The present subject matter relates generally to controlling a gas turbine engine to account for airflow distortion.
A gas turbine engine generally includes a core having, in serial flow order, a compressor section, a combustion section, a turbine section, and an exhaust section. During operation, an engine airflow is provided to an inlet of the compressor section where one or more axial compressors progressively compress the air until it reaches the combustion section. Fuel is mixed with the compressed air and burned within the combustion section to provide combustion gases. The combustion gases are routed from the combustion section to the turbine section. The flow of combustion gasses through the combustion section drives the compressor section and is then routed through the exhaust section. (e.g., to atmosphere).
Avionics systems can be used to maintain a stall margin (e.g., a minimum distance between the airflow and air pressure operating points of the compressor section and a predicted stall line corresponding to compressor section stall conditions) for safe operation of the gas turbine engine. However, operating the gas turbine engine at operating parameters further from the predicted stall line tends to decrease the overall efficiency of the gas turbine engine.
During operation, the gas turbine engine may encounter airflow distortion in the engine airflow path at the inlet of the compressor section, such as circumferential or local flow disruption due to the angle of attack of the gas turbine engine, a cross wind, or any other inlet anomaly. Airflow distortion can be so uneven during operation as to put portions of the compressor section at or below proper stall pressure ratios, increasing the risk of compressor stall. Sufficient stall margin headroom to account for airflow distortion can therefore be desirable during the design phase of the gas turbine engine. For applications subject to significant airflow distortion during operation, setting the stall margin at a level sufficient to account for intermittent airflow distortion can therefore decrease the overall efficiency of the gas turbine engine.
Aspects and advantages of the invention will be set forth in part in the following description, or may be obvious from the description, or may be learned through practice of the invention.
One example aspect of the present disclosure is directed to a method for controlling a gas turbine engine on an aircraft. The method includes determining by one or more control devices, a distortion condition associated with the gas turbine engine. The method can further include determining, by the one or more control devices, a stall margin for the gas turbine engine based at least in part on the distortion condition. The method can further include determining, by the one or more control devices, an engine control parameter based at least in part on the stall margin. The method can further include controlling, by the one or more control devices, a component of the gas turbine engine based at least in part on the engine control parameter.
Other example aspects of the present disclosure are directed to avionics systems, methods, gas turbine engines, devices, apparatus, and other systems configured to control at least one component of an engine based at least in part on airflow distortion. Variations and modifications can be made to these example aspects of the present disclosure.
These and other features, aspects and advantages of various embodiments will become better understood with reference to the following description and appended claims. The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate embodiments of the present disclosure and, together with the description, serve to explain the related principles.
A full and enabling disclosure of the present invention, including the best mode thereof, directed to one of ordinary skill in the art, is set forth in the specification, which makes reference to the appended figures, in which:
Reference now will be made in detail to embodiments of the invention, one or more examples of which are illustrated in the drawings. Each example is provided by way of explanation of the invention, not limitation of the invention. In fact, it will be apparent to those skilled in the art that various modifications and variations can be made in the present invention without departing from the scope or spirit of the invention. For instance, features illustrated or described as part of one embodiment can be used with another embodiment to yield a still further embodiment. Thus, it is intended that the present invention covers such modifications and variations as come within the scope of the appended claims and their equivalents.
Example aspects of the present disclosure are directed to a controlling a gas turbine engine to account for real-time airflow distortion. Modern avionics systems perform optimization of operating states through approaches that make assumptions about certain aircraft operating states and dynamic operating parameters, including the stall margin needed to prevent compressor stall during operation. Increased stall margin headroom can be desirable to account for airflow distortion, which can occur based on operating conditions. For applications subject to significant airflow distortion patterns, operating the gas turbine engine at design conditions can reduce the efficiency of the gas turbine engine.
One approach to maintaining sufficient stall margin in a gas turbine engine is to open variable bleed valves in the compressor section of the gas turbine engine to reduce air pressure, thereby increasing compressor stall margin. However, opening variable bleed valves can cause the gas turbine engine to operate less efficiently, and often the bleed flow is routed to the atmosphere where it provides minimal, if any, thrust and performs no other beneficial function for the gas turbine engine. Another approach to maintaining sufficient stall margin in a gas turbine engine is to close variable guide vanes to restrict airflow into the compressor section of the gas turbine engine. However, closing the variable guide vanes can reduce the efficiency of the gas turbine engine.
The gas turbine engine, avionics system, and method according to example aspects of the present disclosure can increase the efficiency of the operation of a gas turbine engine by making a real-time assessment of airflow distortion in the engine airflow path of the gas turbine engine. Real-time pressure measurements obtained from the engine airflow path of the compressor section can be used to make an assessment of distortion conditions in the engine airflow path of the gas turbine engine. The stall margin of the engine can then be adjusted based on the assessment of distortion conditions. Adjusting the stall margin to account for real-time distortion conditions can increase the efficiency of the gas turbine engine during periods of decreased airflow distortion, while maintaining sufficient stall margin for safe operation during periods of increased airflow distortion.
For example, in one embodiment, a distortion condition assessment can be made based on real-time pressure measurements obtained from the engine airflow path of the gas turbine engine as compared to reference pressure calibrations. A nominal stall margin requirement can then be adjusted based on the distortion condition assessment. Using dynamic operating parameters obtained by sensors throughout the gas turbine engine, the adjusted stall margin requirement, and reference variable geometry schedules, real-time model based optimization can then be performed to determine variable geometry trim demands. Using the variable geometry trim demands and variable geometry component reference schedules, variable geometry components such as variable stator vanes, variable guide vanes, variable bleed valves, and variable core inlet devices can be controlled for efficient operation of the gas turbine engine.
Further, according to aspects of the present disclosure, thermal management system flow requirements can also be used in determining optimal variable geometry component operating states. Thermal management systems can be used to manage the cooling of various components in the gas turbine engine based on parameters such as power gear box power, power gear box efficiency, variable frequency generator power, variable frequency generator efficiency, oil temperature, and other parameters. Variable bleed valves in the compressor section of the gas turbine engine can be opened to route compressed air to cool components based on the cooling requirements determined by the thermal management system. Opening variable bleed valves in the compressor section of the gas turbine engine can also reduce air pressure and flow in the compressor section, thereby increasing the stall margin headroom of the gas turbine engine. According to aspects of the present disclosure, real-time model based optimization can be used to manage both the stall margin requirement for the gas turbine engine while meeting the cooling requirements determined by a thermal management system by opening variable bleed valves to cool components of the gas turbine engine while increasing stall margin to account for airflow distortion.
In this way, the gas turbine engine, avionics system and method according to example aspects of the present disclosure can have a technical effect of increasing the operational efficiency of the gas turbine engine by adjusting the stall margin of the gas turbine engine based on real-time airflow distortion conditions. Further, by accounting for thermal management system flow requirements during real-time model based optimization, sufficient stall margin headroom can be maintained while efficiently using bleed flow from the compressor section to cool various components of the gas turbine engine.
Reference will now be made in detail to present embodiments of the invention, one or more examples of which are illustrated in the accompanying drawings. The detailed description uses numerical and letter designations to refer to features in the drawings. Like or similar designations in the drawings and description have been used to refer to like or similar parts of the invention. As used herein, the terms “first”, “second”, and “third” may be used interchangeably to distinguish one component from another and are not intended to signify location or importance of the individual components. The terms “upstream” and “downstream” refer to the relative direction with respect to fluid flow in a fluid pathway. For example, “upstream” refers to the direction from which the fluid flows, and “downstream” refers to the direction to which the fluid flows. As used herein, the term “optimization” or “optimized” refers to determining an enhanced operating state with respect to a prior operating state. For example, the enhanced operating state may be more efficient, reduce fuel consumption, reduce the time required to perform an action, or increase safety.
Referring now to the drawings, wherein identical numerals indicate the same elements throughout the figures,
As shown in
The example core engine 16 depicted generally includes a substantially tubular outer casing 18 that defines an annular inlet 20. The outer casing 18 encases, in serial flow relationship, a compressor section including a booster or low pressure (LP) compressor 22 and a high pressure (HP) compressor 24; a combustion section 26; a turbine section including a high pressure (HP) turbine 28 and a low pressure (LP) turbine 30; and a jet exhaust nozzle section 32. A high pressure (HP) shaft or spool 34 drivingly connects the HP turbine 28 to the HP compressor 24. A low pressure (LP) shaft or spool 36 drivingly connects the LP turbine 30 to the LP compressor 22.
Additionally, for the embodiment depicted, the fan section 14 includes a variable pitch fan 38 having a plurality of fan blades 40 coupled to a disk 42 in a spaced apart manner. As depicted, the fan blades 40 extend outwardly from the disk 42 generally along the radial direction R. The fan blades 40 and disk 42 are together rotatable about the longitudinal centerline 12 by LP shaft 36 across a power gear box 44. The power gear box 44 includes a plurality of gears for adjusting the rotational speed of the LP shaft 36. Additionally, for the embodiment depicted, the disk 42 of the variable pitch fan 38 is covered by a rotatable front hub 46 aerodynamically contoured to promote an airflow through the plurality of fan blades 40.
Referring still to the example gas turbine engine 10 of
For the example gas turbine engine 10 depicted, the fan section 14, or more particularly, the rotation of the fan blades 40 of the fan section 14, provides a majority of the propulsive thrust of the gas turbine engine 10. Additionally, the plurality of outlet guide vanes 50 are provided to increase an efficiency of the fan section 14 as well as to provide other benefits, such as, for example, decreasing an amount of noise generated by the gas turbine engine 10.
During operation of the gas turbine engine 10, a volume of air 56 passes over the plurality of blades 40 of the fan section 14. A first portion of the volume of air 56, i.e., the first portion of air 60, is directed or routed into an engine airflow path 64 extending through the compressor section, the combustion section 26, the turbine section, and the exhaust section 32. Additionally, a second portion of the volume of air 56, e.g., a second portion of air 62, flows around the core engine 16, bypassing the core engine 16. The ratio between the second portion of air 62 and the first portion of air 60 is commonly known as a bypass ratio.
Referring still to
Referring still to
Downstream of inlet guide vane 100 is one or more struts 102 configured to mechanically couple outer casing 18 to the core engine 16. Strut 102 extends into the engine airflow path 64 where first portion of air 60 flows over strut 102. In certain example embodiments, strut 102 is configured to obtain pressure measurements. Downstream of strut 102 is one or more variable guide vanes 104. Variable guide vanes 104 are configured to open or close, thereby restricting the flow of the first portion of air 60 into the engine airflow path 64 extending through the compressor section. In certain example embodiments, variable guide vane 104 can be an instrumented variable guide vane 400 according to example embodiments of the present disclosure as shown, for instance, in
Referring still to
Referring still to
Referring now to
Referring still to
Referring still to
Referring still to
Referring still to
The one or more memory devices 514 can store information accessible by the one or more processors 512, including computer-readable instructions 516 that can be executed by the one or more processors 512. The instructions 516 can be any set of instructions that when executed by the one or more processors 512, cause the one or more processors 512 to perform operations. The instructions 516 can be implemented in software written in any suitable programming language or can be implemented in hardware. In some embodiments, the instructions 516 can be executed by the one or more processors 512 to cause the one or more processors to perform operations, such as the operations for controlling a sector of variable guide vanes to adjust a distortion condition as described with reference to
Referring to
The control device(s) 500 can further include a communications interface 520. The communications interface 520 can be configured to communicate with aircraft systems over a communication network 540. For instance, the communications interface 520 can receive data indicative of a pressure obtained by a pressure sensing device, such as a tap 202 and local transducer 204. In one embodiment, the communications interface 520 can provide control commands to an engine control system 550 that has one or more actuators to control various components of the gas turbine engine 10, such as, but not limited to, variable guide vane 104, variable bleed valve 110, and variable core inlet device 112. The communications interface 520 can include any suitable components for interfacing with one more other devices, including for example, transmitters, receivers, ports, controllers, antennas, or other suitable components.
The technology discussed herein makes computer-based systems, as well as actions taken and information sent to and from such systems. One of ordinary skill in the art will recognize that the inherent flexibility of computer-based systems allows for a great variety of possible configurations, combinations, and divisions of tasks and functionality between and among components. For instance, processes discussed herein may be implemented using a single computing device or multiple computing devices working in combination. Databases, memory, instructions, and applications may be implemented on a single system or distributed across multiple systems. Distributed components may operate sequentially or in parallel.
According to particular aspects of the present disclosure, a minimum stall margin (SMMIN) can be used in real-time model based optimization 602 to determine the variable geometry trims. SMMIN can be determined by stall margin adjustment 604 based on an airflow distortion assessment 606 and a nominal stall margin requirement 608. In one embodiment, nominal stall margin requirement 608 can be determined from a reference schedule or lookup table. Stall margin adjustment 604 can determine the SMMIN by adjusting the nominal stall margin requirement 608 based on the airflow distortion assessment 606. As shown in
More particularly, using inlet pressure measurements and comparing the inlet pressure measurements to reference pressure calibrations 610, airflow distortion assessment 606 can determine whether airflow distortion is present in the engine airflow path 64 of the gas turbine engine 10. Stall margin adjustment 604 can then adjust the nominal stall margin requirement 608 based on the airflow distortion assessment 606 to determine the SMMIN used by the real-time model based optimization 602 to control variable geometry components of gas turbine engine 10. For example, real-time model based optimization could send a variable geometry demand to variable guide vane 104 to restrict airflow into LP compressor 22, thereby increasing the stall margin to meet SMMIN. Further, real-time model based optimization could send a variable geometry demand to variable bleed valve 110 to open, thereby reducing pressure in LP compressor 22 to increase the stall margin to meet SMMIN. In this way, the SMMIN can be adjusted in real-time to account for airflow distortion in the engine airflow path 64. By doing so, gas turbine engine 10 can be operated in an enhanced state that can increase the efficiency of gas turbine engine 10 while providing sufficient stall margin to account for airflow distortion, thereby reducing the possibility of compressor stall.
As further shown in
The TMS flow requirement 614 can also be used by real-time model based optimization 602 to determine variable geometry trims. For example, in one embodiment, TMS flow requirement 614 can be used by real-time model based optimization 602 to open bleed flow valve 110 to route compressed air to components of gas turbine engine 10 for cooling, such as the variable frequency generator. In this way, real-time model based optimization 602 can meet TMS flow requirement 614 in an optimized manner that also provides sufficient SMMIN to operate the engine in a safe manner based on the distortion condition assessment 606. For example, real-time model based optimization 602 can open bleed flow valve 110 to reduce air pressure in LP compressor 22 to achieve SMMIN, and further use the compressed air to from opening bleed flow valve 110 to cool components of gas turbine engine 10 as determined by TMS flow requirement 614.
Referring still to
As shown in
Referring still to
Referring still to
Referring now to
According to example aspects of the present disclosure, the variable guide vanes 104 of each sector can be opened or closed in conjunction with the other variable guide vanes of that sector to adjust an airflow distortion condition associated with that sector. As used herein, the term “open” with respect to a variable guide vane means to adjust the pitch of the variable guide vane such that an increased first portion of air 60 can flow through engine airflow path 64. As used herein, the term “close” with respect to a variable guide vane means to adjust the pitch of the variable guide vane such that a decreased first portion of air 60 can flow through engine airflow path 64.
According to example aspects of the present disclosure, a pressure sensing device according to example embodiments of the present disclosure can be used to obtain measurements to determine if there is airflow distortion in engine airflow path 64. In one embodiment, one or more instrumented guide vanes 400 are configured to obtain pressure measurements associated with each sector. For example, each sector, such as a first sector 702, can have a single instrumented guide vane 400 configured to obtain pressure measurements associated with first sector 702 and a plurality of variable guide vanes 104. As described in greater detail above with respect to
As shown in
Referring now to
As shown, the variable guide vane 104 is configured to rotate about a pitch axis P.
At (902), the method can include obtaining measurements from a pressure sensor device. The pressure measurements can be obtained by, for example, the instrumented guide vane 400 according to example embodiments of the present disclosure depicted in, for instance,
At (904), the method can include determining a distortion condition associated with a gas turbine engine. For example, the distortion condition could be an air pressure differential in the circumferential plane of the gas turbine engine 10, such that portions of the LP compressor 22 are at or below pressures sufficient to cause stall conditions. The distortion condition can be determined by a distortion condition assessment 606, as depicted in
At (906), the method can include determining a stall margin based on the distortion condition. The stall margin can be determined, for instance, by adjusting a nominal stall margin 608 based on a distortion condition assessment 606. For example, a nominal stall margin can be increased to provide sufficient stall margin headroom to account for airflow distortion in the engine airflow path 64.
At (908), an engine control parameter can be determined based on the stall margin. The engine control parameter can be a variable geometry trim that can be used to determine an optimized position of a component of the gas turbine engine 10, such as a variable guide vane 104, a variable bleed valve 110, or a variable core inlet device 112.
At (910), a component of the gas turbine engine can be controlled based on the engine control parameter. For example, the array of variable guide vanes 104 depicted in
At (1002), the method can include obtaining measurements from a pressure sensor device. The pressure measurements can be obtained by, for example, the instrumented guide vane 400 according to example aspect of the present disclosure depicted in, for instance,
At (1004), the method can include determining a distortion condition associated with a gas turbine engine. For example, the distortion condition could be an air pressure differential in the circumferential plane of the gas turbine engine 10, such that portions of the LP compressor 22 are at or below pressures sufficient to cause stall conditions. The distortion condition can be determined by a distortion condition assessment 606, as depicted in
At (1006), the method can include controlling a sector of variable guide vanes to adjust the distortion condition. For example, a sector of variable guide vanes 104 can be controlled to open or close in response to airflow distortion associated with that sector as depicted in
This written description uses examples to disclose the invention, including the best mode, and also to enable any person skilled in the art to practice the invention, including making and using any devices or systems and performing any incorporated methods. The patentable scope of the invention is defined by the claims, and may include other examples that occur to those skilled in the art. Such other examples are intended to be within the scope of the claims if they include structural elements that do not differ from the literal language of the claims, or if they include equivalent structural elements with insubstantial differences from the literal languages of the claims.