Many subterranean formations contain hydrocarbon based fluids, e.g. oil or gas, that can be produced to a surface location for collection. Generally, a wellbore is drilled, and a completion is moved downhole to facilitate production of desired fluids from the surrounding formation. In many applications, the wellbore completion includes one or more well tools, such as packers, valves or other tools useful in a given application, that are selectively actuated once the completion is deployed in the wellbore.
Actuation of many well devices is accomplished by physically moving a mechanical actuating member that changes the tool from one state to another. Examples include moving a valve from a closed position to an open position, setting a packer, or actuating a wide variety of other well tool types. The force to actuate such well tools can be provided by, for example, hydraulic pressure, solenoid actuators or combinations of electric motors, gear boxes and ball screw actuators.
Actuation of a well device typically occurs during movement of the completion downhole or after the completion has been fully deployed at the downhole location. Often, the downhole environment in which such tools are operated is a relatively harsh environment, susceptible to relatively high temperatures, pressures and deleterious substances. Accordingly, actuators having a high degree of complexity in construction or operation can have an increased susceptibility to malfunction due to the adverse conditions.
In general, the present invention provides a system and method for dependable actuation of well devices, e.g. well tools, used in a wellbore environment. An actuator is positioned to move or actuate a specific downhole device from one state to another by physical movement of an actuator member of the downhole device. The actuator utilizes a phase change material to provide the motive force to move the actuator member. Upon providing an appropriate input, the phase change material can be caused to undergo a selective phase change, thus providing power for actuation of the well device.
Certain embodiments of the invention will hereafter be described with reference to the accompanying drawings, wherein like reference numerals denote like elements, and:
In the following description, numerous details are set forth to provide an understanding of the present invention. However, it will be understood by those of ordinary skill in the art that the present invention may be practiced without these details and that numerous variations or modifications from the described embodiments may be possible.
The present invention relates to well systems comprising one or more wellbore completions having devices that are mechanically actuated from one state of operation to another. Generally, a completion is deployed within a wellbore drilled in a formation containing desirable production fluids. The completion may be used, for example, in the production of hydrocarbon based fluids, e.g. oil or gas, in well treatment applications or in other well related applications. In many applications, the wellbore completion incorporates a plurality of devices, e.g. well tools, that may be individually actuated at desired times.
Referring generally to
In the embodiment illustrated, actuators 40 are phase change actuators able to apply directed forces upon undergoing a phase change, such as a transition from a solid state to a liquid state. Upon appropriate input to each actuator 40, the phase change is initiated and a change in volume of a given phase change material occurs. This volumetric change, e.g. a volumetric expansion as the material transitions from a solid to a liquid, can be used to physically move components which, in turn, actuate the corresponding wellbore device 38. The volumetric change can be initiated by, for example, an electrical input provided to each actuator by an appropriate electrical line or lines 42. The ability to provide signals to each actuator enables the well operator to selectively actuate each individual device 38 when desired.
Referring now to
Movable component 48 is coupled to an actuating member 62 of wellbore device 38 by an appropriate linking element 64. Accordingly, when phase change material 44 undergoes volumetric expansion due to phase change, movable component 48 is forced along cylinder 54. The movement of component 48 forces the movement of actuating member 62, via linkage 64, for mechanical actuation of wellbore device 38. By way of example, wellbore device 38 may comprise a packer actuated, at least in part, by physical movement of actuating member 62. In another embodiment, wellbore device 38 may comprise a valve actuated, at least in part, by physical movement of valve actuating member 62.
In this embodiment, actuator 40 operates the wellbore device 38, e.g. a valve, a packer or another well device, when power is connected or disconnected from thermal unit 56. Insulation of chamber 46 enables the use of a relatively small amount of electrical power to be transmitted downhole to thermal unit 56 to melt or solidify phase change material 44. Alternatively, the electrical power can be generated downhole by, for example, a battery coupled to thermal unit 56. When the electrical power is supplied to thermal unit 56, phase change material 44 undergoes a change in volume which changes the pressure acting against movable component 48, e.g. dynamic piston 50. If the pressure opposing movement of piston 50 is less than the pressure applied by phase change material 44, the piston moves and performs useful work, such as actuating wellbore device 38.
The phase change material 44 may be selected such that the actuating forces are derived by a phase change from solid state to liquid state or vice versa. However, in other applications, phase change material 44 may be selected to exert the requisite forces during changes between gas, liquid and/or solid states. In the embodiment described, the actuating work can be accomplished by a phase change material formed of a polymer material, however other types of phase change materials can be utilized.
A specific example of a well device 38 is illustrated in
The adjustable choke 74 is actuated by movable component 48, e.g. a piston, that forms a dynamic seal via a seal ring 78. Chamber 46 is disposed at an opposite end of movable member 48 from adjustable choke 74 and is filled with volumetric phase change material 44. Thermal unit 56 is deployed within outer housing 68 adjacent cavity 46 to selectively heat and/or cool phase change material 44. Electrical power is supplied to thermal unit 56 via an electrical input 80. In this embodiment, an insulating material 82 surrounds chamber 46 and may be deployed either along the exterior of tubular outer housing 68 or within the outer housing. Additionally, a position sensor 84 may be deployed along movable component 48 to determine the position of component 48 and thus the position of adjustable choke 74 and the degree to which fluid flow is enabled. Position sensor 84 can be used to output a position signal, thereby creating a closed loop system able to provide feedback as to the actuation of device 38 relative to the electrical power input to thermal unit 56.
In many operating conditions, e.g. in gas production wells, an advantage of phase change actuator 40 is that the differential pressure across a dynamic seal is less than the absolute pressure applied upstream of the valve, as illustrated in
Another example of valve 66 is illustrated in
Referring to
With further reference to the embodiment of
The examples of wellbore devices illustrated and described herein are just a few examples of the many types of wellbore devices that can be actuated with a phase change actuator. Many other low-power, high work actuator applications are amenable to implementation of phase change actuators. For example, phase change actuators can be used for actuation of a flow tube in a subsurface safety valve, actuation of a flapper valve, actuation of a ball valve, actuation of a variety of packer components, and for actuating many other downhole devices. Additionally, initiation of phase change in the phase change material can be provided by input other than electrical input. In one example, a chemical reaction, e.g. an exothermic chemical reaction, can be initiated to create heat that causes the phase change material 44 to undergo a change of phase sufficient to actuate a given wellbore device 38.
Accordingly, although only a few embodiments of the present invention have been described in detail above, those of ordinary skill in the art will readily appreciate that many modifications are possible without materially departing from the teachings of this invention. Accordingly, such modifications are intended to be included within the scope of this invention as defined in the claims.
Number | Name | Date | Kind |
---|---|---|---|
2942668 | Maly et al. | Jun 1960 | A |
3726341 | Holbert, Jr. | Apr 1973 | A |
4183466 | Dreibelbis | Jan 1980 | A |
5199497 | Ross | Apr 1993 | A |
5685146 | Takeuchi | Nov 1997 | A |
6062315 | Reinhardt | May 2000 | A |
6216779 | Reinhardt | Apr 2001 | B1 |
6478090 | Deaton | Nov 2002 | B2 |
6926086 | Patterson | Aug 2005 | B2 |
20050072578 | Steele et al. | Apr 2005 | A1 |
20050139359 | Maurer et al. | Jun 2005 | A1 |
20050194149 | Giacomino | Sep 2005 | A1 |
Number | Date | Country | |
---|---|---|---|
20070284118 A1 | Dec 2007 | US |