The present application is based on and claims the benefit of priority of Japanese Patent Application No. 2018-202109, filed on Oct. 26, 2018, the disclosure of which is incorporated herein by reference.
The present disclosure generally relates to a control device, for example, a controller of a rotating electric machine.
In the related art, a control device, or a controller is known that controls a rotating electric machine applied to a system, which includes an inverter having switches in upper and lower arms for each of three phases, a synchronous rotating electric machine electrically connected to the inverter, and a shunt resistor. The shunt resistor is electrically connected to only one of the upper and lower arms in each phase.
The control device detects a voltage of each shunt resistor during a period in which an electric current is flowing therein. That is, the control device detects the voltage of the shunt resistor having the electric current flowing therein in such period. The control device sets, based on the detected voltage, a switching mode in each of carrier signal cycles for each of the switches constituting the inverter by pulse width modulation (PWM) using a carrier signal so as to control an amount of the rotating electric machine to an instruction value.
However, in the above-described control device, a current detection timing can be set only once per carrier signal cycle, thus the current detection frequency is low.
It is an object of the present disclosure to provide a control device, or a controller in short, of a rotating electric machine capable of increasing a frequency of detection of electric current.
Objects, features, and advantages of the present disclosure will become more apparent from the following detailed description made with reference to the accompanying drawings, in which:
Hereinafter, the first embodiment of a control device, for example, a controller, for a rotating electric machine according to the present disclosure is described with reference to the drawings.
As shown in
The inverter 20 is provided with a series connection of upper arm switches SUp, SVp, SWp and lower arm switches SUn, SVn, SWn for three phases. In the present embodiment, voltage-controlled semiconductor switching elements are used as the switches SUp, SUn, SVp, SVn, SWp, and SWn, and more practically, N-channel MOSFETs are used. Therefore, the high potential side terminals of the switches SUp, SUn, SVp, SVn, SWp, and SWn are drains, and the low potential side terminals are sources. The switches SUp, SUn, SVp, SVn, SWp, and SWn have body diodes DUp, DUn, DVp, DVn, DWp, and DWn, respectively.
The source of the U-phase upper arm switch SUp is connected to a first end of a U-phase conductive member 21U such as a bus bar and the drain of the U-phase lower arm switch SUn. A first end of a U-phase winding 11U of the rotating electric machine 10 is connected to a second end of the U-phase conductive member 21U. The source of the V-phase upper arm switch SVp is connected to a first end of a V-phase conductive member 21V such as a bus bar and the drain of the V-phase lower arm switch SVn. A first end of a V-phase winding 11V of the rotating electric machine 10 is connected to a second end of the V-phase conductive member 21V. The source of the W-phase upper arm switch SWp is connected to a first end of a W-phase conductive member 21W such as a bus bar and the drain of the W-phase lower arm switch SWn. A first end of a W-phase winding 11W of the rotating electric machine 10 is connected to a second end of the W-phase conductive member 21W. The second ends of the U, V, W-phase windings 11U, 11V, 11W are connected at a neutral point.
The drains of the U, V, W-phase upper arm switches SUp, SVp, SWp and a positive electrode terminal of a storage battery 30, which is a direct current (DC) power source, are connected by a positive electrode bus line Lp. On the positive electrode bus line Lp, at a position between (i) a connection point to one of the upper arm switches SUp, SVp, SWp which is closest to the positive electrode terminal of the storage battery 30 and (ii) the positive electrode terminal of the storage battery 30, a first end of a smoothing capacitor 22 is connected.
First ends of U, V, W-phase shunt resistors 23U, 23V, 23W are connected to sources of the U, V, W-phase lower arm switches SUn, SVn, SWn. Second ends of the U, V, W-phase shunt resistors 23U, 23V, 23W and a negative electrode terminal of the storage battery 30 are connected by a negative electrode bus line Ln. On the negative electrode bus line Ln, at a position between (i) a connection point to one of the shunt resistors 23U, 23V, 23W which is closest to the negative electrode terminal of the storage battery 30 and (ii) the negative electrode terminal of the storage battery 30, a second end of the smoothing capacitor 22 is connected.
The controller 40 is provided as a microcomputer, in substance, and switches the switches constituting the inverter 20 in order to feedback-control a control amount of the rotating electric machine 10 to an instruction value. In the present embodiment, the control amount is an electric angular velocity, that is, a rotation speed, and the instruction value thereof is an instruction angular velocity ω*. The controller 40 performs a switching operation of each switch of the inverter 20 such that a voltage vector applied from the inverter 20 to each of the phase windings 11U to 11W becomes an instruction voltage vector for controlling the electric angular velocity to an instruction angular velocity ω*. In such manner, sinusoidal phase currents which are 120 degrees apart from each other flow to, or through, the phase windings 11U, 11V, 11W.
The controller 40 performs a position sensor-less control, and estimates an electric angle in such control. Position sensor-less control is a control of the rotating electric machine 10 without using rotation angle information of the rotating electric machine 10 detected by an angle sensor such as a Hall element or a resolver.
Note that the controller 40 realizes various control functions by executing a program stored in a storage device, or memory, provided in itself. The various functions may be realized by electronic circuits that are hardware, or may be realized by using both of hardware and software.
Subsequently, the process of the controller 40 is described in detail using the block diagram of
A speed deviation calculator 41 calculates a speed deviation Δω by subtracting an estimated angular velocity ωest calculated by a speed estimator 51 described later from the instruction angular velocity ω*. The estimated angular velocity ωest is an estimated value of the electric angular velocity. The instruction angular velocity ω* takes a positive value when rotating the rotor of the rotating electric machine 10 in a specific direction, for example, a forward direction, and takes a negative value when the rotor is rotated in a direction opposite to the specific direction.
A speed controller 42 calculates an instruction torque Trq* of the rotating electric machine 10 as an operation amount for feedback control of the speed deviation Δω to zero. The instruction torque Trq* has a positive value when rotating the rotor in a specific direction, and has a negative value when rotating the rotor in a direction opposite to the specific direction. Note that, for example, proportional integral control may be used as feedback control in the speed controller 42.
A current converter 43 converts U, V, W-phase currents in a UVW coordinate system, based on an estimated angle θest calculated by an angle estimator 52 described later and phase currents IU, IV, IW detected by a current detector 53 described later to a γ axis current Iγr and a δ axis current Iδr in a γδ coordinate system. The estimated angle θest is an estimated value of the electric angle. The UVW coordinate system is a three-phase fixed coordinate system of the rotating electric machine 10, and the γδ coordinate system is a two-phase rotation coordinate system of the rotating electric machine 10. That is, an estimated coordinate system of a dq coordinate system.
An instruction current setter 44 sets a γ axis instruction current Iγ* and a δ axis instruction current Iδ* based on the instruction torque Trq*. An instruction current vector in the γδ coordinate system is determined by the γ axis instruction current Iγ* and the δ axis instruction current Iδ*. In the present embodiment, the instruction current setter 44 sets the γ axis instruction current Iγ* to zero.
A γ axis deviation calculator 45a calculates a γ axis deviation ΔIγ as a value obtained by subtracting the γ axis current Iγr from the γ axis instruction current Iγ*. A δ axis deviation calculator 45b calculates a δ axis deviation ΔIδ as a value obtained by subtracting the δ axis current Iδr from the δ axis instruction current Iδ*.
A current controller 46 calculates a γ axis voltage Vγr as an operation amount for feedback controlling the γ axis current Iγr to the γ axis instruction current Iγ* based on the γ axis deviation ΔIγ. The current controller 46 also calculates a δ axis voltage Vδr as an operation amount for feedback controlling the δ axis current Iδr to the δ axis instruction current Iδ* based on the δ axis deviation ΔIδ. The instruction voltage vector in the γδ coordinate system is determined by the γ axis voltage Vγr and the δ axis voltage Vδr. Note that proportional integral control may be used as feedback control in the current controller 46, for example.
A γ axis superimposer 47a outputs a sum of the γ axis voltage Vγr and a γ axis high frequency voltage Vγh generated by a high frequency wave generator 48 as a γ axis instruction voltage Vγ*. A δ axis superimposer 47b outputs a sum of the δ axis voltage Vδ r and a δ axis high frequency voltage Vδh generated by a high frequency wave generator 48 as a δ axis instruction voltage Vδ*. The high frequency voltages Vγh and Vδh are pulse signals that fluctuate at an angular velocity sufficiently higher than the electric angular velocity of the fundamental wave component of each of the instruction voltages Vγ* and Vδ*, and their amplitude is Va. In the present embodiment, the δ axis high frequency voltage Vδh is set to zero. Therefore, the δ axis voltage Vδr becomes the δ axis instruction voltage Vδ* as it is.
In the present embodiment, the γ axis superimposer 47a, the δ axis superimposer 47b, and the high frequency wave generator 48 correspond to a high frequency applicator.
A voltage converter 49 calculates U, V, W-phase instruction voltages VU, VV, VW that are 120° phase shift with each other in the electric angle based on the γ axis instruction voltage Vγ*, the δ axis instruction voltage Vδ* and the estimated angle θest. In the present embodiment, each of the instruction voltages VU, VV, VW is a sine wave signal.
A signal generator 50 calculates U, V, W-phase instruction time ratios Dtu, Dtv, Dtw, respectively corresponding to the instruction signal, by dividing the U, V, W-phase instruction voltages VU, VV, VW output from the voltage converter 49 by an inter-terminal voltage of the storage battery 30. In the present embodiment, it is assumed that the maximum value of each of the instruction time ratios Dtu, Dtv, Dtw is 1, and the minimum value is 0.
The signal generator 50 generates operation signals gUp, gUn, gVp, gVn, gWp, gWn for the switches SUp, SUn, SVp, SVn, SWp, SWn based on the calculated U, V, W-phase instruction time ratios Dtu, Dtv, Dtw. The operation signal is either an ON instruction or an OFF instruction. The upper arm operation signal and the lower arm operation signal of the same phase do not simultaneously become an ON instruction. The signal generator 50 outputs the generated operation signals gUp to gWn to the switches SUp to SWn that constitute the inverter 20. The switching modes of the switches SUp to SWn are determined by the order of the operation signals gUp to gWn.
The signal generator 50 generates an operation signal by the pulse width modulation (PWM) based on magnitude comparison between the instruction time ratio and a carrier signal SigC in each of the three phases. In the present embodiment, the carrier signal SigC is a triangular wave signal in which the gradual increase rate and the gradual decrease rate are equal. In the present embodiment, the amplitude of the carrier signal SigC is set to one half (½). Therefore, the carrier signal SigC takes a value in the range of 0 to 1, centering on ½.
The speed estimator 51 calculates the estimated angular velocity ωest based on a δ axis high frequency current Iδh that flows along with the application of the γ axis high frequency voltage Vγh. More practically, the speed estimator 51 calculates the estimated angular velocity ωest based on the δ axis high frequency current Iδh that flows as the γ axis high frequency voltage Vγh is switched from a positive voltage (Va) to a negative voltage (−Va), and also calculates the estimated angular velocity ωest based on the δ axis high frequency current Iδh that flows as the γ axis high frequency voltage Vγh is switched from a negative voltage to a positive voltage. For example, the speed estimator 51 may calculate the δ axis high frequency current Iδh by applying a high-pass filter to the δ axis current Iδr.
The angle estimator 52 calculates an estimated angle θest by time-integrating the estimated angular velocity ωest. In the present embodiment, the speed estimator 51 and the angle estimator 52 correspond to a high frequency detector and an estimator.
Subsequently, the current detector 53 is described.
The current detector 53 detects the U, V, W-phase currents IU, IV, IW based on inter-terminal voltages VIU, VIV, VIW of the U, V, W-phase shunt resistors 23U, 23V, 23W. As shown in
The signal generator 50 determines whether it is in a non-detector arm ON mode in which all of the U, V, W-phase upper arm operation signals gUp, gVp, gWp among the generated operation signals gUp to gWn are an ON instruction respectively. When it is determined as such a non-detector arm ON mode, the signal generator 50 changes the U, V, W-phase upper arm operation signals gUp, gVp, gWp to the OFF instruction respectively, and changes the U, V, W-phase lower arm operation signals gUn, gVn, gWn to the ON instruction respectively. In the present embodiment, the signal generator 50 corresponds to a setter.
A procedure of a process performed by the signal generator 50 is described with reference to
At step S10, it is determined whether all of the generated U, V, W-phase upper arm operation signals gUp, gVp, gWp have the ON instruction, respectively.
When it is determined at step S10 that all have the ON instruction, the process proceeds to step S11, where the U, V, W-phase upper arm operation signals gUp, gVp, gWp are switched to the OFF instruction, respectively, and the U, V, W-phase lower arm operation signals gUn, gVn, gWn are switched to the ON instruction, respectively.
When the process of step S11 is complete, or when the negative determination is made at step S10, the process proceeds to step S12. At step S12, it is determined whether the carrier signal SigC is at its maximum value (i.e., 1) or at its minimum value (i.e., 0). This process is a process for determining whether a present control cycle includes electric current detection timing.
When an affirmative determination is made at step S12, it is determined that it is the current detection timing, the process proceeds to step S13, and a current detection flag is turned ON. On the other hand, when a negative determination is made at step S12, it is determined that it is not the current detection timing, the process proceeds to step S14, and the current detection flag is turned OFF.
Subsequently, a procedure of a process performed by the current detector 53 is described with reference to
At step S20, it is determined whether the current detection flag obtained from the signal generator 50 is ON. This process is a process for determining whether a control cycle includes current detection timing.
When it is determined at step S20 that the current detection flag is ON, the process proceeds to step S21, and the inter-terminal voltages VIU, VIV, VIW of the U, V, W-phase shunt resistors 23U, 23V, 23W are sampled and held, for example, stored in a memory.
At step S22, the inter-terminal voltages VIU, VIV, VIW sampled and held as analog data are converted into digital data. The converted digital data U, V, W-phase currents IU, IV, IW are output to the current converter 43.
Note that the current detector 53 may recognize, without using the current detection flag, the timing at which the carrier signal SigC takes the maximum value or the minimum value as the current detection timing.
An example of how the operation signal is changed is illustrated using
First, a comparative example shown in
As shown in
Subsequently, the present embodiment is described with reference to
In the present embodiment, the U, V, W-phase upper arm operation
signals gUp, gVp, gWp are all switched to the OFF instruction in a period TA during which all of the U, V, W-phase instruction time ratios Dtu, Dtv and Dtw become greater than the carrier signal SigC, and the U, V, W-phase lower arm operation signals gUn, gVn, gWn are all switched to the ON instruction in the period TA. Therefore, the period TA described above is a period of the zeroth vector V0, and electric currents for three phases become detectable. In such manner, each of (i) the maximum timing which is when the carrier signal SigC takes the maximum value, and (ii) the minimum timing which is when the carrier signal SigC takes the minimum value, can be settable as the current detection timing td, and two current detection timings td can be set within one cycle of the carrier signal SigC. Then, by performing the control of
Further, since two current detection timings td are set in one cycle of the carrier signal SigC, one cycle of the γ axis high frequency voltage Vγh can be set as one cycle of the carrier signal SigC. In such manner, the frequency of the γ axis high frequency voltage Vγh can be brought to an outside of the human audible frequency range. In such case, the detection timing of the δ axis high frequency current Iδh and the calculation timing of the estimated angle θest are synchronized with the current detection timing td.
Further, in the present embodiment, the period TA is set as a twofold duration or more of a period Tsta, that is, a ringing convergence period, from the switching of the switching modes to the convergence of the ringing of the electric current flowing in the shunt resistor accompanying the switching of the switching modes. More practically, by setting “TA≥2×Tsta,” the ringing converges before the current detection timing td is reached after the start timing of the period TA. Thereby, the detection accuracy of the phase current is improvable.
When a reactive voltage vector period is set to be too short, the ringing described above does not converge within such a period, and the detection accuracy of the phase current may deteriorate. Therefore, in the present embodiment, a period during which the U, V, W-phase instruction time ratios Dtu, Dtv, Dtw become smaller than the carrier signal SigC and a period during which the U, V, W-phase instruction time ratios Dtu, Dtv, Dtw become greater than the carrier signal SigC are equated. Thus, in each cycle of the carrier signal SigC, the current detection timing td is settable in a period in which the ringing has already converged. In such manner, the detection accuracy of the phase current is improvable.
As shown in
The position of the U-phase shunt resistor 23U is not limited to the one shown in
As shown in
In the present embodiment, as shown in
Note that the position of the U-phase shunt resistor 24U is not limited to the one shown in
Hereinafter, the second embodiment is described focusing on differences from the first embodiment with reference to the drawings. In the present embodiment, space vector modulation (SVM) is used instead of PWM.
The process regarding space vector modulation performed by the signal generator 50 of
After a section to which the instruction voltage vector Vαβ belongs is determined, the signal generator 50 selects (i) two types of active voltage vectors and (ii) reactive voltage vectors, as shown in
The signal generator 50 arranges in order the selected voltage vectors for each modulation cycle. The switching mode is determined by the arranged-in-order voltage vectors. Here, a period occupied by each of the selected voltage vectors in one modulation cycle Tsw is a value obtained by multiplying one modulation cycle Tsw by the time ratio shown in
Subsequently, the determination of the time ratio as shown in
The instruction voltage vector Vαβ is defined according to the following equation (Equation 1). In the following equation (Equation 1), j is an imaginary number.
As shown in
On the other hand, by using the instantaneous space vector shown in
The coefficients a and b can be represented by the following equation (Equation 4) by comparing the right sides of the above equations (Equation 2) and (Equation 3).
Thereby, as shown in
Note that, in
The signal generator 50, upon determining that the seventh vector V7 is included in the selected reactive voltage vector, changes the seventh vector V7 to the zeroth vector V0. This change is implemented to impose a condition that the electric current flows in the shunt resistors of at least two phases in at least part of one half of one modulation cycle. That is, while the phase current cannot be detected in the period of the seventh vector V7, phase currents of three phases can be detected in the period of the zeroth vector V0. In the present embodiment, the signal generator 50 corresponds to a selector and a changer.
An example of how voltage vectors are changed is described using
Subsequently,
In the present embodiment, an appearance time Tα of each of a pair of reactive voltage vectors in one modulation cycle Tsw is set to have a twofold duration of the ringing convergence period Tsta, within which a ringing of the electric current flowing in the shunt resistor accompanying a switching of the switching modes converges after the switching of the switching modes. Further, the periods Tα of the pair of the reactive voltage vectors in one modulation cycle Tsw are equal to each other. In such manner, the detection accuracy of the phase current is improvable.
According to the present embodiment described above, the same effects as the first embodiment are achievable.
In
In the second embodiment, the shunt resistor may be disposed at a position shown in
The third embodiment is described below with reference to the drawings, focusing on the differences from the second embodiment.
In the present embodiment, only the zeroth vector V0 is used as the reactive voltage vector in
More practically, the signal generator 50 arranges the operation signals gUp to gWn as the switching mode setting, for the voltage vectors within one modulation cycle to appear in an order of (a) the selected reactive voltage vector, (b) an even-number voltage vector from among the selected active voltage vectors, and (c) an odd-number voltage vector then the even-number voltage vector from among the selected active voltage vectors.
For every modulation cycle Tsw, the voltage vectors are arranged in an order of the selected zeroth vector, the selected second vector V2, the selected first vector V1, and the selected second vector V2. In such case, the current detection timing td is set to the central timing of the period of the zeroth vector and to the central timing of the period of the first vector V1. During the period of the first vector V1, phase currents for two phases are detectable. When the phase currents for two phases are detected, the current detector 53 calculates the remaining phase current based on the phase currents for two phases, using the relationship of “IU+IV+IW=0.”
In
According to the present embodiment described above, the same effects as the second embodiment are achievable.
In the third embodiment, the shunt resistor may be disposed at a position shown in
In
The fourth embodiment is described below with reference to the drawings, focusing on the differences from the second embodiment. In the present embodiment, a voltage vector with a phase difference of 120 degrees is selected.
The process regarding space vector modulation performed by the signal generator 50 of
The signal generator 50 determines which section the instruction voltage vector Vαβ belongs to, based on the instruction voltages VU, VV, VW output from the voltage converter 49. Here, to which section the instruction voltage vector Vαβ belongs is determined based on the magnitude relationship among the instruction voltages VU, VV, VW, as shown in
After a section to which the instruction voltage vector Vαβ belongs is determined, the signal generator 50 selects two odd-number voltage vectors and one zero voltage vector, as shown in
The signal generator 50 arranges the selected voltage vectors in order within every modulation cycle Tsw. The switching mode is determined by the arranged-in-order voltage vectors. Here, a period occupied by one modulation cycle Tsw of each selected voltage vector is a value obtained by multiplying one modulation cycle Tsw by the time ratio shown in
Subsequently, the determination of the time ratio is described with reference to a diagram in
On the other hand, using the instantaneous space vector shown in
The coefficients s and t can be represented by the following equation (Equation 7) by comparing the right sides of the above equations (Equation 5) and (Equation 6).
Thereby, as shown in
The signal generator 50 sets the switching mode by arranging the operation signals gUp to gWn, for the voltage vectors within one modulation cycle Tsw to appear in an order of the selected reactive voltage vector, the odd-number voltage vector having a shorter appearance time from among the selected active voltage vectors, the odd-number voltage vector having a longer appearance time from among the selected active voltage vectors, and the odd-number voltage vector having the shorter appearance time.
In
According to the present embodiment described above, the same effects as the third embodiment are achievable.
In the fourth embodiment, the shunt resistor may be disposed at a position shown in
The signal generator 50 determines which section the instruction voltage vector Vαβ belongs to, based on the instruction voltages VU, VV, VW output from the voltage converter 49. Here, to which section the instruction voltage vector Vαβ belongs is determined based on the magnitude relationship among the instruction voltages VU, VV, VW, as shown in
After a section to which the instruction voltage vector Vαβ belongs is determined, the signal generator 50 selects two types of active voltage vectors, that is, two even-number voltage vectors and one zero voltage vector, as shown in
The signal generator 50 arranges the selected voltage vectors in an order within every modulation cycle Tsw. The switching mode is determined by the arranged-in-order voltage vectors. Here, a period occupied by each of the selected voltage vectors in one modulation cycle Tsw is a value obtained by multiplying one modulation cycle Tsw by the time ratio shown in
The signal generator 50 sets the switching mode, for the voltage vectors within one modulation cycle Tsw to appear in an order of the selected reactive voltage vector, the even-number voltage vector having a shorter appearance time from among the selected active voltage vectors, the even-number voltage vector having a longer appearance time from among the selected active voltage vectors, and the even-number voltage vector having the shorter appearance time from among the selected active voltage vectors.
In
The above embodiments may be modified as follows.
The instruction signal to be compared with the carrier signal is not limited to the instruction time ratio, but may also be an instruction voltage. In such case, the amplitude of the carrier signal may be variably set according to the magnitude of the amplitude of the instruction voltage.
The control of the rotating electric machine 10 may be performed using the rotation angle information of the rotating electric machine 10 detected by an angle sensor such as a Hall element or a resolver, without performing position sensor-less control.
The switches constituting the inverter are not limited to MOSFET, but may also be an IGBT, for example. In such case, a high potential terminal of the switch is a collector and a low potential terminal is an emitter. In addition, free wheel diodes are connected in antiparallel or reversely to the switches.
Further, the switches constituting the inverter 20 are not limited to the voltage control type, but may also be a current control type, such as a bipolar transistor or the like.
The control amount of the rotating electric machine is not limited to the rotation speed, but may also be, for example, a torque.
The rotating electric machine is not limited to the star-connection type, but may also be the Δ-connection type. Further, the rotating electric machine is not limited to the one used to drive an in-vehicle accessory, but may also be the one used as an in-vehicle travel power source, providing thrusting power for a travel of the vehicle. In addition, the rotating electric machine is not limited to a permanent magnet synchronous machine, but may also be, for example, a winding field type synchronous machine or a synchronous reluctance motor.
Number | Date | Country | Kind |
---|---|---|---|
JP2018-202109 | Oct 2018 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
20010002784 | Masaki | Jun 2001 | A1 |
20050160771 | Hosoito | Jul 2005 | A1 |
20080246426 | Aoki | Oct 2008 | A1 |
20100231150 | Tan | Sep 2010 | A1 |
20110006598 | Yamakawa | Jan 2011 | A1 |
20110156619 | Nomura | Jun 2011 | A1 |
20120001573 | Kimpara | Jan 2012 | A1 |
20120068645 | Tsuji | Mar 2012 | A1 |
20120194109 | Uryu | Aug 2012 | A1 |
20120268046 | Yamazaki | Oct 2012 | A1 |
20130320905 | Uryu | Dec 2013 | A1 |
20140210385 | Kozaki | Jul 2014 | A1 |
20150008860 | Lee | Jan 2015 | A1 |
20150145448 | Mukai et al. | May 2015 | A1 |
20160028339 | Nakai | Jan 2016 | A1 |
20170201201 | Aoki et al. | Jul 2017 | A1 |
20170366101 | Suzuki | Dec 2017 | A1 |
20180029635 | Kuroda | Feb 2018 | A1 |
Number | Date | Country |
---|---|---|
H06-351280 | Dec 1994 | JP |
3454212 | Oct 2003 | JP |
2011-66974 | Mar 2011 | JP |
Number | Date | Country | |
---|---|---|---|
20200136549 A1 | Apr 2020 | US |