Wearable devices become more and more popular nowadays. A smart ring, for example, as a kind of the wearable device, has been developed to detect heartbeats and measure a temperature of a body, for example. The smart ring can be worn on fingers to realize these functions. During operation of a computer, for example, a mouse is commonly used to control movement direction of a cursor or pointer on the screen of the computer; and a wheel of the mouse may be used to advance the playing speed of a player and move a page up and down on the screen or zoom in or out a picture on the screen. When a right button of the mouse is clicked, a menu is popped up showing options for a user to select. Now, it seems that the mouse becomes indispensable for users to operate the computer for example. The mouse however consumes more power than the smart ring does and has a bigger size than the smart ring so that it is not convenient to take the mouse around. Therefore, it is desirable to find a smaller and more portable object to replace the mouse.
The disclosure is described in detail in the following description in conjunction with the drawings. Features of the present disclosure are illustrated by way of non-limiting examples, in which:
Throughout the drawings, identical reference numbers designate similar, but not necessarily identical, elements.
In the following detailed description of examples of the disclosure, numerous specific details are set forth in order to provide a more thorough understanding of the disclosure. However, it will be apparent to one of ordinary skill in the art that the disclosure may be practiced without these specific details. In other instances, well-known features have not been described in detail to avoid unnecessarily complicating the description.
A standard shape of the smart ring 100 is round, but the smart ring 100 can be made into any other shape with the inner surface being round so that it can be worn on the fingers of hands.
The size of the smart ring 100 may be fixed or may be adjusted to suit the sizes of the different fingers.
The smart ring 100 includes a transceiver 110 and a processor 111. The processor 111 may be of any type capable of processing data. In an example, the processor 111 is a low power CPU to save more energy for the smart ring 100. The transceiver 110 is coupled to the processor 111 to receive data from the processor 111 and send to the processor 111 data received from outside wirelessly. The transceiver 110 may be of any wireless type capable of transmitting and receiving data, such as a short range of radio, infrared and Bluetooth. In one example, the transceiver 110 may employ Bluetooth LE technology to save more energy for the smart ring 100. In one example, the smart ring 100 may include the battery 104. In another example, the smart ring 100 may include two or more batteries 104 and 107 to provide higher power. The batteries 104 and 107 could be button battery cells. In another example, the batteries 104 and 107 may be of rechargeable type. In another yet example, the batteries 104 and 107 may be rechargeable by means of wireless charging coil, which for example enwinds a portion of the smart ring 100 and is coupled to the batteries 104 and 107. In an example, the smart ring 100 includes the touch button 106 for example as a power switch. When the touch button 106 is pushed, the smart ring 100 will be turned on/off. In an example, the smart ring 100 can be turned on when it is slightly rocked and can be turned off when it is kept static for a certain period of time, for example 10 seconds, which can be set. In an example, the smart ring includes a G-sensor (gravity sensor) 101. The G-sensor 101 includes three axes X, Y and Z. The G-sensor 101 may be used to detect acceleration of the smart ring in its Z axis and output the detected acceleration to the processor 111. When the smart ring 110 is being lifted in the direction of Z axis, its value of acceleration is negative and when it is being put down, the value is positive. As the smart ring 100 starts to be lifted until it reaches the highest point, its value of acceleration changes from zero, maximum to zero. As the smart ring 100 starts to be put down until it becomes static, its value of acceleration changes from zero, maximum to zero. G-sensor 101 samples the value of acceleration of the smart ring in the direction of Z axis at interval of 100 ms for example. In an example, when the smart ring 100 is lifted and then is put down until to tap the desk, the action of smart ring 100 is considered as generating of a shock wave. When the value of acceleration of the smart ring 100 is detected to suddenly become zero within the shock threshold less them 100 ms, it is considered that the smart ring 100 taps the desk. The shock threshold is not fixed and depends on sensitivity of the employed G-sensor. The G-sensor 101 may be built in any location inside the smart ring 100. The G-sensor 101 is coupled to the processor 111 to send a signal indicative of the acceleration value in the Z axis of the smart ring 100. The smart ring 100 transmits the signal to the coupled computing device via the transceiver 110 so that when the computing device determines that the smart ring 100 is lifted and then put down or taps the desk, it instructs the pointer on the screen to select an item displayed on the screen. This is the same as when the left button of the mouse is clicked. In an example, if the computing device determines that the smart ring 100 taps the desk twice within a specified time, for example, 500 ms, then the computing device opens the selected item. This is the same as when the left button of the mouse is continuously clicked twice. In an example, the interval between the two consecutive tapping of the smart ring on the desk can be set to different value. In an example, when the computing device determines the interval is greater than 500 ms for example, it instructs the pointer on the screen to open the displayed item. This is the same as when the left button of the mouse is clicked twice. When the interval is less than 500 ms, it pops up the menu on the displayed item including the options for the user to select. This is the same as when the right button of the mouse is clicked. The value of interval is not limited to 500 ms and can be set to different values, depending on the user's preference or system requirements. In an example, the smart ting can tap the desk three times or four times or more. The user can define the function corresponding to the different times of tapping. For example, the three or four times of tapping will make the computing device enter into a sleep mode. For example, the three or four times of tapping will make the computing device shut down.
The tapping, of the smart ring 100 on the desk is not necessary. When the smart ring 100 is lifted and then put down and then kept static in the air, the effect is the same as when the smart ring 100 taps the desk.
In an example, the smart ring 100 includes two gyroscope sensors 102 and 109. The gyroscope sensors 102 and 107 are coupled to the processor 109. The gyroscope sensor could employ one-axis type, two-axis type or three-axis type.
The gyroscope sensors 102 and 09 may be used to detect rotation of the smart ring 100 in the vertical state and the horizontal state. In particular, the gyroscope sensors 102 and 109 detect rotation values of the X, Y and Z axes of the gyroscope sensors. The gyroscope sensors 102 and 109 have to be symmetrically built inside the smart ring 100 at the left side and the right side. In an example, they are built at the opposite ends of the diameter of the smart ring 100. The gyroscope sensor 109 is disposed differently from the gyroscope sensor 102 wherein the X and Y axes of the gyroscope sensor 109 are rotated counterclockwise or clockwise by 45° with respect to the corresponding axes of the gyroscope sensor 102. The gyroscope sensors 102 and 109 send to the processor 109 a signal indicative of rotation values of their X, Y and Z axes.
When the smart ring 100 is in the horizontal state, the gyroscope sensors 102 and 109 have their Z axes perpendicular with the desk. In this state, when the smart ring is rotated in the clockwise or counterclockwise, the Z axes of the gyroscope sensors 102 and 109 are rotated in the clockwise or counterclockwise. Then, the gyroscope sensors 102 and 109 send the signal to the processor 110 indicative of clockwise or counterclockwise rotation of the smart ring 100 in the horizontal state.
When the smart ring is in the vertical state, the gyroscope sensors 102 and 109 have their Z axes parallel with the desk. In this state, when the smart ring is rotated in the clockwise or counterclockwise, the Z axes are rotated in the clockwise or counterclockwise. Then, the gyroscope sensors 102 and 109 send the signal to the processor 110 indicative of clockwise or counterclockwise rotation of the smart ring 100 in the vertical state.
In case that the smart ring is in either the horizontal state or the vertical state, when the smart ring is rotated, only the Z axes of the gyroscope sensors 102 and 109 are rotated correspondingly and their X and Y axes are not rotated.
When the computing, device determines the clockwise or counterclockwise rotation of the smart ring, it will perform corresponding functions. This is the same as when the wheel of the mouse is rotated clockwise or counterclockwise. What can be performed in response to rotation of the smart ring will depend on the specific applications.
When the smart ring is flipped, all the three axes of the gyroscope sensors 102 and 109 are rotated accordingly. Then, the gyroscope sensors 102 and 109 send the signal to the processor 111 indicative of rotations of their X, Y and Z axes. When the computing device determines based on rotations of their X, Y and Z axes of gyroscope sensors 102 and 109 that the smart ring 100 is flipped until it taps the desk for example, it pops up the menu including options for selection on the selected item. This is the same as when the right button of the mouse is clicked. The different functions could be defined in response to flipping of the smart ring.
In an example, the smart ring includes two accelerometer sensors 103 and 108 and a digital compass 105. The two accelerometer sensors 103 and 108 and the digital compass 105 are coupled to the processor 111.
The two accelerometer sensors 103 and 108 may be used to detect movement of the smart ring 100 in the XY plane, for example, on the desk. The two accelerometer sensors 103 and 108 have to be symmetrically built inside the smart ring 100 at the left side and the right side. In an example, they are built at the opposite ends of the diameter of the smart ring 100. The accelerometer sensor 103 is built in a manner so that its X and Y axes are the standard setting. The accelerometer sensor 108 is disposed differently from the accelerometer sensor 103 so that the X and Y axes of the accelerometer sensor 108 are rotated counterclockwise by 45° with respect to the X and Y axes of the accelerometer sensor 103. The two accelerometer sensors 103 and 108 are coupled to the processor 109 to send the signal indicative of accelerations of the smart ring 100 in different directions of the X and Y axes of the accelerometer sensors 103 and 108. The digital compass 105 is disposed in the diameter and at the lowest point of the smart ring 100 and is used to point the south so that when the smart ring 100 is rotated on the desk, the pointing direction of the digital compass 105 can be used to transform coordinate system of X and Y axes or the two accelerometer sensors 103 and 108 into the default XY coordinate system. The first accelerometer sensor 103 has total four directions, positive X1+, negative X1−, positive Y1+ and negative Y1−. The second accelerometer sensor 108 has total four directions, positive X2+, negative X2−, positive Y2+ and negative Y2−. The respective angles between X1+ and X2+, X1− and X2−, Y1+ and Y2+, Y1− and Y2− are each 45° The two accelerometer sensors 103 and 108 detect different acceleration values from the eight directions when the smart ring 100 moves on the desk. Based on the acceleration values and the time the smart ring spends in moving, the distance of the smart ring travelling can be calculated. When the smart ring 100 moves on the desk, it sends the signal indicative of the respective acceleration values of the two accelerometer sensors 103 and 108 to the computing device.
The computing device calculates the corresponding moving speed and distance of the pointer on the screen in response to movement of the smart ring and then instructs the pointer to move correspondingly.
In example, the first gyroscope sensor 102 and the first accelerometer sensor 103 are integrated together and the second gyroscope sensor 109 and the second accelerometer sensor 108 are integrated together.
In example, the G-sensor 101, the first gyroscope sensor 102 and the first accelerometer sensor 103 are integrated together and the second gyroscope sensor 109 and the second accelerometer sensor 108 are integrated together.
In an example, the outer surface of the smart ring could be set or affixed a label including a vertical letter, for example, “A” or “HP” in the thickness direction of the smart ring to indicate the positive Z axis and when the smart ring is flipped, the letter is reversed accordingly to indicate the negative axis, vice versa.
As a matter of fact, the smart ring does not necessarily move exactly in the just X axis or the just Y axis. In this case, the computing device calculates the movement direction and speed of the cursor or pointer on the screen based on 8 accelerations of the 8 axes of the two accelerometer sensors and then instructs the pointer on the screen to move in the calculated directions. When the compass indicates the smart ring is rotated, then it will send the offset angle value. In this case, the computing device will transform the X and Y axes of the two accelerometer sensors to the default coordinate system to calculate the movement of the pointer.
In an example, in case that the user is viewing the picture in a gallery and the smart ring is in the horizontal state, the computing device zooms the picture in as the smart ring is rotated clockwise; and the computing device zooms it out as the smart is rotated counterclockwise, vice versa. In case that the user is viewing the picture and the smart ring is in the vertical state, the computing device goes to the previous picture as the smart ring is rotated clockwise; and the computing device goes to the next picture as the smart is rotated counterclockwise, vice versa. The different functions of zooming in or out and going to the previous or next picture could be predefined or changed before the smart ring is rotated.
In an example, in case that, the user is playing a son or video or the like with the multimedia player and the smart ring is in the horizontal state, the computing device makes the player go forward as the smart ring is rotated clockwise; and the computing device makes the player rewind as the smart is rotated counterclockwise, vice versa. In case that the user is playing the song or video or the like and the smart ring is in the vertical state, the computing device instructs the player jump to the previous item such as a song as the smart ring, is rotated clockwise; and the computing device instructs the player to go to the next song, vice versa. The different functions of forwarding or rewinding or jumping to the previous or next item could be predefined or changed before the smart ring is rotated
In an example, in case that the user is making presentation and the smart ring is in the horizontal state, the computing device zooms in the slide as the smart ring is rotated clockwise; and the computing device zooms out the slide as the smart is rotated counterclockwise, vice versa. In case that the user is making presentation and the smart ring in the vertical state, the computing device jumps to the previous slide as the smart ring is rotated clockwise; and the computing device jumps to the next page as the smart ring is rotated counterclockwise, vice versa. These different functions in the example could be predefined or changed before the smart ring is rotated
In an example, in case that the focused item on the screen is a sliding bar and the smart ring is in the horizontal state, the computing device moves the bar to the right as the smart ring is rotated clockwise. In case that the smart ring is rotated counterclockwise in the example, the computing device moves the bar to the left, vice versa. In case that the focused item on the screen is the sliding bar and the smart ring is in the vertical state, the computing device moves the bar upward as the smart ring is rotated clockwise. As the smart ring is rotated counterclockwise in this case, the computing device moves the bar downward.
The above just presents some example of how to define different functions with the rotations of the smart ring, but it is appreciated that the functions corresponding to the rotations of the smart ring should not be construed in the limitation sense. The other functions which can realized by rotating the smart ring can be practiced within the scope of the spirit of the disclosure.
The memory 1102 includes the G-sensor detection module 1103, the Gyroscope sensor detection module 1104, the Accelerometer sensor detection module 1105 and the pointer control module 1106.
The G-sensor detection module 1103 receives the data from the G-sensor of the smart ring. When the data from the G-sensor is indicative of the shock wave due to the smart ring tapping the desk, for example, the G-sensor detection module 1103 sends to the pointer control module 1106 the instruction to select the item on the screen. This is the same as when the left button of the mouse is clicked once. When the G-sensor detection module 1103 receives the data from the G-sensor indicative of the consecutive two shock waves within the specified interval due to the smart ring tapping the desk twice, it sends to the pointer control module the instruction to open the selected item such as a file or file folder. This is the same as the left button of the mouse is clicked twice. The interval between the twice tapping of the smart ring can be set to different value. In an example, when the G-sensor detection module 1103 determines the interval is greater than 500 ms for example, it sends to the pointer control module 1106 to open the file. When the interval is less than 500 ms, the pointer control module 1106 instructs the pointer to pop up the menu on the selected item. This is the same as the right button of the mouse is clicked on the selected item. The value of interval is not limited to 500 ms and can be set to different values, depending on the user's preference or application requirements. When the G-sensor detection module 1103 receives the data indicative of the smart ting consecutively tapping the desk three times or four times or more within the specified intervals, the pointer control module 1106 could realize the different function as defined by the user. For example, the user can define the function corresponding to the different times of tapping. For example, the three or four times of tapping will make the computing device enter into a sleep mode. In another example, the three or four times of tapping will make the computing device shut down.
The Accelerometer sensor detection module 1105 receives acceleration values of the accelerometer sensors of the smart ring in different directions of the X and Y axes of the accelerometer sensors via the transceiver 1107 and then calculates the movement direction and speed of the pointer on the screen by calculating the distance of the smart ring travelling based on the acceleration values and the time the smart ring spends in moving on the desk. Then, the Accelerometer sensor detection module 1105 instructs the pointer control module 1106 to move the pointer in the calculated direction. When the computing device receives the offset angle value as detected by the compass, it will transform the X and Y axes of the two accelerometer sensors to the default coordinate system to calculate the movement of the pointer and then calculates the movement direction and speed of the pointer on the screen by calculating the distance of the smart ring travelling based on the acceleration values and the time the smart ring spends in moving on the desk.
In an example, the accelerometer sensor detection module 1105 also receives the offset angle from the digital compass so that it transforms the coordinate system to the standard one based on the angle. When the smart ring moves just in case the offset angle is always zero, the offset angle from the digital compass is not required.
In an example, the memory 1102 further includes a compass detection module for receiving the offset angle from the digital compass which the accelerometer sensor detection module 1105 can use to transform the coordinate system to the standard one.
When the gyroscope sensor detection module 1104 receives data indicative of rotation values of the X, Y and Z axes of the gyroscope sensor of the smart ring due to the smart ring flipping and then G-sensor detection module 1103 receives data indicative of the shock wave due to the smart ring tapping the desk, they send messages to the pointer control module 1106. Then, the pointer control model 1106 determines both flipping and the shock wave of the smart ring, it instructs the pointer to pop up the menu on the selected items. The menu includes the options of “Open” and “Edit”, for example. In an example, when the selected item is a .text file, the popped menu includes the size and creation time of the file, for example. This is the same as when the right button of the mouse is clicked on the selected item. Please be noted that what the flipping of the smart ring can realize, for example realizing other functions than the popping of the menu, can be defined based on the user's preference. For example, when the gyroscope sensor detection module 1104 receives data indicative of flipping of the smart ring, it sends the instruction to the pointer control module 1106 to lock the computing device or shut it down.
When the gyroscope sensor detection module 1104 receives data indicative of clockwise or counterclockwise rotation of the smart ring, it sends instructions to the pointer control module 1106 to implement different functions corresponding to different rotations of the smart ring.
In an example, in case that the gyroscope sensor detection module 1104 detects that the smart ring is rotated clockwise in the horizontal state, the pointer control module 1106 zooms the picture in when the user is viewing the picture in the gallery; and in case that the gyroscope sensor detection module 1104 detects that the smart ring is rotated counterclockwise, the pointer control module 1106 zooms the picture out, vice versa. In case that the gyroscope sensor detection module 1104 detects that the smart ring is rotated clockwise in the vertical state, the pointer control module 1106 makes the screen display jump to the previous picture; and in case that the gyroscope sensor detection module 1104 detects that the smart ring is rotated counterclockwise, the pointer control module 1106 makes the screen display jump to the next picture, vice versa. These different functions in the example could be predefined or changed before the smart ring is rotated.
In an example, in case that the gyroscope sensor detection module 1104 detects that the smart ring is rotated clockwise in the horizontal state, the pointer control module 1106 makes the player forward when the user is playing the song or video or the like; and in case that the gyroscope sensor detection module 1104 detects that the smart ring is rotated counterclockwise, the pointer control module 1106 makes the player rewind, vice versa. In case that the gyroscope sensor detection module 1104 detects that the smart ring is rotated clockwise in the vertical state, the pointer control module 1106 makes the player jump to the previous item such as a song; and in case that the gyroscope sensor detection module 1104 detects that the smart ring is rotated counterclockwise, the pointer control module 1106 makes the player go to the next song, vice versa. These different functions in the example could be predefined or changed before the smart ring is rotated.
In an example, in case that the gyroscope sensor detection module 1104 detects that the smart ring is rotated clockwise in the horizontal state, the pointer control module 1106 zooms in the slide in when the user is making presentation; and in case that the gyroscope sensor detection module 1104 detects that the smart ring is rotated counterclockwise, the pointer control module 1106 zooms out the slide, vice versa. In case that gyroscope sensor detection module 1104 detects that the smart ring is rotated clockwise in the vertical state, the pointer control module 1106 makes the slide jump the previous one; and in case that the gyroscope sensor detection module 1104 detects that the smart ring is rotated counterclockwise, the pointer control module 1106 makes the slide jump to the next one, vice versa. These different functions in the example could be predefined or changed before the smart ring is rotated.
In an example, in case that the focused item on the screen is the sliding bar and the smart ring is in the horizontal state, the computing device moves the bar to the right as the smart ring is rotated clockwise. In case that the smart ring is rotated counterclockwise, the computing device moves the bar to the left, vice versa. In case that the focused item on the screen is the sliding bar and the smart ring is in the vertical state, the computing device moves the bar upward as the smart ring is rotated clockwise. As the smart ring is rotated counterclockwise, the computing device moves the bar downward. These different functions in the example could be predefined or changed before the smart ring is rotated.
While the disclosure has been described with respect to a limited number of examples, those skilled in the art, having benefit of this disclosure, will appreciate that other example embodiments can be devised which do not depart from the scope of the disclosure as disclosed herein. Accordingly, the scope of the disclosure should be limited only by the attached claims.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/CN2015/072425 | 2/6/2015 | WO | 00 |