oct 2006 JP
2006-300241 Nov 2006 JP
2007-085404 Apr 2007 JP
2007-321931 Dec 2007 JP
2007535715 Dec 2007 JP
2008-002687 Jan 2008 JP
2008-14412 Jan 2008 JP
2008-133896 Jun 2008 JP
4351361 Oct 2009 JP
2010-069005 Apr 2010 JP
2010532454 Oct 2010 JP
2011178341 Sep 2011 JP
2012506001 Mar 2012 JP
4912742 Apr 2012 JP
4913823 Apr 2012 JP
4941536 May 2012 JP
2012-107725 Jun 2012 JP
2012-122568 Jun 2012 JP
2012121338 Jun 2012 JP
2012-211610 Nov 2012 JP
2012-225390 Nov 2012 JP
2013521452 Jun 2013 JP
2013147245 Aug 2013 JP
5348166 Nov 2013 JP
5647231 Dec 2014 JP
5668205 Feb 2015 JP
2015505022 Feb 2015 JP
2015075148 Apr 2015 JP
2015-227690 Dec 2015 JP
2015-227691 Dec 2015 JP
5865361 Feb 2016 JP
5969565 Aug 2016 JP
6131754 May 2017 JP
6153423 Jun 2017 JP
6275170 Feb 2018 JP
2018025315 Feb 2018 JP
2002 0054126 Jul 2002 KR
10-2002-0071699 Sep 2002 KR
20080079274 Aug 2008 KR
20080081030 Sep 2008 KR
20130018976 Feb 2013 KR
101339282 Jan 2014 KR
98467 Jul 1961 NE
74007 Jan 1984 TW
175100 Dec 1991 TW
218909 Jan 1994 TW
227206 Jul 1994 TW
275872 May 1996 TW
360184 Jun 1999 TW
366396 Aug 1999 TW
401496 Aug 2000 TW
510867 Nov 2002 TW
512211 Dec 2002 TW
582363 Apr 2004 TW
590955 Jun 2004 TW
I225129 Dec 2004 TW
I225912 Jan 2005 TW
I235214 Jan 2005 TW
M294598 Jul 2006 TW
200637745 Nov 2006 TW
200741116 Nov 2007 TW
200821218 May 2008 TW
201339049 Oct 2013 TW
WO 9908024 Feb 1999 WO
WO 9920918 Apr 1999 WO
2000061388 Oct 2000 WO
WO 0173319 Oct 2001 WO
02088573 Nov 2002 WO
WO 03086849 Oct 2003 WO
WO 03100294 Dec 2003 WO
2004079223 Sep 2004 WO
2005019669 Mar 2005 WO
WO 05083305 Sep 2005 WO
WO 05108825 Nov 2005 WO
WO 05111472 Nov 2005 WO
2006014617 Feb 2006 WO
2006047887 May 2006 WO
WO 06091503 Aug 2006 WO
2007061993 May 2007 WO
2007070167 Jun 2007 WO
2007077502 Jul 2007 WO
2008002457 Jan 2008 WO
2008057507 May 2008 WO
WO 08078047 Jul 2008 WO
2008095116 Aug 2008 WO
2008100792 Aug 2008 WO
2008101070 Aug 2008 WO
2008131353 Oct 2008 WO
2008154437 Dec 2008 WO
2009006481 Jan 2009 WO
2009148461 Dec 2009 WO
2009157920 Dec 2009 WO
2010017242 Feb 2010 WO
2010024809 Mar 2010 WO
2010044778 Apr 2010 WO
WO 10073036 Jul 2010 WO
2010094515 Aug 2010 WO
WO 10135407 Nov 2010 WO
WO 11064572 Jun 2011 WO
WO 11101991 Aug 2011 WO
2011121743 Oct 2011 WO
2011124415 Oct 2011 WO
WO 11121743 Oct 2011 WO
2011138175 Nov 2011 WO
2012030213 Mar 2012 WO
WO 12030213 Mar 2012 WO
WO 13042226 Mar 2013 WO
2013112408 Aug 2013 WO
2014186732 Nov 2014 WO
WO 14186732 Nov 2014 WO
2016022553 Feb 2016 WO
WO 16062461 Apr 2016 WO
2016079620 May 2016 WO
2017186911 Nov 2017 WO
Non-Patent Literature Citations (44)
Entry
Office Action dated Feb. 24, 2010 from Japanese Patent Application No. 2006-508892.
Office Action dated Feb. 17, 2010 from Japanese Patent Application No. 2009-294086.
Office Action dated Jul. 16, 2012 for U.S. Appl. No. 12/271,611.
Office Action dated Sep. 24, 2012 for Chinese Patent Application No. 200880116244.9.
Office Action dated May 29, 2013 for Chinese Patent Application No. 200880116244.9.
First Office Action dated Sep. 2, 2015 in Chinese Patent Application No. 201410145485.3.
Second Office Action dated Feb. 24, 2016 in Chinese Patent Application No. 201410145485.3.
International Search Report and Written Opinion dated May 19, 2009 from International Patent Application No. PCT/US2008/083660, filed on Nov. 14, 2008.
Preliminary Notice of First Office Action dated Jun. 20, 2014 in Taiwanese Patent Application No. 97144386.
Rejection Decision dated Mar. 29, 2015 in Taiwanese Patent Application No. 97144386.
Office Action dated Jul. 6, 2016 in U.S. Appl. No. 14/529,773.
Office Action dated Jan. 18, 2017 in U.S. Appl. No. 14/529,773.
Office Action dated Jul. 5, 2017 in U.S. Appl. No. 14/529,773.
Examination report dated Jul. 11, 2018 in Indian Patent Application No. 2060/KOLNP/2010.
Office Action dated Apr. 2, 2014 in U.S. Appl. No. 13/288,711.
Office Action dated Aug. 29, 2013 in U.S. Appl. No. 13/288,711.
Office Action dated Aug. 3, 2015 in U.S. Appl. No. 14/541,875.
Office Action dated Dec. 12, 2011 for U.S. Appl. No. 12/271,611.
Office Action dated Dec. 12, 2016 in U.S. Appl. No. 13/938,056.
Office Action dated Dec. 29, 2017 in U.S. Appl. No. 14/839,567.
Office Action dated Jan. 20, 2012 for U.S. Appl. No. 12/137,456.
Office Action dated Jan. 20, 2015 in U.S. Appl. No. 13/682,176.
Office Action dated Jul. 18, 2016 in U.S. Appl. No. 13/938,056.
Office Action dated Jun. 19, 2014 in U.S. Appl. No. 13/682,176.
Office Action dated Jun. 8, 2018 in U.S. Appl. No. 14/839,567.
Office Action dated Mar. 14, 2012 for U.S. Appl. No. 12/137,480.
Office Action dated Mar. 5, 2015 in U.S. Appl. No. 14/541,875.
Office Action dated May 17, 2012 for U.S. Appl. No. 12/159,688.
Office Action dated Nov. 14, 2012 for U.S. Appl. No. 12/159,688.
Office Action dated Sep. 15, 2010 for U.S. Appl. No. 11/543,311.
Thomassy, Fernand A., “An Engineering Approach to Simulating Traction EHL”, CVT-Hybrid International Conference Mecc/Maastricht/The Netherlands, Nov. 17-19, 2010, p. 97.
Examination Report dated Dec. 17, 2020 in Indian Patent Application No. 201837029026, 7 pages.
International Search Report and Written Opinion dated Feb. 2, 2010 from International Patent Application No. PCT/US2008/068929, filed on Jan. 7, 2008.
International Search Report and Written Opinion dated Jan. 25, 2010 from International Patent Application No. PCT/US2009/052761, filed on Aug. 4, 2009.
International Search Report and Written Opinion dated Jul. 21, 2017 in PCT/US2017/032023.
International Search Report and Written Opinion dated Jun. 27, 2017 in PCT/US2016/063880.
International Search Report and Written Opinion dated Nov. 13, 2009 from International Patent Application No. PCT/US2008/053951, filed on Feb. 14, 2008.
International Search Report for International Application No. PCT/US2006/039166 dated Feb. 27, 2007.
Notification of Reasons for Rejection dated Oct. 6, 2020 in Japanese Patent Application No. 2018-536480, 21 pages.
Notification of the First Office Action dated Jun. 26, 2019 in Chinese Patent Application No. 201680080281.3.
Notification of the Second Office Action dated Mar. 16, 2020 in Chinese Patent Application No. 201680080281.3, 15 pages.
Office Action dated Mar. 18, 2010 from U.S. Appl. No. 12/137,464, filed Jun. 11, 2008, 24 pages.
Office Action dated Nov. 14, 2017 in U.S. Appl. No. 15/172,031, 5 pages.
Office Action dated Nov. 3, 2017 in U.S. Appl. No. 14/996,743, 10 pages.
Related Publications (1)
Number Date Country
20190049004 A1 Feb 2019 US
Provisional Applications (1)
Number Date Country
60988560 Nov 2007 US
Divisions (1)
Number Date Country
Parent 12271611 Nov 2008 US
Child 14529773 US
Continuations (1)
Number Date Country
Parent 14529773 Oct 2014 US
Child 16160624 US